Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 113(13): 3557-62, 2016 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-26979952

RESUMEN

Many experiments have shown that local biodiversity loss impairs the ability of ecosystems to maintain multiple ecosystem functions at high levels (multifunctionality). In contrast, the role of biodiversity in driving ecosystem multifunctionality at landscape scales remains unresolved. We used a comprehensive pan-European dataset, including 16 ecosystem functions measured in 209 forest plots across six European countries, and performed simulations to investigate how local plot-scale richness of tree species (α-diversity) and their turnover between plots (ß-diversity) are related to landscape-scale multifunctionality. After accounting for variation in environmental conditions, we found that relationships between α-diversity and landscape-scale multifunctionality varied from positive to negative depending on the multifunctionality metric used. In contrast, when significant, relationships between ß-diversity and landscape-scale multifunctionality were always positive, because a high spatial turnover in species composition was closely related to a high spatial turnover in functions that were supported at high levels. Our findings have major implications for forest management and indicate that biotic homogenization can have previously unrecognized and negative consequences for large-scale ecosystem multifunctionality.


Asunto(s)
Biodiversidad , Bosques , Simulación por Computador , Bases de Datos Factuales , Ecosistema , Europa (Continente) , Agricultura Forestal , Modelos Biológicos , Árboles
2.
Ecol Lett ; 21(1): 31-42, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29143494

RESUMEN

Humans require multiple services from ecosystems, but it is largely unknown whether trade-offs between ecosystem functions prevent the realisation of high ecosystem multifunctionality across spatial scales. Here, we combined a comprehensive dataset (28 ecosystem functions measured on 209 forest plots) with a forest inventory dataset (105,316 plots) to extrapolate and map relationships between various ecosystem multifunctionality measures across Europe. These multifunctionality measures reflected different management objectives, related to timber production, climate regulation and biodiversity conservation/recreation. We found that trade-offs among them were rare across Europe, at both local and continental scales. This suggests a high potential for 'win-win' forest management strategies, where overall multifunctionality is maximised. However, across sites, multifunctionality was on average 45.8-49.8% below maximum levels and not necessarily highest in protected areas. Therefore, using one of the most comprehensive assessments so far, our study suggests a high but largely unrealised potential for management to promote multifunctional forests.


Asunto(s)
Biodiversidad , Ecosistema , Bosques , Clima , Europa (Continente) , Humanos
3.
Ecol Lett ; 20(11): 1414-1426, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28925074

RESUMEN

The importance of biodiversity in supporting ecosystem functioning is generally well accepted. However, most evidence comes from small-scale studies, and scaling-up patterns of biodiversity-ecosystem functioning (B-EF) remains challenging, in part because the importance of environmental factors in shaping B-EF relations is poorly understood. Using a forest research platform in which 26 ecosystem functions were measured along gradients of tree species richness in six regions across Europe, we investigated the extent and the potential drivers of context dependency of B-EF relations. Despite considerable variation in species richness effects across the continent, we found a tendency for stronger B-EF relations in drier climates as well as in areas with longer growing seasons and more functionally diverse tree species. The importance of water availability in driving context dependency suggests that as water limitation increases under climate change, biodiversity may become even more important to support high levels of functioning in European forests.


Asunto(s)
Biodiversidad , Ecosistema , Bosques , Cambio Climático , Europa (Continente)
4.
Glob Chang Biol ; 23(10): 4162-4176, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28418105

RESUMEN

Intense droughts combined with increased temperatures are one of the major threats to forest persistence in the 21st century. Despite the direct impact of climate change on forest growth and shifts in species abundance, the effect of altered demography on changes in the composition of functional traits is not well known. We sought to (1) quantify the recent changes in functional composition of European forests; (2) identify the relative importance of climate change, mean climate and forest development for changes in functional composition; and (3) analyse the roles of tree mortality and growth underlying any functional changes in different forest types. We quantified changes in functional composition from the 1980s to the 2000s across Europe by two dimensions of functional trait variation: the first dimension was mainly related to changes in leaf mass per area and wood density (partially related to the trait differences between angiosperms and gymnosperms), and the second dimension was related to changes in maximum tree height. Our results indicate that climate change and mean climatic effects strongly interacted with forest development and it was not possible to completely disentangle their effects. Where recent climate change was not too extreme, the patterns of functional change generally followed the expected patterns under secondary succession (e.g. towards late-successional short-statured hardwoods in Mediterranean forests and taller gymnosperms in boreal forests) and latitudinal gradients (e.g. larger proportion of gymnosperm-like strategies at low water availability in forests formerly dominated by broad-leaved deciduous species). Recent climate change generally favoured the dominance of angiosperm-like related traits under increased temperature and intense droughts. Our results show functional composition changes over relatively short time scales in European forests. These changes are largely determined by tree mortality, which should be further investigated and modelled to adequately predict the impacts of climate change on forest function.


Asunto(s)
Cambio Climático , Bosques , Árboles , Europa (Continente) , Dinámica Poblacional , Taiga
5.
Proc Natl Acad Sci U S A ; 111(41): 14812-5, 2014 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-25267642

RESUMEN

Climate models predict an increase in the intensity and frequency of drought episodes in the Northern Hemisphere. Among terrestrial ecosystems, forests will be profoundly impacted by drier climatic conditions, with drastic consequences for the functions and services they supply. Simultaneously, biodiversity is known to support a wide range of forest ecosystem functions and services. However, whether biodiversity also improves the resistance of these ecosystems to drought remains unclear. We compared soil drought exposure levels in a total of 160 forest stands within five major forest types across Europe along a gradient of tree species diversity. We assessed soil drought exposure in each forest stand by calculating the stand-level increase in carbon isotope composition of late wood from a wet to a dry year (Δδ(13)CS). Δδ(13)CS exhibited a negative linear relationship with tree species diversity in two forest types, suggesting that species interactions in these forests diminished the drought exposure of the ecosystem. However, the other three forest types were unaffected by tree species diversity. We conclude that higher diversity enhances resistance to drought events only in drought-prone environments. Managing forest ecosystems for high tree species diversity does not necessarily assure improved adaptability to the more severe and frequent drought events predicted for the future.


Asunto(s)
Biodiversidad , Sequías , Bosques , Árboles/fisiología , Isótopos de Carbono , Especificidad de la Especie , Estrés Fisiológico
6.
Nat Commun ; 15(1): 4658, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38821957

RESUMEN

The emergence of alternative stable states in forest systems has significant implications for the functioning and structure of the terrestrial biosphere, yet empirical evidence remains scarce. Here, we combine global forest biodiversity observations and simulations to test for alternative stable states in the presence of evergreen and deciduous forest types. We reveal a bimodal distribution of forest leaf types across temperate regions of the Northern Hemisphere that cannot be explained by the environment alone, suggesting signatures of alternative forest states. Moreover, we empirically demonstrate the existence of positive feedbacks in tree growth, recruitment and mortality, with trees having 4-43% higher growth rates, 14-17% higher survival rates and 4-7 times higher recruitment rates when they are surrounded by trees of their own leaf type. Simulations show that the observed positive feedbacks are necessary and sufficient to generate alternative forest states, which also lead to dependency on history (hysteresis) during ecosystem transition from evergreen to deciduous forests and vice versa. We identify hotspots of bistable forest types in evergreen-deciduous ecotones, which are likely driven by soil-related positive feedbacks. These findings are integral to predicting the distribution of forest biomes, and aid to our understanding of biodiversity, carbon turnover, and terrestrial climate feedbacks.


Asunto(s)
Biodiversidad , Bosques , Hojas de la Planta , Árboles , Hojas de la Planta/crecimiento & desarrollo , Árboles/crecimiento & desarrollo , Ecosistema , Suelo/química , Clima
7.
Ecol Evol ; 13(5): e10059, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37168985

RESUMEN

The ecological effects on populations of non-game species driven by the annual release and management of tens of millions of gamebirds for recreational shooting are complex and relatively poorly understood. We investigated these effects at a national scale, considering multiple taxa simultaneously. We used records from the UK National Biodiversity Network Atlas to compare animal species and diversity metrics previously suggested to be affected by behaviors of the released birds, or because resources or habitats are influenced by game management or both processes. We contrasted records from 1 km grid squares where gamebirds were reported released in Great Britain, and control squares with similar land cover but where no releases were reported. There were more records overall reported from release grid squares (RGS) compared with controls (CGS), perhaps due to greater reporting effort or greater biological richness. We found fewer foxes in RGS and fewest in grid squares with largest releases, but more carrion crows in RGS. We found no consistent effects for buzzards, ravens, jays, or magpies. There were more rodents and gray squirrels reported from RGS but no differences for reptiles. There were more butterflies but fewer beetles reported from RGS but no consistent patterns for Orthoptera or ground beetles considered common gamebird prey. Farmland and woodland birds exhibited higher abundance, richness, and diversity in RGS when considering absolute records, but woodland bird abundance and richness were lower when correcting for the relative number of records. These nationwide results, despite crude data resolution, reveal diverse effects of gamebird release and management at a national scale and across trophic levels, increasing some non-game animal populations while decreasing others. This should alert practitioners, opponents, and legislators that a focus on single taxa effects, either positive or negative, may obscure the simultaneous changes in other taxa.

8.
Sci Total Environ ; 812: 152560, 2022 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-34952080

RESUMEN

Tree species diversity promotes multiple ecosystem functions and services. However, little is known about how above- and belowground resource availability (light, nutrients, and water) and resource uptake capacity mediate tree species diversity effects on aboveground wood productivity and temporal stability of productivity in European forests and whether the effects differ between humid and arid regions. We used the data from six major European forest types along a latitudinal gradient to address those two questions. We found that neither leaf area index (a proxy for light uptake capacity), nor fine root biomass (a proxy for soil nutrient and water uptake capacity) was related to tree species richness. Leaf area index did, however, enhance productivity, but negatively affected stability. Productivity was further promoted by soil nutrient availability, while stability was enhanced by fine root biomass. We only found a positive effect of tree species richness on productivity in arid regions and a positive effect on stability in humid regions. This indicates a possible disconnection between productivity and stability regarding tree species richness effects. In other words, the mechanisms that drive the positive effects of tree species richness on productivity do not per se benefit stability simultaneously. Our findings therefore suggest that tree species richness effects are largely mediated by differences in climatic conditions rather than by differences in above- and belowground resource availability and uptake capacity at the regional scales.


Asunto(s)
Ecosistema , Árboles , Biodiversidad , Biomasa , Bosques , Suelo
9.
Ecol Evol ; 9(19): 11254-11265, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31641470

RESUMEN

For decades, ecologists have investigated the effects of tree species diversity on tree productivity at different scales and with different approaches ranging from observational to experimental study designs. Using data from five European national forest inventories (16,773 plots), six tree species diversity experiments (584 plots), and six networks of comparative plots (169 plots), we tested whether tree species growth responses to species mixing are consistent and therefore transferrable between those different research approaches. Our results confirm the general positive effect of tree species mixing on species growth (16% on average) but we found no consistency in species-specific responses to mixing between any of the three approaches, even after restricting comparisons to only those plots that shared similar mixtures compositions and forest types. These findings highlight the necessity to consider results from different research approaches when selecting species mixtures that should maximize positive forest biodiversity and functioning relationships.

11.
Sci Rep ; 6: 32233, 2016 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-27571971

RESUMEN

Neglecting tree size and stand structure dynamics might bias the interpretation of the diversity-productivity relationship in forests. Here we show evidence that complementarity is contingent on tree size across large-scale climatic gradients in Europe. We compiled growth data of the 14 most dominant tree species in 32,628 permanent plots covering boreal, temperate and Mediterranean forest biomes. Niche complementarity is expected to result in significant growth increments of trees surrounded by a larger proportion of functionally dissimilar neighbours. Functional dissimilarity at the tree level was assessed using four functional types: i.e. broad-leaved deciduous, broad-leaved evergreen, needle-leaved deciduous and needle-leaved evergreen. Using Linear Mixed Models we show that, complementarity effects depend on tree size along an energy availability gradient across Europe. Specifically: (i) complementarity effects at low and intermediate positions of the gradient (coldest-temperate areas) were stronger for small than for large trees; (ii) in contrast, at the upper end of the gradient (warmer regions), complementarity is more widespread in larger than smaller trees, which in turn showed negative growth responses to increased functional dissimilarity. Our findings suggest that the outcome of species mixing on stand productivity might critically depend on individual size distribution structure along gradients of environmental variation.


Asunto(s)
Biodiversidad , Clima , Ecosistema , Árboles/crecimiento & desarrollo , Algoritmos , Europa (Continente) , Geografía , Modelos Biológicos , Hojas de la Planta/crecimiento & desarrollo , Especificidad de la Especie , Árboles/clasificación
12.
Ecol Evol ; 5(14): 2890-7, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26306174

RESUMEN

We are witnessing a growing gap separating primary research data from derived data products presented as knowledge in publications. Although journals today more often require the underlying data products used to derive the results as a prerequisite for a publication, the important link to the primary data is lost. However, documenting the postprocessing steps of data linking, the primary data with derived data products has the potential to increase the accuracy and the reproducibility of scientific findings significantly. Here, we introduce the rBEFdata R package as companion to the collaborative data management platform BEFdata. The R package provides programmatic access to features of the platform. It allows to search for data and integrates the search with external thesauri to improve the data discovery. It allows to download and import data and metadata into R for analysis. A batched download is available as well which works along a paper proposal mechanism implemented by BEFdata. This feature of BEFdata allows to group primary data and metadata and streamlines discussions and collaborations revolving around a certain research idea. The upload functionality of the R package in combination with the paper proposal mechanism of the portal allows to attach derived data products and scripts directly from R, thus addressing major aspects of documenting data postprocessing. We present the core features of the rBEFdata R package along an ecological analysis example and further discuss the potential of postprocessing documentation for data, linking primary data with derived data products and knowledge.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA