Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Bioinformatics ; 39(8)2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37467069

RESUMEN

MOTIVATION: Open Target Genetics is a comprehensive resource portal that offers variant-centric statistical evidence, enabling the prioritization of causal variants and the identification of potential drug targets. The portal uses GraphQL technology for efficient data query and provides endpoints for programmatic access for R and Python users. However, leveraging GraphQL for data retrieval can be challenging, time-consuming, and repetitive, requiring familiarity with the GraphQL query language and processing outputs in nested JSON (JavaScript Object Notation) format into tidy data tables. Therefore, developing open-source tools are required to simplify data retrieval processes to integrate valuable genetic information into data-driven target discovery pipelines seamlessly. RESULTS: otargen is an open-source R package designed to make data retrieval and analysis from the Open Target Genetics portal as simple as possible for R users. The package offers a suite of functions covering all query types, allowing streamlined data access in a tidy table format. By executing only a single line of code, the otargen users avoid the repetitive scripting of complex GraphQL queries, including the post-processing steps. In addition, otargen contains convenient plotting functions to visualize and gain insights from complex data tables returned by several key functions. AVAILABILITY AND IMPLEMENTATION: otargen is available at https://amirfeizi.github.io/otargen/.


Asunto(s)
Almacenamiento y Recuperación de la Información , Programas Informáticos , Publicaciones
2.
Nucleic Acids Res ; 49(W1): W409-W416, 2021 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-34009375

RESUMEN

Which genes, gene sets or pathways are regulated by certain miRNAs? Which miRNAs regulate a particular target gene or target pathway in a certain physiological context? Answering such common research questions can be time consuming and labor intensive. Especially for researchers without computational experience, the integration of different data sources, selection of the right parameters and concise visualization can be demanding. A comprehensive analysis should be central to present adequate answers to complex biological questions. With miRTargetLink 2.0, we develop an all-in-one solution for human, mouse and rat miRNA networks. Users input in the unidirectional search mode either a single gene, gene set or gene pathway, alternatively a single miRNA, a set of miRNAs or an miRNA pathway. Moreover, genes and miRNAs can jointly be provided to the tool in the bidirectional search mode. For the selected entities, interaction graphs are generated from different data sources and dynamically presented. Connected application programming interfaces (APIs) to the tailored enrichment tools miEAA and GeneTrail facilitate downstream analysis of pathways and context-annotated categories of network nodes. MiRTargetLink 2.0 is freely accessible at https://www.ccb.uni-saarland.de/mirtargetlink2.


Asunto(s)
Regulación de la Expresión Génica , MicroARNs/metabolismo , Programas Informáticos , Animales , Aniridia/genética , Redes Reguladoras de Genes , Humanos , Ratones , Ratas
3.
PLoS One ; 12(5): e0176978, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28481937

RESUMEN

Plants can regenerate from a variety of tissues on culturing in appropriate media. However, the metabolic shifts involved in callus formation and shoot regeneration are largely unknown. The metabolic profiles of callus generated from tomato (Solanum lycopersicum) cotyledons and that of shoot regenerated from callus were compared with the pct1-2 mutant that exhibits enhanced polar auxin transport and the shr mutant that exhibits elevated nitric oxide levels. The transformation from cotyledon to callus involved a major shift in metabolite profiles with denser metabolic networks in the callus. In contrast, the transformation from callus to shoot involved minor changes in the networks. The metabolic networks in pct1-2 and shr mutants were distinct from wild type and were rewired with shifts in endogenous hormones and metabolite interactions. The callus formation was accompanied by a reduction in the levels of metabolites involved in cell wall lignification and cellular immunity. On the contrary, the levels of monoamines were upregulated in the callus and regenerated shoot. The callus formation and shoot regeneration were accompanied by an increase in salicylic acid in wild type and mutants. The transformation to the callus and also to the shoot downregulated LST8 and upregulated TOR transcript levels indicating a putative linkage between metabolic shift and TOR signalling pathway. The network analysis indicates that shift in metabolite profiles during callus formation and shoot regeneration is governed by a complex interaction between metabolites and endogenous hormones.


Asunto(s)
Homeostasis , Metabolómica , Brotes de la Planta/crecimiento & desarrollo , Solanum lycopersicum/crecimiento & desarrollo , Metabolismo de los Hidratos de Carbono , Cromatografía de Gases , Cromatografía Liquida , Ciclo del Ácido Cítrico , Espectrometría de Masas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA