Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 111
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Exp Mol Pathol ; 132-133: 104867, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37634863

RESUMEN

Mast cells (MCs) are tissue-resident innate immune cells that express the high-affinity receptor for immunoglobulin E and are responsible for host defense and an array of diseases related to immune system. We aimed in this study to characterize the pathways and gene signatures of human cord blood-derived MCs (hCBMCs) in comparison to cells originating from CD34- progenitors using next-generation knowledge discovery methods. CD34+ cells were isolated from human umbilical cord blood using magnetic activated cell sorting and differentiated into MCs with rhIL-6 and rhSCF supplementation for 6-8 weeks. The purity of hCBMCs was analyzed by flow cytometry exhibiting the surface markers CD117+CD34-CD45-CD23-FcεR1αdim. Total RNA from hCBMCs and CD34- cells were isolated and hybridized using microarray. Differentially expressed genes were analyzed using iPathway Guide and Pre-Ranked Gene Set Enrichment Analysis. Next-generation knowledge discovery platforms revealed MC-specific gene signatures and molecular pathways enriched in hCBMCs and pertain the immunological response repertoire.


Asunto(s)
Sangre Fetal , Mastocitos , Humanos , Descubrimiento del Conocimiento , Antígenos CD34/genética , Diferenciación Celular/genética
2.
Pak J Med Sci ; 39(4): 988-993, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37492288

RESUMEN

Background & Objectives: Accurate identification of molecular and toxicological functions of potential drug candidates is crucial for drug discovery and development. This may aid in the evaluation of the risks of genotoxicity and carcinogenesis. In addition, in silico characterization of existing and new drugs might offer clues for future investigations and aid in the development of anticancer treatments. Using next-generation knowledge discovery (NGKD) methodology, we endeavored to establish a risk assessment of anticancer drugs for their molecular mechanism(s) and genotoxicity. Methods: This study was performed at the Faculty of Applied Medical Sciences, King Abdulaziz University (KAU), Jeddah, Saudi Arabia, in November 2022. Using innovative in silico model systems, we assessed the molecular mechanism of action and toxicity of around 20 distinct substances such as Deguelin, Etoposide, Camptothecin, Cytarabine (Ara-C), Cisplatin, Hydroxyurea, Trichostain A, Antimycin, Colchicine, 2-deoxyglucose, Tunicamycin, Thapsigargin, Vinblastin, Docetaxel, Oxaliplatin, Methotrexate, 5-flurouracil, Bleomycin, Taxol (Paclitaxel), and Apicidin. Using the Ingenuity Pathway Analysis (IPA) knowledge base, the number of targets for each compound was determined in silico. Subsequently, they were examined using Fisher's exact test and Benjamini Hochberg Multiple Testing Correction (P<0.05) and submitted to core analysis with IPA to decode the biological and toxicological activities differently controlled by these drugs. In addition, a multiple comparison module in IPA was used to compare the core analyses of each molecule. In addition, we obtained the top 100 protein targets of Etoposide, Camptothecin, and Ara-C using SwissTargetPrediction, as well as the key pathways and gene ontologies affected by these drugs and disease associations using the WebGestalt tool. Results: We identified distinct toxicological signatures and canonical signaling pathways in tumor cell lines regulated by these 20 anticancer drugs. These signaling pathways included cell death and apoptosis in addition to molecular processes, p53 signaling, and aryl hydrocarbon receptor signaling. The TP53 signaling pathway is utilized by these agents to effectively trigger cell death and apoptosis, and p53 functions as a master regulator in a variety of cellular stress responses, including genotoxic stress. Conclusion: Our research has laid the groundwork for the discovery of additional biomarkers that assess both the safety and effectiveness of treatment. Our mechanism based "NGKD" tools have more relevance for the identification of safer therapies and has the potential to lead to the rational screening of drug candidates targeting specific molecular networks and canonical pathways implicated in cancer and genotoxicity. In addition, the combination of protein, microRNA and metabolome profiles may be essential for the development of translatable biomarkers for the safety and efficacy of pharmacotherapeutic agents.Our research has laid the groundwork for the discovery of additional biomarkers that assess both the safety and the effectiveness of a treatment.

3.
Pak J Med Sci ; 39(2): 423-429, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36950431

RESUMEN

Objectives: Accurately identifying the cellular, biomolecular, and toxicological functions of anticancer drugs help to decipher the potential risk of genotoxicity and other side effects. Here, we examined bleomycin for cellular, molecular and toxicological mechanisms using next-generation knowledge discovery (NGKD) tools. Methods: This study was conducted at the Faculty of Applied Medical Sciences, King Abdulaziz University (KAU), Jeddah, Saudi Arabia in October 2022. We first analyzed the raw Toxicogenomic and DNA damage-inducing (TGx-DDI) gene expression data from Gene Expression Omnibus (GEO) (GSE196373) of TK6 cells treated with 10 µM bleomycin and TK6 cells treated with DMSO for four hours using the GEO2R tool based on the Linear Models for Microarray Analysis (limma) R packages to derive the differentially expressed genes (DEGs). Then, iPathwayGuide was used to determine differentially regulated signaling pathways, biological processes, cellular, molecular functions and upstream regulators (genes and miRNAs). Results: Bleomycin differently regulates the p53 pathway, transcriptional dysregulation in cancer, FOXO pathway, viral carcinogenesis, and cancer pathways. The biological processes such as p53 class mediator signaling, intrinsic apoptotic signaling, DNA damage response, and DNA damage-induced intrinsic apoptotic signaling and molecular functions like ubiquitin protein transferase and p53 binding were differentially regulated by bleomycin. iPathwayGuide analysis showed that the p53 and its regulatory gene and microRNA networks induced by bleomycin. Conclusion: Analysis of TGx-DDI data of bleomycin using NGKD tools provided information about toxicogenomics and other mechanisms. Integration of all "omics" based approaches is crucial for the development of translatable biomarkers for evaluating anticancer drugs for safety and efficacy.

4.
Neurol Sci ; 40(2): 299-303, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30392057

RESUMEN

Progressive encephalopathy, edema, hypsarrhythmia, and optic atrophy (PEHO) syndrome is an unusual Mendelian phenotype of unidentified origin that causes profound intellectual disability, optic nerve/cerebellar atrophy, epileptic seizures, developmental progress, pedal edema, and early death. Uncharacteristic affected individuals are often classified as having PEHO-like syndrome, although they may be misdiagnosed as having epileptic encephalopathy, a potential result of early birth. In this study, we report a consanguineous Saudi family with a novel homozygous nonsense mutation of the CCDC88A gene causing PEHO-like syndrome. The children were suffering from developmental delay, epilepsy, mental disability, optic nerve/cerebellar atrophy, and pedal edema. Whole exome sequencing was conducted for the members of the family who have the disorder to study the novel mutation. Whole exome sequencing data analysis, confirmed by subsequent Sanger sequencing validation, identified a novel homozygous nonsense mutation c. 1292G > A, which was caused by p.Trp431* stop gain. This mutation was ruled out in 100 unrelated healthy controls. The nonsense homozygous mutation detected in this study has not yet been reported as pathogenic in the literature or various databases. In conclusion, a complete loss of protein function due to premature stop gain was caused by a mutation in exon 12 of CCDC88A. This loss may lead to PEHO phenotype. CCDC88A gene may therefore play an important and critical role for multiple aspects of normal human neurodevelopment.


Asunto(s)
Edema Encefálico/genética , Codón sin Sentido , Predisposición Genética a la Enfermedad , Proteínas de Microfilamentos/genética , Enfermedades Neurodegenerativas/genética , Atrofia Óptica/genética , Espasmos Infantiles/genética , Proteínas de Transporte Vesicular/genética , Preescolar , Consanguinidad , Familia , Femenino , Humanos , Lactante , Masculino , Arabia Saudita
5.
Pak J Med Sci ; 35(3): 764-770, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31258591

RESUMEN

OBJECTIVE: Primary microcephaly (MCPH) is a rare autosomal recessive disorder characterized by impaired congenital reduction of brain size along with head circumference and intellectual disability. MCPH is a heterogeneous disorder and more than twenty four genes associated with this disease have been identified so far. The objective of this study was to find out the novel genes or mutations leading to the genetic defect in a Saudi family with primary microcephaly. METHODS: Whole exome sequencing was carried out to find the novel mutation and the results was further validated using Sanger sequencing analysis. This study was done in the Center of excellence in Genomic Medicine and Research, King Abdulaziz University under KACST project during 2017 and 2018. RESULTS: We report a novel compound heterozygous mutations c.797C>T in exon 7 and c.1102G>A in exon 9 of the WD repeat domain 62 (WDR62) (OMIM 604317) gene in two affected siblings in Saudi family with intellectual disability, speech impediments walking difficulty along with primary microcephaly. Two rare, missense variants were detected in heterozygous state in the WDR62 gene in these two affected individuals from the heterozygous parents. CONCLUSIONS: A compound heterozygous mutations c.797C>T in exon 7 and c.1102G> A in exon 9 of the WDR62 gene was identified. WDR62 gene is very important gene and mutation can lead to neuro developmental defects, brain malformations, reduced brain and head size. These results should be taken into consideration during prognostic discussions and mutation spectrum with affected patients and their families in the Saudi population.

6.
Neurosciences (Riyadh) ; 23(4): 347-350, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30351297

RESUMEN

OBJECTIVE: To identify genetic variation involved in primary microcephaly. METHODS: In present study we identified 4 generation Saudi family showing primary microcephaly. We performed whole exome sequencing along with Sanger sequencing to find the genetic defect in this family. This study was conducted in King Abdulaziz University started from 2016 and the results presented in this manuscript are from one of the family. RESULTS: Two novel missense variants (c.982G>A and c.1273T>A) were identified in heterozygous state in exon 8 of MCPH1 gene. The detected missense variants cause a tyrosine to asparagine substitution of residue 425 and a valine to isoleucine substitution at residue 310. MCPH1 gene encodes a DNA damage response protein. The encoded protein play a role in G2/M DNA damage checkpoint arrest via maintenance of inhibitory phosphorylation of cyclin-dependent kinase 1. The respective mutation was ruled out in 100 control samples. CONCLUSION: We found novel compound heterozygous mutation in Saudi family that will help to build database for genetic mutations in population and pave way to devise strategies to tackle such disorders in future.


Asunto(s)
Microcefalia/genética , Mutación Missense , Proteínas del Tejido Nervioso/genética , Adulto , Proteínas de Ciclo Celular , Niño , Proteínas del Citoesqueleto , Femenino , Heterocigoto , Humanos , Masculino , Microcefalia/patología , Proteínas del Tejido Nervioso/química , Linaje , Dominios Proteicos
7.
Pak J Pharm Sci ; 31(4): 1259-1266, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30033409

RESUMEN

The screening of plants for medicinal purposes represents an effort to discover newer, safer, and possibly more effective drugs. Design of the present study was made aiming to the optimization of the antibacterial activity of ethanolic extracts of Eucalyptus tereticornis (leaves) and Nigella sativa (seeds) against bacteria belongings to both Gram-positive (Bacillus subtilis and Staphylococcus aureus) and Gram-negative (Escherichia coli) spectrum by using response surface methodology. 20 g powder of each E. tereticornis (leaf) and N. sativa (seeds) were mixed with 200ml of ethanol at room temperature, and then it was centrifuged at 4000 rpm for 10 min to separate the supernatants, and allowed to dry in order to obtain ethanol free extracts. A fresh bacterial culture of 100µl of test microorganism was inoculated onto media and spread homogeneously. The antimicrobial activity of ethanolic extracts showed that all the concentrations tested were effective against the test microorganisms. The diameters of zones of inhibition exhibited by S. aureus PCSIR-83 were in the range of 0-28mm, E. coli PCSIR-102 (0-28mm) and B. subtilis PCSIR-05 (15-26mm). The combination of N. sativa (15mg/µl) and E. tereticornis (20mg/µl) were found most effective at pH 9.0 and temperature 35°C. Our results clearly indicate that Gram positive bacteria showed more sensitivity than Gram-negative bacteria.


Asunto(s)
Antibacterianos/farmacología , Eucalyptus/química , Bacterias Gramnegativas/efectos de los fármacos , Bacterias Grampositivas/efectos de los fármacos , Nigella sativa/química , Extractos Vegetales/farmacología , Antibacterianos/aislamiento & purificación , Relación Dosis-Respuesta a Droga , Etanol/química , Pruebas de Sensibilidad Microbiana , Extractos Vegetales/aislamiento & purificación , Proyectos de Investigación
8.
BMC Genomics ; 17(Suppl 9): 757, 2016 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-27766957

RESUMEN

BACKGROUND: Epilepsy is genetically complex but common brain disorder of the world affecting millions of people with almost of all age groups. Novel Copy number variations (CNVs) are considered as important reason for the numerous neurodevelopmental disorders along with intellectual disability and epilepsy. DNA array based studies contribute to explain a more severe clinical presentation of the disease but interoperation of many detected CNVs are still challenging. RESULTS: In order to study novel CNVs with epilepsy related genes in Saudi family with six affected and two normal individuals with several forms of epileptic seizures, intellectual disability (ID), and minor dysmorphism, we performed the high density whole genome Agilent sure print G3 Hmn CGH 2x 400 K array-CGH chips analysis. Our results showed de novo deletions, duplications and deletion plus duplication on differential chromosomal regions in the affected individuals that were not shown in the normal fathe and normal kids by using Agilent CytoGenomics 3.0.6.6 softwear. Copy number gain were observed in the chromosome 1, 16 and 22 with LCE3C, HPR, GSTT2, GSTTP2, DDT and DDTL genes respectively whereas the deletions observed in the chromosomal regions 8p23-p21 (4303127-4337759) and the potential gene in this region is CSMD1 (OMIM: 612279). Moreover, the array CGH results deletions and duplication were also validated by using primer design of deleted regions utilizing the flanked SNPs using simple PCR and also by using quantitative real time PCR. CONCLUSIONS: We found some of the de novo deletions and duplication in our study in Saudi family with intellectual disability and epilepsy. Our results suggest that array-CGH should be used as a first line of genetic test for epilepsy except there is a strong indication for a monogenic syndrome. The advanced high through put array-CGH technique used in this study aim to collect the data base and to identify new mechanisms describing epileptic disorder, may help to improve the clinical management of individual cases in decreasing the burden of epilepsy in Saudi Arabia.


Asunto(s)
Variaciones en el Número de Copia de ADN , Epilepsia/genética , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Discapacidad Intelectual/genética , Hibridación Genómica Comparativa , Biología Computacional/métodos , Consanguinidad , Epilepsia/diagnóstico , Femenino , Dosificación de Gen , Humanos , Discapacidad Intelectual/diagnóstico , Masculino , Linaje , Reproducibilidad de los Resultados , Arabia Saudita , Eliminación de Secuencia
9.
Am J Med Genet A ; 170(11): 3018-3022, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27531570

RESUMEN

We describe two brothers from a consanguineous family of Egyptian ancestry, presenting with microcephaly, apparent global developmental delay, seizures, spasticity, congenital blindness, and multiple cutaneous capillary malformations. Through exome sequencing, we uncovered a homozygous missense variant in STAMBP (p.K303R) in the two siblings, inherited from heterozygous carrier parents. Mutations in STAMBP are known to cause microcephaly-capillary malformation syndrome (MIC-CAP) and the phenotype in this family is consistent with this diagnosis. We compared the findings in the present brothers with those of earlier reported patients. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Capilares/anomalías , Complejos de Clasificación Endosomal Requeridos para el Transporte/genética , Homocigoto , Microcefalia/diagnóstico , Microcefalia/genética , Ubiquitina Tiolesterasa/genética , Malformaciones Vasculares/diagnóstico , Malformaciones Vasculares/genética , Encéfalo/patología , Consanguinidad , Variaciones en el Número de Copia de ADN , Análisis Mutacional de ADN , Exoma , Facies , Estudios de Asociación Genética , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Imagen por Resonancia Magnética , Masculino , Mutación , Linaje , Fenotipo , Hermanos , Síndrome
10.
Neurol Sci ; 35(11): 1681-8, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24810836

RESUMEN

The objective of this study was to evaluate the effect of ethanol and pentylenetetrazol (PTZ) on the expression of dopamine receptors (D1R) and to observe the apoptotic neurodegeneration in prenatal rat cortical and hippocampal neurons at gestational days (GD) 17.5. In the present study, ethanol (100 mM) and PTZ (15 mM) were exposed to the prenatal rat cortical and hippocampal neuronal cell cultures for 1 h. For mRNA RT-PCR and for protein Western blot analysis was done to elucidate D1R, Bax, Bak, Bcl-2 and cleaved caspase-3 expression upon ethanol and PTZ exposure in neuronal cell cultures. Furthermore, ethanol and PTZ-induced apoptotic neurodegeneration was also observed using TUNEL staining and propidium iodide (PI) used as counter stain under confocal microscopy. The results of present study showed that ethanol and PTZ exposure significantly decreased D1R expression and induced neuronal death by significantly increasing the expression of pro-apoptotic Bax, Bak and decreasing anti-apoptotic protein Bcl-2 leading to the apoptosis by increasing cleaved caspase-3 expression in cortical and hippocampal primary neuronal cell cultures. Our findings indicated that ethanol and PTZ exposure to the prenatal neurons showed not only downregulation of D1R but also causes neuronal apoptosis in the developing rat brain. Further, this explains the possibility of higher risk of developmental disturbances and malformations during early developmental stage.


Asunto(s)
Apoptosis/efectos de los fármacos , Etanol/toxicidad , Hipocampo/efectos de los fármacos , Neuronas/efectos de los fármacos , Efectos Tardíos de la Exposición Prenatal/metabolismo , Receptores de Dopamina D1/biosíntesis , Animales , Western Blotting , Células Cultivadas , Corteza Cerebral/efectos de los fármacos , Corteza Cerebral/metabolismo , Corteza Cerebral/patología , Convulsivantes/toxicidad , Regulación hacia Abajo , Femenino , Hipocampo/metabolismo , Hipocampo/patología , Etiquetado Corte-Fin in Situ , Neuronas/metabolismo , Neuronas/patología , Pentilenotetrazol/toxicidad , Embarazo , Efectos Tardíos de la Exposición Prenatal/patología , Ratas , Ratas Sprague-Dawley , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
11.
Pak J Med Sci ; 30(4): 819-23, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25097524

RESUMEN

OBJECTIVE: To investigate the potential harmful effects of potassium dichromate and magnesium sulphate causing oxidative stress and reproductive toxicity in adult male mice model. METHODS: The experimental work was conducted on sixty male mice (Mus musculus) divided into three groups. Mice in group B and C received potassium dichromate and magnesium sulphate of 5.0 and 500 mg/Kg body weight/ml respectively, for sixty days. The blood sample was analyzed to assess oxidative stress and cellular damage. RESULTS: RESULTS showed high malondialdehyde (MDA) and low levels of antioxidant enzymes [catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (GPx)] in both potassium dichromate and magnesium sulphate administrated groups as compared to control group. Reduced number of sperm count and excessive destruction of testicular follicles, including destruction of spermatids, leydig cells and sertoli cells, were also seen in both groups. CONCLUSION: We concluded from present study that potassium dichromate and magnesium sulphate causes oxidative stress by generation of reactive oxygen species (ROS) and causing DNA damage in testicular cells leading to adverse reproductive abnormalities.

12.
Pak J Med Sci ; 30(6): 1356-60, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25674138

RESUMEN

Objective : The present study was designed to investigate variations in the levels of thyroid hormones (T3, T4) in breast and ovarian cancers patients. Methods : A total 120 subjects were recruited (without thyroid history) divided into three groups; A, B and C. Group A as control with healthy individuals. While group B and group C were consisting of breast cancer and ovarian cancer patient respectively. Blood samples (5 ml) were taken and analyzed to estimate the levels of serum T3 (tri-iodothyronine) and T4 (thyroxin) hormones. R esults : Statistically significant difference (P=0.000* and P=0.017*) was obtained among all groups. A significant increase in T3 (P=0.000*) and T4 (0.005*) levels was observed among breast cancer patients as compared to healthy controls. While for ovarian cancer patients conflicting results were found for T3 and T4 levels in the serum i.e. insignificant difference was found in T3 (P=0.209) and T4 (P=0.050) as compared to control. Our results showed that in the breast cancer and ovarian cancer patients the thyroid hormone (T3 and T4) level has been altered from the normal ranges as compared to the normal healthy individuals. Conclusion : We conclude that hyperthyroidism has profound effects on breast cancer and ovarian cancer cells proliferation.

13.
Pak J Med Sci ; 30(3): 466-71, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24948960

RESUMEN

Objective : Oral squamous cell carcinoma (OSCC) is considered to be a serious life threatening issue for almost two decades. The objective of this study was to evaluate the over production of lipid peroxidation (LPO) byproducts and disturbances in antioxidant defense system in the pathogenesis of oral cancer. Methods : Lipid peroxidation and antioxidant status in OSCC patients were estimated and compared the sensitivity and specificity of circulating biomarkers (MDA, Sialic acid, Catalase, SOD, GSH and Neuraminidase) with ß-2 microglobulin (ß-2MG) at different thresholds in blood and saliva using receiver operating characteristics (ROC) curve design. R esults : Our results showed that the levels of MDA and Sialic acid were significantly increased in plasma of OSCC patients as compared to healthy subjects whereas antioxidant level was significantly decreased. Conclusion : ROC analysis indicated that MDA in saliva is a better diagnostic tool as compared to MDA in blood and ß-2MG in blood is better diagnostic marker as compared to ß-2MG level in saliva.

14.
Bioinformation ; 20(4): 397-403, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38854755

RESUMEN

Colorectal cancer (CRC) is the second most common cancer in the world. In Saudi Arabia, CRC is the most common cancer in males and the third most common in females, and its incidence rate is rising as the country continues to develop. However, the country does not have a national CRC screening program for CRC. This review aims to review recent studies that have attempted to address and rectify this issue and discern the most notable and prevalent barriers. Despite these efforts, guidelines are still lacking. Two prospective studies have been conducted in recent years, one of which was a national pilot screening program conducted by the Ministry of Health (MOH). While both had a similar number of participants, the colonoscopy rate for patients with a positive fecal immunochemical test (FIT) in the MOH program was only 20% compared to 75.8% in the Al-Kharj program. Awareness of the Saudi population regarding CRC and its screening appears to be insufficient. The most common barriers to patients' willingness to undergo screening were embarrassment, fear, and pain. Barriers to physicians are mostly related to factors outside their hands, such as lack of equipment and time. We conclude that efforts should be made to establish a national screening program and improve awareness of the population and physicians.

15.
Bioinformation ; 20(4): 305-313, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38854759

RESUMEN

Cardiovascular disease (CVD) is one of the main causes of death in Saudi Arabia. Cardiac remodeling plays a critical role in the pathophysiology of heart failure. Major focus of our study was to identify crucial genes involved in the pathological remodeling of the heart caused by pressure overload. We utilized various in-silico tools to analyze and interpret microarray data obtained from the Gene Expression Omnibus (GEO) database (GSE120739), including GEO2R analysis, Metascape analysis, WebGestalt analysis, and IPA (Ingenuity pathway analysis). Our findings indicate that certain genes, including Cartilage Oligomeric Matrix Protein (COMP), collagen type VIII alpha 1 chain (COL8A1) and Lysyl Oxidase (LOX) under the influence caused by knockdown of KDM3A, were down regulated by the extracellular matrix pathway. Moreover, genes, such as Acyl-CoA Thioesterase 1 (ACOT1) were up regulated by the fatty acid metabolism pathway. Overexpression of lysine-specific demethylase 3A (KDM3A) leads to the up regulation of fibrosis-related genes COMP, COL8A1, and LOX and the down regulation of ACOT1, result in enhanced fibrosis and heart failure. Our results suggest that COMP, COL8A1, LOX, and ACOT1 warrant further investigation in the development of cardiac fibrosis and as potential biomarkers for causing heart failure.

16.
CNS Neurol Disord Drug Targets ; 22(4): 466-476, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-35466886

RESUMEN

Dementia is a complex syndrome of neurological disorders which is associated with cognitive functions of the body. The present review focuses on the role and application of natural products in the treatment of dementia and related diseases. The studies highlight that there exist some potent synthetic/semisynthetic drugs that can effectively target dementia and related diseases. In contrast, despite the existence of a large library of natural products, only a few of them (galantamine, huperzine A, etc.) have been approved as drugs against dementia. This fact is not discouraging because a large number of natural products, including classes of polyphenols, alkaloids, isothiocyanates, phytocannabinoids, and terpenoids, are in the process of drug development stages against dementia and related diseases. It is because they display some promising and diverse biological activities, including antioxidant, acetylcholinesterase inhibitory activity, and anti-amyloidogenic properties, which are significantly associated with the prevention of dementia syndrome. The studies reported in the literature reveal that bioactive natural products particularly target Alzheimer's and Parkinson's diseases by suppressing the risks responsible for dementia. Huperzine A has been identified as a potent natural product against Alzheimer's disease. Despite the efficient role of natural products in preventing dementia, their direct application as drugs is still limited due to some controversial results obtained from their clinical trials; however, bioassay-guided drug development studies can prove them potential drugs against dementia and related diseases. This review provides useful information for researchers, pharmacologists, and medical doctors.


Asunto(s)
Alcaloides , Enfermedad de Alzheimer , Productos Biológicos , Humanos , Productos Biológicos/uso terapéutico , Acetilcolinesterasa , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/prevención & control , Alcaloides/farmacología , Alcaloides/uso terapéutico
18.
Bioengineered ; 13(1): 1666-1685, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34986742

RESUMEN

DNA methylation is a process in which methyl (CH3) groups are added to the DNA molecule. The DNA segment does not change in the sequence, but DNA methylation could alter the action of DNA. Different enzymes like DNA methyltransferases (DNMTs) take part in methylation of cytosine/adenine nucleosides in DNA. In prokaryotes, DNA methylation is performed to prevent the attack of phage and also plays a role in the chromosome replication and repair. In fungi, DNA methylation is studied to see the transcriptional changes, as in insects, the DNA methylation is not that well-known, it plays a different role like other organisms. In mammals, the DNA methylation is related to different types of cancers and plays the most important role in the placental development and abnormal DNA methylation connected with diseases like cancer, autoimmune diseases, and rheumatoid arthritis.


Asunto(s)
Metilación de ADN , ADN/metabolismo , Animales , Bacterias/genética , Bacterias/crecimiento & desarrollo , Epigénesis Genética , Hongos/genética , Hongos/crecimiento & desarrollo , Predisposición Genética a la Enfermedad , Humanos , Insectos/genética , Insectos/crecimiento & desarrollo , Plantas/genética
19.
Front Pediatr ; 10: 919996, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35813387

RESUMEN

Epilepsy is a neurological disorder described as recurrent seizures mild to severe convulsions along with conscious loss. There are many different genetic anomalies or non-genetic conditions that affect the brain and cause epilepsy. The exact cause of epilepsy is unknown so far. In this study, whole-exome sequencing showed a family having novel missense variant c.1603C>T, p. Arg535Cys in exon 10 of Sodium Voltage-Gated Channel Alpha Subunit 1 (SCN1A) gene. Moreover, targeted Sanger sequencing analysis showed c.1212A>G p.Val404Ile in SCN1A gene in 10 unrelated patients and a mutation in Calcium Voltage-Gated Channel Auxiliary Subunit Beta 4 gene where one base pair insertion of "G" c.78_79insG, p.Asp27Glyfs*26 in the exon 3 in three different patients were observed from the cohort of 25 epileptic sporadic cases. The insertion changes the amino acid sequence leading to a frameshift mutation. Here, we have described, for the first time, three novel mutations that may be associated with epilepsy in the Saudi population. The study not only help us to identify the exact cause of genetic variations causing epilepsy whereas but it would also eventually enable us to establish a database to provide a foundation for understanding the critical genomic regions to control epilepsy in Saudi patients.

20.
Medicine (Baltimore) ; 101(26): e29660, 2022 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-35777011

RESUMEN

Severe acute respiratory syndrome (SARS) caused by a novel coronavirus-2 (CoV-2), also known as COVID-19, has spread rapidly worldwide since it is recognized as a public health emergency and has now been declared a pandemic on March 11, 2020, by the World Health Organization. The genome of SARS-CoV-2 comprises a single-stranded positive-sense RNA approximately 27 to 30 kb in size. The virus is transmitted through droplets from humans to humans. Infection with the SARS virus varies from asymptomatic to lethal, such as fever, cough, sore throat, and headache, but in severe cases, pneumonia and acute respiratory distress syndrome. Recently, no specific and effective treatment has been recommended for patients infected with the SARS virus. However, several options can be investigated to control SARS-CoV-2 infection, including monoclonal antibodies, interferons, therapeutic vaccines, and molecular-based targeted drugs. In the current review, we focus on tyrosine kinase inhibitor management and their protective role in SARS-CoV-2 patients with chronic myelogenous leukemia.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Leucemia Mielógena Crónica BCR-ABL Positiva , Humanos , Leucemia Mielógena Crónica BCR-ABL Positiva/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/uso terapéutico , Salud Pública , SARS-CoV-2
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA