Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Clin Med ; 12(10)2023 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-37240504

RESUMEN

After more than 20 years following the introduction of regenerative medicine to address the problem of cardiac diseases, still questions arise as to the best cell types and materials to use to obtain effective clinical translation. Now that it is definitively clear that the heart does not have a consistent reservoir of stem cells that could give rise to new myocytes, and that there are cells that could contribute, at most, with their pro-angiogenic or immunomodulatory potential, there is fierce debate on what will emerge as the winning strategy. In this regard, new developments in somatic cells' reprogramming, material science and cell biophysics may be of help, not only for protecting the heart from the deleterious consequences of aging, ischemia and metabolic disorders, but also to boost an endogenous regeneration potential that seems to be lost in the adulthood of the human heart.

2.
Biomolecules ; 12(5)2022 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-35625658

RESUMEN

Current management of heart failure (HF) is centred on modulating the progression of symptoms and severity of left ventricular dysfunction. However, specific understandings of genetic and molecular targets are needed for more precise treatments. To attain a clearer picture of this, we studied transcriptome changes in a chronic progressive HF model. Fifteen sheep (Ovis aries) underwent supracoronary aortic banding using an inflatable cuff. Controlled and progressive induction of pressure overload in the LV was monitored by echocardiography. Endomyocardial biopsies were collected throughout the development of LV failure (LVF) and during the stage of recovery. RNA-seq data were analysed using the PANTHER database, Metascape, and DisGeNET to annotate the gene expression for functional ontologies. Echocardiography revealed distinct clinical differences between the progressive stages of hypertrophy, dilatation, and failure. A unique set of transcript expressions in each stage was identified, despite an overlap of gene expression. The removal of pressure overload allowed the LV to recover functionally. Compared to the control stage, there were a total of 256 genes significantly changed in their expression in failure, 210 genes in hypertrophy, and 73 genes in dilatation. Gene expression in the recovery stage was comparable with the control stage with a well-noted improvement in LV function. RNA-seq revealed the expression of genes in each stage that are not reported in cardiovascular pathology. We identified genes that may be potentially involved in the aetiology of progressive stages of HF, and that may provide future targets for its management.


Asunto(s)
Insuficiencia Cardíaca , Disfunción Ventricular Izquierda , Animales , Ecocardiografía , Corazón , Insuficiencia Cardíaca/diagnóstico , Hipertrofia , Ovinos
3.
Heliyon ; 6(5): e03864, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32420474

RESUMEN

Heart failure remains a major cause of hospitalization and death worldwide. Heart failure can be caused by abnormalities in the epigenome resulting from dysregulation of histone-modifying enzymes. While chromatin enzymes catalyzing lysine acetylation and methylation of histones have been the topic of many investigations, the role of arginine methyltransferases has been overlooked. In an effort to understand regulatory mechanisms implicated in cardiac hypertrophy and heart failure, we assessed the expression of protein arginine methyltransferases (PRMTs) in the left ventricle of failing human hearts and control hearts. Our results show a significant up-regulation of protein arginine methyltransferase 6 (PRMT6) in failing human hearts compared to control hearts, which also occurs in the early phase of cardiac hypertrophy in mouse hearts subjected to pressure overload hypertrophy induced by trans-aortic constriction (TAC), and in neonatal rat ventricular myocytes (NRVM) stimulated with the hypertrophic agonist phenylephrine (PE). These changes are associated with a significant increase in arginine 2 asymmetric methylation of histone H3 (H3R2Me2a) and reduced lysine 4 tri-methylation of H3 (H3K4Me3) observed both in NRVM and in vivo. Importantly, forced expression of PRMT6 in NRVM enhances the expression of the hypertrophic marker, atrial natriuretic peptide (ANP). Conversely, specific silencing of PRMT6 reduces ANP protein expression and cell size, indicating that PRMT6 is critical for the PE-mediated hypertrophic response. Silencing of PRMT6 reduces H3R2Me2a, a mark normally associated with transcriptional repression. Furthermore, evaluation of cardiac contractility and global ion channel activity in live NRVM shows a striking reduction of spontaneous beating rates and prolongation of extra-cellular field potentials in cells expressing low-level PRMT6. Altogether, our results indicate that PRMT6 is a critical regulator of cardiac hypertrophy, implicating H3R2Me2a as an important histone modification. This study identifies PRMT6 as a new epigenetic regulator and suggests a new point of control in chromatin to inhibit pathological cardiac remodeling.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA