Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 119
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Appl Microbiol ; 135(5)2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38627251

RESUMEN

AIMS: The current work aims to fully characterize a new antimicrobial agent against Acinetobacter baumannii, which continues to represent a growing threat to healthcare settings worldwide. With minimal treatment options due to the extensive spread of resistance to almost all the available antimicrobials, the hunt for new antimicrobial agents is a high priority. METHODS AND RESULTS: An Egyptian soil-derived bacterium strain NHM-077B proved to be a promising source for a new antimicrobial agent. Bio-guided fractionation of the culture supernatants of NHM-077B followed by chemical structure elucidation identified the active antimicrobial agent as 1-hydroxy phenazine. Chemical synthesis yielded more derivatives, including dihydrophenazine (DHP), which proved to be the most potent against A. baumannii, yet it exhibited a marginally safe cytotoxicity profile against human skin fibroblasts. Proteomics analysis of the cells treated with DHP revealed multiple proteins with altered expression that could be correlated to the observed phenotypes and potential mechanism of the antimicrobial action of DHP. DHP is a multipronged agent that affects membrane integrity, increases susceptibility to oxidative stress, interferes with amino acids/protein synthesis, and modulates virulence-related proteins. Interestingly, DHP in subinhibitory concentrations re-sensitizes the highly virulent carbapenem-resistant A. baumannii strain AB5075 to carbapenems providing great hope in regaining some of the benefits of this important class of antibiotics. CONCLUSIONS: This work underscores the potential of DHP as a promising new agent with multifunctional roles as both a classical and nonconventional antimicrobial agent that is urgently needed.


Asunto(s)
Acinetobacter baumannii , Antibacterianos , Carbapenémicos , Farmacorresistencia Bacteriana Múltiple , Pruebas de Sensibilidad Microbiana , Estrés Oxidativo , Fenazinas , Acinetobacter baumannii/efectos de los fármacos , Fenazinas/farmacología , Fenazinas/química , Estrés Oxidativo/efectos de los fármacos , Carbapenémicos/farmacología , Antibacterianos/farmacología , Farmacorresistencia Bacteriana Múltiple/efectos de los fármacos , Humanos , Infecciones por Acinetobacter/tratamiento farmacológico , Infecciones por Acinetobacter/microbiología , Microbiología del Suelo
2.
Chem Biodivers ; : e202400865, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38867399

RESUMEN

Chamaerops humilis L. is clumping palm of the family Arecaceae with promising health-promoting effects. Parts of this species are utilized as food and employed in folk medicine to treat several disorders. This study investigated the phytochemical constituents of C. humilis leaves and their antioxidant and xanthine oxidase (XO) inhibitory activities in vitro and in vivo in acetaminophen (APAP)-induced hepatotoxicity in rats. The chemical structure of the isolated phytochemicals was determined using data obtained from UV, MS, IR, and 1H-, 13C-NMR spectroscopic tools as well as comparison with authentic markers. Eleven compounds, including tricin 7-O-ß-rutinoside, vicenin, tricin, astragalin, borassoside D, pregnane-3,5,6,16-tetrol, oleanolic acid, ß-sitosterol and campesterol were isolated from C. humilis ethanolic extract (CHEE). CHEE and the butanol, n-hexane, and dichloromethane fractions exhibited in vitro radical scavenging and XO inhibitory efficacies. The computational findings revealed the tendency of the isolated compounds towards the active site of XO. In vivo, CHEE ameliorated liver function markers and prevented tissue injury induced by APAP in rats. CHEE suppressed hepatic XO, decreased serum uric acid and liver malondialdehyde (MDA), and enhanced reduced glutathione (GSH), superoxide dismutase (SOD), and catalase in APAP-treated rats. CHEE ameliorated serum tumor necrosis factor alpha (TNF-α) and interleukin (IL)-1ß in APAP-treated rats. Thus, C. humilis is rich in beneficial phytochemicals that possess binding affinity towards XO. C. humilis exhibited potent in vitro antioxidant and XO inhibitory activities, and prevented APAP hepatotoxicity by attenuating tissue injury, oxidative stress and inflammation.

3.
J Appl Microbiol ; 134(6)2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-37296319

RESUMEN

AIM: Metabolomic analysis using LC-HRESIMS of 12 extracts of Spongia irregularis-associated actinomycetes for dereplication purposes in addition to evaluation of cytotoxic and antiviral activities of the extracts. METHODS AND RESULTS: In this study, three actinomycetes belonging to the genera Micromonospora, Streptomyces, and Rhodococcus were recovered from the marine sponge Spongia irregularis. Applying the OSMAC approach, each strain was fermented on four different media, resulting in 12 extracts. All extracts were subjected to metabolomic analysis using LC-HRESIMS for dereplication purposes. Multivariate data statistical analysis was carried out for the differentiation between extracts. Additionally, the cytotoxic and anti-hepatitis C virus (anti-HCV) potentials of extracts were evaluated. Most of extracts showed strong to moderate cytotoxicity effects against HepG-2, CACO-2, and MCF-7 cell lines with a general IC50 range of 2.8-8.9 µg/ml. Moreover, the extracts of Micromonospora sp. UR44 using ISP2 and OLIGO media and Streptomyces sp. UR32 using ISP2 medium exhibited anti-HCV activity with IC50 of 4.5 ± 0.22, 3.8 ± 0.18, and 5.7 ± 0.15 µM, respectively. CONCLUSION: Metabolomic analysis of 12 extracts of S. irregularis-associated actinomycetes led to the identification of a large number of secondary metabolites. Morever, investigation of cytotoxic and antiviral activities of the extracts revealed that only three extracts exhibited antiviral activity and seven extracts exhibited cytotoxic activity.


Asunto(s)
Actinobacteria , Antineoplásicos , Poríferos , Streptomyces , Animales , Humanos , Actinobacteria/metabolismo , Actinomyces , Células CACO-2 , Streptomyces/metabolismo , Antineoplásicos/farmacología , Antineoplásicos/metabolismo , Antivirales/farmacología
4.
J Appl Microbiol ; 134(8)2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37480242

RESUMEN

AIMS: This study aims to prioritize fungal strains recovered from under-explored habitats that produce new metabolites. HRMS dereplication is used to avoid structure redundancy, and molecular modelling is used to assign absolute configuration. METHODS AND RESULTS: MBC15-11F was isolated from an amphipod and identified using ITS, 28S, and ß-tubulin phylogeny as Aspergillus sydowii. Chemical profiling using taxonomic-based dereplication identified structurally diverse metabolites, including unreported ones. Large-scale fermentation led to the discovery of a new N-acyl adenosine derivative: (S)-sydosine (1) which was elucidated by NMR and HRESIMS analyses. Two known compounds were also identified as predicted by the initial dereplication process. Due to scarcity of 1, molecular modelling was used to assign its absolute configuration without hydrolysis, and is supported by advanced Mosher derivatization. When the isolated compounds were assessed against a panel of bacterial pathogens, only phenamide (3) showed anti-Staphylococcus aureus activity. CONCLUSION: Fermentation of A. sydowii yielded a new (S)-sydosine and known metabolites as predicted by HRESIMS-aided dereplication. Molecular modelling prediction of the absolute configuration of 1 agreed with advanced Mosher analysis.


Asunto(s)
Anfípodos , Animales , Aspergillus , Staphylococcus aureus/genética , Estructura Molecular
5.
J Appl Microbiol ; 134(7)2023 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-37401132

RESUMEN

AIM: This study aimed to use one strain many compounds approach (OSMAC) to investigate the cytotoxic potential of Aspergillus terreus associated with soybean versus several cancer cell lines, by means of in-silico and in vitro approaches. METHODS AND RESULTS: Fermentation of the isolated strain was done on five media. The derived extracts were investigated for their inhibitory activities against three human cancer cell lines; mammary gland breast cancer (MCF-7), colorectal adenocarcinoma (Caco-2), and hepatocellular carcinoma (HepG2) using MTT Assay. The fungal mycelia fermented in Modified Potato Dextrose Broth (MPDB) was the most cytotoxic extract against HepG2, MCF-7, and Caco-2 cell lines with IC50 4.2 ± 0.13, 5.9 ± 0.013 and 7.3 ± 0.004 µg mL-1, respectively. MPDB extract was scaled up resulting in the isolation of six metabolites; three fatty acids (1, 2, and 4), one sterol (3) and two butenolides (5 and 6) by column chromatography. The isolated compounds (1-6) were screened through a molecular docking approach for their binding aptitude to various active sites. butyrolactone-I (5) revealed a significant interaction within the CDK2 active site, while aspulvinone E (6) showed promising binding affinity to FLT3 and EGFR active sites that was confirmed by in vitro CDK2, FLT3 and EGFR inhibitory activity. Finally, the in vitro cytotoxic activities of butyrolactone-I (5) and aspulvinone E (6) revealed the antiproliferative activity of butyrolactone-I (5), against HepG2 cell line (IC50 = 17.85 ± 0.32 µM). CONCLUSION: Molecular docking analysis and in vitro assays suggested the CDK2/A2 inhibitory potential of butyrolactone-I (5) in addition to the promising interaction abilities of aspulvinone E (6) with EGFR and FLT3 active sites as a possible mechanism of their biological activities.


Asunto(s)
Antineoplásicos , Glycine max , Humanos , Simulación del Acoplamiento Molecular , Glycine max/metabolismo , Células CACO-2 , Aspergillus/metabolismo , Antineoplásicos/metabolismo , Extractos Vegetales/farmacología , Receptores ErbB/metabolismo , Receptores ErbB/farmacología , Estructura Molecular , Proliferación Celular
6.
J Enzyme Inhib Med Chem ; 38(1): 2199950, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37080775

RESUMEN

Trypanosomiasis is a protozoan disease transmitted via Trypanosoma brucei. This study aimed to examine the metabolic profile and anti-trypanosomal effect of methanol extract of Thunbergia grandifolia leaves. The liquid chromatography-high resolution electrospray ionisation mass spectrometry (LC-HRESIMS) revealed the identification of fifteen compounds of iridoid, flavonoid, lignan, phenolic acid, and alkaloid classes. The extract displayed a promising inhibitory activity against T. brucei TC 221 with MIC value of 1.90 µg/mL within 72 h. A subsequent in silico analysis of the dereplicated compounds (i.e. inverse docking, molecular dynamic simulation, and absolute binding free energy) suggested both rhodesain and farnesyl diphosphate synthase as probable targets for two compounds among those dereplicated ones in the plant extract (i.e. diphyllin and avacennone B). The absorption, distribution, metabolism, excretion, and toxicity (ADMET) profiling of diphyllin and avacennone were calculated accordingly, where both compounds showed acceptable drug-like properties. This study highlighted the antiparasitic potential of T. grandifolia leaves.


Asunto(s)
Acanthaceae , Lignanos , Trypanosoma brucei brucei , Simulación del Acoplamiento Molecular , Lignanos/farmacología , Extractos Vegetales/farmacología , Extractos Vegetales/química
7.
Mar Drugs ; 20(3)2022 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-35323462

RESUMEN

The COVID-19 pandemic and its continuing emerging variants emphasize the need to discover appropriate treatment, where vaccines alone have failed to show complete protection against the new variants of the virus. Therefore, treatment of the infected cases is critical. This paper discusses the bio-guided isolation of three indole diketopiperazine alkaloids, neoechinulin A (1), echinulin (2), and eurocristatine (3), from the Red Sea-derived Aspergillus fumigatus MR2012. Neoechinulin A (1) exhibited a potent inhibitory effect against SARS-CoV-2 Mpro with IC50 value of 0.47 µM, which is comparable to the reference standard GC376. Despite the structural similarity between the three compounds, only 1 showed a promising effect. The mechanism of inhibition is discussed in light of a series of extensive molecular docking, classical and steered molecular dynamics simulation experiments. This paper sheds light on indole diketopiperazine alkaloids as a potential structural motif against SARS-CoV-2 Mpro. Additionally, it highlights the potential of different molecular docking and molecular dynamics simulation approaches in the discrimination between active and inactive structurally related Mpro inhibitors.


Asunto(s)
Antivirales/química , Proteasas 3C de Coronavirus/antagonistas & inhibidores , Inhibidores de Cisteína Proteinasa/química , Alcaloides Indólicos/química , Piperazinas/química , SARS-CoV-2/enzimología , Alcaloides/química , Alcaloides/aislamiento & purificación , Antivirales/aislamiento & purificación , Aspergillus fumigatus/química , Inhibidores de Cisteína Proteinasa/aislamiento & purificación , Alcaloides Indólicos/aislamiento & purificación , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Piperazinas/aislamiento & purificación
8.
Bioorg Chem ; 115: 105215, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34358799

RESUMEN

Global health concern regarding malaria has increased since the first report of artemisinin-resistant Plasmodium falciparum (Pf) two decades ago. The current therapies suffer various drawbacks such as low efficacy and significant side effects, alarming for an urgent need of more effective and less toxic drugs with higher patient compliance. Chemical entities with natural origins become progressively attractive as new drug leads due to their structural diversity and bio-compatibility. This study initially aimed at the targeted isolation of hydroxyquinoline derivatives following our published genomics and metabolomics study of Pantoea agglomerans (Pa). Fermentation of Pa on a pre-selected medium followed by chromatographic isolation, NMR and HRMS analyses led to the characterisation of one new hydroxyquinoline alkaloid together with another six known congeners and two known hydroxyquinolone derivatives. When screened for their antimalarial activity by high throughput screening against asexual blood-stage parasites, almost all compounds showed potent and selective sub-micromolar activities. Computational investigation was performed to identify the antiplasmodial potential targets. Ligand-based similarity search predicted the tested compounds to act as hemozoin inhibitors. Computational target identification results were further validated by competitive hemozoin inhibitory properties of hydroxyquinoline and hydroxyquinolone derivatives in vitro. The overall results suggest this natural scaffold is of potential to be developed as antimalarial drug lead.


Asunto(s)
Alcaloides/farmacología , Antimaláricos/farmacología , Pantoea/química , Plasmodium falciparum/efectos de los fármacos , Alcaloides/química , Alcaloides/aislamiento & purificación , Antimaláricos/química , Antimaláricos/aislamiento & purificación , Relación Dosis-Respuesta a Droga , Humanos , Estructura Molecular , Pruebas de Sensibilidad Parasitaria , Relación Estructura-Actividad
9.
J Enzyme Inhib Med Chem ; 36(1): 1334-1345, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34139914

RESUMEN

Recent findings suggested several allosteric pockets on human aromatase that could be utilised for the development of new modulators able to inhibit this enzyme in a new mechanism. Herein, we applied an integrated in-silico-based approach supported by in-vitro enzyme-based and cell-based validation assays to select the best leads able to target these allosteric binding sites from a small library of plant-derived natural products. Chrysin, apigenin, and resveratrol were found to be the best inhibitors targeting the enzyme's substrate access channel and were able to produce a competitive inhibition with IC50 values ranged from 1.7 to 15.8 µM. Moreover, they showed a more potent antiproliferative effect against ER+ (MCF-7) than ER- one (MDA-MB-231) cell lines. On the other hand, both pomiferin and berberine were the best hits for the enzyme's haem-proximal cavity producing a non-competitive inhibition (IC50 15.1 and 21.4 µM, respectively) and showed selective antiproliferative activity towards MCF-7 cell lines.


Asunto(s)
Aromatasa/metabolismo , Neoplasias de la Mama/tratamiento farmacológico , Regulación Alostérica , Simulación por Computador , Ensayos de Selección de Medicamentos Antitumorales , Femenino , Humanos
10.
Mar Drugs ; 19(6)2021 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-34064008

RESUMEN

The marine environment has proven to be a rich source of diverse natural products with relevant activities such as anticancer, anti-inflammatory, antiepileptic, immunomodulatory, antifungal, antiviral, and antiparasitic [...].


Asunto(s)
Organismos Acuáticos/química , Productos Biológicos/aislamiento & purificación , Productos Biológicos/farmacología , Organismos Acuáticos/metabolismo , Productos Biológicos/química , Humanos , Océano Índico , Publicaciones Periódicas como Asunto , Metabolismo Secundario
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA