Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Epilepsia ; 2024 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-39463124

RESUMEN

OBJECTIVE: EEG patterns and quantitative EEG (qEEG) features have been poorly explored in monogenic epilepsies. Herein, we investigate regional differences in EEG frequency composition in patients with STXBP1 developmental and epileptic encephalopathy (STXBP1-DEE). METHODS: We conducted a retrospective study collecting electroclinical data of patients with STXBP1-DEE and two control groups of patients with DEEs of different etiologies and typically developing individuals matched for age and sex. We performed a (1) visual EEG assessment, (b) qEEG analysis, and (c) electrical source imaging (ESI). We quantified the relative power (RP) of four frequency bands (α ß, θ, δ), in two electrode groups (anterior/posterior), and compared their averages and dynamics (standard deviation [SD] over time). The ESI was performed by applying the standard Distributed Source Modeling algorithm. RESULTS: We analyzed 42 EEG studies in 19 patients with STXBP1-DEE (10 female), with a median age at recordings of 9.6 years (range 9 months to 29 years). The δRP was higher in recordings of STXBP1-DEE (p < .001) compared to both control groups, suggesting the pathogenicity and STXBP1-specificity of these findings. In STXBP1-DEE, the δRP was significantly higher in the anterior electrode group compared to the posterior one (p = .003). There was no correlation between the anterior δRP and the epilepsy focus, age at recordings, and concomitant medications The ESI modeling of this activity showed a widespread involvement of the dorsomesial frontal cortex, suggesting a large corticosubcortical pathologic network. Finally, we identified two groups of recordings: cluster.1 with higher anterior δRP and low dynamics and cluster.2 with lower δRP and higher dynamics. Patients in cluster.1 had a more severe epilepsy and neurological phenotype compared to patients in cluster 2. SIGNIFICANCE: The qEEG analysis showed a predominant frontal slow activity as a specific STXBP1 feature that correlates with the severity of the phenotype and may represent a biomarker for prospective longitudinal studies of STXBP1-DEE.

2.
J Neurosci Res ; 101(5): 553-562, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-34498752

RESUMEN

This review aims to give an overview of what has been discovered so far and what still needs to be analyzed about how sex and gender affect the disease development. These two terms are often confused and indifferently used. In principle, the term "sex" refers to biological differences between males and females, specifically reproductive organs and their functions, while the term "gender" refers to the social context in which people live and which contributes to a subjective sexual identity, masculine or feminine. This dichotomy, however, is not so rigid and both sex and gender influence different aspects of human health, such as brain, health and aging and drug treatment and pharmacokinetics. In particular, we want to focus on genetic differences between men and women: indeed, the expression of the genes mapped on X chromosome or Y chromosome and all epigenetic interactions affect the diseases development. Finally, we will briefly outline sex and gender differences in clinical manifestations of three neurological diseases: Alzheimer's disease, Parkinson's disease, and obsessive compulsive disorder. In the era of personalized medicine, we must not forget the importance of gender medicine to promote personalized care for any kind of patients.


Asunto(s)
Envejecimiento , Identidad de Género , Masculino , Humanos , Femenino , Factores Sexuales , Medicina de Precisión , Caracteres Sexuales
3.
Mov Disord ; 38(12): 2241-2248, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37750340

RESUMEN

BACKGROUND AND OBJECTIVE: Early-onset Parkinson's disease (EOPD) commonly recognizes a genetic basis; thus, patients with EOPD are often addressed to diagnostic testing based on next-generation sequencing (NGS) of PD-associated multigene panels. However, NGS interpretation can be challenging in a diagnostic setting, and few studies have addressed this issue so far. METHODS: We retrospectively collected data from 648 patients with PD with age at onset younger than 55 years who underwent NGS of a minimal shared panel of 15 PD-related genes, as well as PD-multiplex ligation-dependent probe amplification in eight Italian diagnostic laboratories. Data included a minimal clinical dataset, the complete list of variants included in the diagnostic report, and final interpretation (positive/negative/inconclusive). Patients were further stratified based on age at onset ≤40 years (very EOPD, n = 157). All variants were reclassified according to the latest American College of Medical Genetics and Genomics criteria. For classification purposes, PD-associated GBA1 variants were considered diagnostic. RESULTS: In 186 of 648 (29%) patients, the diagnostic report listed at least one variant, and the outcome was considered diagnostic (positive) in 105 (16%). After reanalysis, diagnosis changed in 18 of 186 (10%) patients, with 5 shifting from inconclusive to positive and 13 former positive being reclassified as inconclusive. A definite diagnosis was eventually reached in 97 (15%) patients, of whom the majority carried GBA1 variants or, less frequently, biallelic PRKN variants. In 89 (14%) cases, the genetic report was inconclusive. CONCLUSIONS: This study attempts to harmonize reporting of PD genetic testing across several diagnostic labs and highlights current difficulties in interpreting genetic variants emerging from NGS-multigene panels, with relevant implications for counseling. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Asunto(s)
Enfermedad de Parkinson , Humanos , Persona de Mediana Edad , Adulto , Enfermedad de Parkinson/diagnóstico , Enfermedad de Parkinson/genética , Estudios Retrospectivos , Mutación , Pruebas Genéticas , Edad de Inicio
4.
Epilepsia ; 64(8): e170-e176, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37114479

RESUMEN

IRF2BPL has recently been described as a novel cause of neurodevelopmental disorders with multisystemic regression, epilepsy, cerebellar symptoms, dysphagia, dystonia, and pyramidal signs. We describe a novel IRF2BPL phenotype consistent with progressive myoclonus epilepsy (PME) in three novel subjects and review the features of the 31 subjects with IRF2BPL-related disorders previously reported. Our three probands, aged 28-40 years, harbored de novo nonsense variants in IRF2BPL (c.370C > T, p.[Gln124*] and c.364C > T; p.[Gln122*], respectively). From late childhood/adolescence, they presented with severe myoclonus epilepsy, stimulus-sensitive myoclonus, and progressive cognitive, speech, and cerebellar impairment, consistent with a typical PME syndrome. The skin biopsy revealed massive intracellular glycogen inclusions in one proband, suggesting a similar pathogenic pathway to other storage disorders. Whereas the two older probands were severely affected, the younger proband had a milder PME phenotype, partially overlapping with some of the previously reported IRF2BPL cases, suggesting that some of them might be unrecognized PME. Interestingly, all three patients harbored protein-truncating variants clustered in a proximal, highly conserved gene region around the "coiled-coil" domain. Our data show that PME can be an additional phenotype within the spectrum of IRF2BPL-related disorders and suggest IRF2BPL as a novel causative gene for PME.


Asunto(s)
Epilepsias Mioclónicas , Epilepsia , Epilepsias Mioclónicas Progresivas , Mioclonía , Humanos , Niño , Mutación , Epilepsias Mioclónicas Progresivas/genética , Epilepsias Mioclónicas/patología , Familia , Proteínas Portadoras/genética , Proteínas Nucleares/genética
5.
Eur J Neurol ; 29(7): 2056-2065, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35286755

RESUMEN

BACKGROUND AND PURPOSE: Mutations in DNAJB2 are associated with autosomal recessive hereditary motor neuropathies/ Charcot-Marie-Tooth disease type 2 (CMT2). We describe an Italian family with CMT2 due to a homozygous DNAJB2 mutation and provide insight into the pathomechanisms. METHODS: Patients with DNAJB2 mutations were characterized clinically, electrophysiologically and by means of skin biopsy. mRNA and protein levels were studied in lymphoblastoid cells (LCLs) from patients and controls. RESULTS: Three affected siblings were found to carry a homozygous DNAJB2 null mutation segregating with the disease. The disease manifested in the second to third decade of life. Clinical examination showed severe weakness of the thigh muscles and complete loss of movement in the foot and leg muscles. Sensation was reduced in the lower limbs. All patients had severe hearing loss and the proband also had Parkinson's disease (PD). Nerve conduction studies showed an axonal motor and sensory length-dependent polyneuropathy. DNAJB2 expression studies revealed reduced mRNA levels and the absence of the protein in the homozygous subject in both LCLs and skin biopsy. Interestingly, we detected phospho-alpha-synuclein deposits in the proband, as already seen in PD patients, and demonstrated TDP-43 accumulation in patients' skin. CONCLUSIONS: Our results broaden the clinical spectrum of DNAJB2-related neuropathies and provide evidence that DNAJB2 mutations should be taken into account as another causative gene of CMT2 with hearing loss and parkinsonism. The mutation likely acts through a loss-of-function mechanism, leading to toxic protein aggregation such as TDP-43. The associated parkinsonism resembles the classic PD form with the addition of abnormal accumulation of phospho-alpha-synuclein.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth , Proteínas del Choque Térmico HSP40 , Chaperonas Moleculares , Enfermedad de Charcot-Marie-Tooth/genética , Proteínas de Unión al ADN/genética , Proteínas del Choque Térmico HSP40/genética , Homocigoto , Humanos , Chaperonas Moleculares/genética , Mutación/genética , Fenotipo , ARN Mensajero , alfa-Sinucleína
6.
Brain ; 144(12): 3635-3650, 2021 12 31.
Artículo en Inglés | MEDLINE | ID: mdl-34114611

RESUMEN

Variants in KCNT1, encoding a sodium-gated potassium channel (subfamily T member 1), have been associated with a spectrum of epilepsies and neurodevelopmental disorders. These range from familial autosomal dominant or sporadic sleep-related hypermotor epilepsy to epilepsy of infancy with migrating focal seizures (EIMFS) and include developmental and epileptic encephalopathies. This study aims to provide a comprehensive overview of the phenotypic and genotypic spectrum of KCNT1 mutation-related epileptic disorders in 248 individuals, including 66 previously unpublished and 182 published cases, the largest cohort reported so far. Four phenotypic groups emerged from our analysis: (i) EIMFS (152 individuals, 33 previously unpublished); (ii) developmental and epileptic encephalopathies other than EIMFS (non-EIMFS developmental and epileptic encephalopathies) (37 individuals, 17 unpublished); (iii) autosomal dominant or sporadic sleep-related hypermotor epilepsy (53 patients, 14 unpublished); and (iv) other phenotypes (six individuals, two unpublished). In our cohort of 66 new cases, the most common phenotypic features were: (i) in EIMFS, heterogeneity of seizure types, including epileptic spasms, epilepsy improvement over time, no epilepsy-related deaths; (ii) in non-EIMFS developmental and epileptic encephalopathies, possible onset with West syndrome, occurrence of atypical absences, possible evolution to developmental and epileptic encephalopathies with sleep-related hypermotor epilepsy features; one case of sudden unexplained death in epilepsy; (iii) in autosomal dominant or sporadic sleep-related hypermotor epilepsy, we observed a high prevalence of drug-resistance, although seizure frequency improved with age in some individuals, appearance of cognitive regression after seizure onset in all patients, no reported severe psychiatric disorders, although behavioural/psychiatric comorbidities were reported in ∼50% of the patients, sudden unexplained death in epilepsy in one individual; and (iv) other phenotypes in individuals with mutation of KCNT1 included temporal lobe epilepsy, and epilepsy with tonic-clonic seizures and cognitive regression. Genotypic analysis of the whole cohort of 248 individuals showed only missense mutations and one inframe deletion in KCNT1. Although the KCNT1 mutations in affected individuals were seen to be distributed among the different domains of the KCNT1 protein, genotype-phenotype considerations showed many of the autosomal dominant or sporadic sleep-related hypermotor epilepsy-associated mutations to be clustered around the RCK2 domain in the C terminus, distal to the NADP domain. Mutations associated with EIMFS/non-EIMFS developmental and epileptic encephalopathies did not show a particular pattern of distribution in the KCNT1 protein. Recurrent KCNT1 mutations were seen to be associated with both severe and less severe phenotypes. Our study further defines and broadens the phenotypic and genotypic spectrums of KCNT1-related epileptic conditions and emphasizes the increasingly important role of this gene in the pathogenesis of early onset developmental and epileptic encephalopathies as well as of focal epilepsies, namely autosomal dominant or sporadic sleep-related hypermotor epilepsy.


Asunto(s)
Epilepsia/genética , Proteínas del Tejido Nervioso/genética , Canales de potasio activados por Sodio/genética , Adolescente , Niño , Preescolar , Estudios de Cohortes , Femenino , Genotipo , Humanos , Lactante , Masculino , Mutación , Fenotipo , Adulto Joven
7.
Neurogenetics ; 22(4): 347-351, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34387792

RESUMEN

PLA2G6 is the causative gene for a group of autosomal recessive neurodegenerative disorders known as PLA2G6-associated neurodegeneration (PLAN). We present a case with early-onset parkinsonism, ataxia, cognitive decline, cerebellar atrophy, and brain iron accumulation. Sequencing of PLA2G6 coding regions identified only a heterozygous nonsense variant, but mRNA analysis revealed the presence of an aberrant transcript isoform due to a novel deep intronic variant (c.2035-274G > A) leading to activation of an intronic pseudo-exon. These results expand the genotypic spectrum of PLAN, showing the paramount importance of detecting possible pathogenic variants in deep intronic regions in undiagnosed patients.


Asunto(s)
Encéfalo/patología , Fosfolipasas A2 Grupo VI/genética , Mutación/genética , Enfermedad de Parkinson/genética , Adulto , Edad de Inicio , Atrofia/patología , Femenino , Humanos , Malformaciones del Sistema Nervioso/genética , Distrofias Neuroaxonales/genética , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/patología , Enfermedad de Parkinson/diagnóstico , Enfermedad de Parkinson/patología , Fenotipo
8.
Cell Mol Neurobiol ; 41(2): 199-227, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32323152

RESUMEN

The vacuolar protein sorting 35 (VPS35) gene located on chromosome 16 has recently emerged as a cause of late-onset familial Parkinson's disease (PD) (PARK17). The gene encodes a 796-residue protein nearly ubiquitously expressed in human tissues. The protein localizes on endosomes where it assembles with other peripheral membrane proteins to form the retromer complex. How VPS35 mutations induce dopaminergic neuron degeneration in humans is still unclear. Because the retromer complex recycles the receptors that mediate the transport of hydrolase to lysosome, it has been suggested that VPS35 mutations lead to impaired lysosomal and autophagy function. Recent studies also demonstrated that VPS35 and the retromer complex influence mitochondrial homeostasis, suggesting that VPS35 mutations elicit mitochondrial dysfunction. More recent studies have identified a key role of VPS35 in neurotransmission, whilst others reported a functional interaction between VPS35 and other genes associated with familial PD, including α-SYNUCLEIN-PARKIN-LRRK2. Here, we review the biological role of VPS35 protein, the VPS35 mutations identified in human PD patients, and the potential molecular mechanism by which VPS35 mutations can induce progressive neurodegeneration in PD.


Asunto(s)
Enfermedad de Parkinson/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Secuencia de Aminoácidos , Animales , Modelos Animales de Enfermedad , Neuronas Dopaminérgicas/metabolismo , Regulación de la Expresión Génica , Humanos , Enfermedad de Parkinson/genética , Transmisión Sináptica , Proteínas de Transporte Vesicular/química , Proteínas de Transporte Vesicular/genética
9.
BMC Neurol ; 20(1): 113, 2020 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-32228506

RESUMEN

BACKGROUND: Detection of brain-MRI T2/T2* gradient echo images (T2*GRE)-hypointensity can be compatible with iron accumulation and leads to a differential diagnosis work-up including neurodegeneration with brain iron accumulation (NBIA) and Wilson Disease. Idiopathic or secondary brain calcification can be also associated with neurological involvement and brain-MRI T2/T2*GRE-hypointensity. Hereditary hemochromatosis (HH), characterized by systemic iron loading, usually does not involve the CNS, and only sporadic cases of neurological abnormalities or brain-MRI T2/T2*GRE-hypointensity have been reported. CASE PRESENTATION: A 59-year-old man came to our observation after a diagnosis of HH carried out in another hospital 2 years before. First-level genetic test had revealed a homozygous HFE p.Cys282Tyr (C282Y) mutation compatible with the diagnosis of HFE-related HH, thus phlebotomy treatment was started. The patient had a history of metabolic syndrome, type-2 diabetes, autoimmune thyroiditis and severe chondrocalcinosis. Brain-MRI showed the presence of bilateral T2*GRE hypointensities within globus pallidus, substantia nigra, dentate nucleus and left pulvinar that were considered expression of cerebral siderosis. No neurological symptoms or family history of neurological disease were reported. Neurological examination revealed only mild right-sided hypokinetic-rigid syndrome. Vitamin D-PTH axis, measurements of serum ceruloplasmin and copper, and urinary copper were within the normal range. A brain computed tomography (CT) was performed to better characterize the suspected and unexplained brain iron accumulation. On the CT images, the hypointense regions in the brain MRI were hyperdense. DNA sequence analysis of genes associated with primary familial brain calcification and NBIA was negative. CONCLUSIONS: This report highlights the importance of brain CT-scan in ambiguous cases of suspected cerebral siderosis, and suggests that HH patients with a severe phenotype, and likely associated with chondrocalcinosis, may display also brain calcifications. Further studies are needed to confirm this hypothesis. So far, we can speculate that iron and calcium homeostasis could be reciprocally connected within the basal ganglia.


Asunto(s)
Encefalopatías Metabólicas/etiología , Encefalopatías Metabólicas/patología , Calcinosis/patología , Hemocromatosis/complicaciones , Hemocromatosis/patología , Calcinosis/etiología , Humanos , Imagen por Resonancia Magnética/métodos , Masculino , Persona de Mediana Edad
10.
Mov Disord ; 34(10): 1516-1527, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31216378

RESUMEN

BACKGROUND: Childhood-onset dystonia is often genetically determined. Recently, KMT2B variants have been recognized as an important cause of childhood-onset dystonia. OBJECTIVE: To define the frequency of KMT2B mutations in a cohort of dystonic patients aged <18 years at onset, the associated clinical and radiological phenotype, and the natural history of disease. METHODS: Whole-exome sequencing or customized gene panels were used to screen a cohort of 65 patients who had previously tested negative for all other known dystonia-associated genes. RESULTS: We identified 14 patients (21.5%) carrying KMT2B variants, of which 1 was classified as a variant of unknown significance. We also identified 2 additional patients carrying pathogenic mutations in GNAO1 and ATM. Overall, we established a definitive genetic diagnosis in 23% of cases. We observed a spectrum of clinical manifestations in KMT2B variant carriers, ranging from generalized dystonia to short stature or intellectual disability alone, even within the same family. In 78.5% of cases, dystonia involved the lower limbs at onset, with later caudocranial generalization. Eight patients underwent pallidal DBS with a median decrease of Burke-Fahn-Marsden Dystonia Rating Scale-Motor score of 38.5% in the long term. We also report on 4 asymptomatic carriers, suggesting that some KMT2B mutations may be associated with incomplete disease penetrance. CONCLUSIONS: KMT2B mutations are frequent in childhood-onset dystonia and cause a complex neurodevelopmental syndrome, often featuring growth retardation and intellectual disability as additional phenotypic features. A dramatic and long-lasting response to DBS is characteristic of DYT-KMT2B dystonia. © 2019 International Parkinson and Movement Disorder Society.


Asunto(s)
Trastornos Distónicos/genética , N-Metiltransferasa de Histona-Lisina/genética , Adolescente , Adulto , Anciano , Niño , Estudios de Cohortes , Estimulación Encefálica Profunda/métodos , Femenino , Humanos , Discapacidad Intelectual/genética , Masculino , Persona de Mediana Edad , Mutación/genética , Fenotipo , Adulto Joven
14.
Mov Disord Clin Pract ; 11(1): 87-93, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38291845

RESUMEN

BACKGROUND: VPS16 pathogenic variants have been recently associated with inherited dystonia. Most patients affected by dominant VPS16-related disease display early-onset isolated dystonia with prominent oromandibular, bulbar, cervical, and upper limb involvement, followed by slowly progressive generalization. CASES: We describe six newly reported dystonic patients carrying VPS16 mutations displaying unusual phenotypic features in addition to dystonia, such as myoclonus, choreoathetosis, pharyngospasm and freezing of gait. Response to bilateral Globus Pallidus Internus Deep Brain Stimulation (GPi-DBS) is reported in three of them, associated with significant improvement of dystonia but only minor effect on other hyperkinetic movements. Moreover, five novel pathogenic/likely pathogenic variants are described. CONCLUSIONS: This case collection expands the genetic and clinical spectrum of VPS16-related disease, prompting movement disorder specialists to suspect mutations of this gene not only in patients with isolated dystonia.


Asunto(s)
Estimulación Encefálica Profunda , Distonía , Trastornos Distónicos , Trastornos Neurológicos de la Marcha , Enfermedad de Parkinson , Humanos , Distonía/diagnóstico , Estimulación Encefálica Profunda/métodos , Trastornos Distónicos/diagnóstico , Proteínas de Transporte Vesicular
15.
Parkinsonism Relat Disord ; 117: 105919, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37948831

RESUMEN

INTRODUCTION: Heterozygous GBA1 variants are among the most frequent genetic risk factors for Parkinson's disease (PD). Male sex is a risk factor in the development of PD but the sex prevalence of GBA1 carriers in PD patients remains debatable. Molecular analysis of the GBA1 gene is complicated by the presence of a highly homologous pseudogene GBAP1. METHOD: Starting from 2006, we screened GBA1 gene in a large cohort of 1762 PD patients through different techniques developed over the years. Identified variants were classified employing the GBA1-PD browser and compared on the basis of frequency and sex distribution. RESULTS: Within a group of 684 patients (40.2% Males -M-) analyzed with RFLP technique looking for the two most common GBA1 mutations L444P and N370S, 29 resulted positive (4.23%). Out of 537 patients (67.4% M) analyzed with PCR that amplifies the portion of the gene between exon 8 and exon 11, we found 53 positive carriers (9.87%). Out of 424 patients (60.8% M) analyzed with NGS custom gene panel with allele-specific PCR, 50 resulted positive (11.79%). Since 2022, we also analyzed 117 patients (56.4% M) with long PCR sequenced with NGS, identifying 17 positive samples (14.52%). CONCLUSION: In our study, we highlight that screening the entire GBA1 gene with specific techniques increases the diagnostic rate. Regarding variants distribution, males have shown a higher frequency of the severe variants and complex alleles, whereas mild variants are equally distributed in both sexes and risk variants are more frequent in females especially the T369 M.


Asunto(s)
Glucosilceramidasa , Enfermedad de Parkinson , Femenino , Humanos , Masculino , Glucosilceramidasa/genética , Heterocigoto , Italia , Mutación/genética , Enfermedad de Parkinson/genética , Factores Sexuales
16.
BMJ Neurol Open ; 5(2): e000535, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38027469

RESUMEN

Background: Heterozygous mutations in the GBA gene, encoding the lysosomal enzyme ß-glucocerebrosidase (GCase), are the most frequent genetic risk factor for Parkinson's disease (PD). GBA-related PD (GBA-PD) patients have higher risk of dementia and reduced survival than non-carriers. Preclinical studies and one open-label trial in humans demonstrated that the chaperone ambroxol (ABX) increases GCase levels and modulates α-synuclein levels in the blood and cerebrospinal fluid (CSF). Methods and analysis: In this multicentre, double-blind, placebo-controlled, phase II clinical trial, we randomise patients with GBA-PD in a 1:1 ratio to either oral ABX 1.2 g/day or placebo. The duration of treatment is 52 weeks. Each participant is assessed at baseline and weeks 12, 26, 38, 52 and 78. Changes in the Montreal Cognitive Assessment score and the frequency of mild cognitive impairment and dementia between baseline and weeks 52 are the primary outcome measures. Secondary outcome measures include changes in validated scales/questionnaires assessing motor and non-motor symptoms. Neuroimaging features and CSF neurodegeneration markers are used as surrogate markers of disease progression. GCase activity, ABX and α-synuclein levels are also analysed in blood and CSF. A repeated-measures analysis of variance will be used for elaborating results. The primary analysis will be by intention to treat. Ethics and dissemination: The study and protocols have been approved by the ethics committee of centres. The study is conducted according to good clinical practice and the Declaration of Helsinki. The trial findings will be published in peer-reviewed journals and presented at conferences. Trial registration numbers: NCT05287503, EudraCT 2021-004565-13.

18.
Epileptic Disord ; 24(3): 577-582, 2022 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-35770758

RESUMEN

We report the association, not previously described, between trisomy 20/ monosomy 18 and congenital bilateral perisylvian syndrome (CBPS), a condition featuring intellectual disability, epilepsy, oro-motor dysfunction and bilateral perisylvian polymicrogyria (BPP) in a 29-year-old individual. Detailed clinical evaluation, long-term EEG and EEG analysis by means of electrical source imaging (ESI), 3T MRI and array-CGH were performed. Clinical examination showed moderate/severe intellectual disability, dysmorphic features, oro-motor dysfunction, short stature, abnormal hands and feet, bradykinesia and abnormal posture. The patient had suffered from drug-resistant epilepsy since infancy. Brain MRI showed that BPP was consistent with CBPS. Additional imaging features revealed corpus callosum and cerebellar hypoplasia and fusion of the C1-C2 vertebrae. Ictal EEG and ESI documented tonic seizures originating from the right polymicrogyric cortex. Facial gestalt included dysmorphic features reported in patients with 18- and 20+ chromosomal rearrangements. Array-CGH showed an unbalanced translocation, arr(18p)x1(20p)x3. In conclusion, we provide a detailed electro-clinical and MRI description of a novel condition characterized by the association between trisomy 20p/monosomy 18p and CBPS, also illustrating its clinical evolution into adulthood. This information may help paediatricians, neurologists and geneticists to better counsel families about the developmental prognosis of this rare unbalanced chromosomal rearrangement.


Asunto(s)
Anomalías Múltiples , Trastornos de los Cromosomas , Epilepsia , Discapacidad Intelectual , Malformaciones del Desarrollo Cortical , Anomalías Múltiples/diagnóstico , Anomalías Múltiples/genética , Adulto , Deleción Cromosómica , Cromosomas Humanos Par 18 , Cromosomas Humanos Par 20 , Epilepsia/diagnóstico , Humanos , Discapacidad Intelectual/diagnóstico , Discapacidad Intelectual/genética , Malformaciones del Desarrollo Cortical/diagnóstico , Malformaciones del Desarrollo Cortical/genética , Monosomía , Trisomía
19.
Clin Epigenetics ; 13(1): 157, 2021 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-34380541

RESUMEN

BACKGROUND: Dystonia is a clinically and genetically heterogeneous movement disorder characterized by sustained or intermittent muscle contractions causing abnormal, often repetitive, movements and/or postures. Heterozygous variants in lysine methyltransferase 2B (KMT2B), encoding a histone H3 methyltransferase, have been associated with a childhood-onset, progressive and complex form of dystonia (dystonia 28, DYT28). Since 2016, more than one hundred rare KMT2B variants have been reported, including frameshift, nonsense, splice site, missense and other in-frame changes, many having an uncertain clinical impact. RESULTS: We characterize the genome-wide peripheral blood DNA methylation profiles of a cohort of 18 patients with pathogenic and unclassified KMT2B variants. We resolve the "episignature" associated with KMT2B haploinsufficiency, proving that this approach is robust in diagnosing clinically unsolved cases, properly classifying them with respect to other partially overlapping dystonic phenotypes, other rare neurodevelopmental disorders and healthy controls. Notably, defective KMT2B function in DYT28 causes a non-random DNA hypermethylation across the genome, selectively involving promoters and other regulatory regions positively controlling gene expression. CONCLUSIONS: We demonstrate a distinctive DNA hypermethylation pattern associated with DYT28, provide an epigenetic signature for this disorder enabling accurate diagnosis and reclassification of ambiguous genetic findings and suggest potential therapeutic approaches.


Asunto(s)
Metilación de ADN/genética , Trastornos Distónicos/complicaciones , Trastornos Distónicos/genética , Trastornos Distónicos/fisiopatología , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Adolescente , Adulto , Factores de Edad , Niño , Preescolar , Estudios de Cohortes , Epigénesis Genética , Femenino , Variación Genética , Humanos , Lactante , Recién Nacido , Masculino , Persona de Mediana Edad , Mutación , Fenotipo
20.
Front Physiol ; 12: 775172, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35002760

RESUMEN

STXBP1 syndrome is a rare neurodevelopmental disorder caused by heterozygous variants in the STXBP1 gene and is characterized by psychomotor delay, early-onset developmental delay, and epileptic encephalopathy. Pathogenic STXBP1 variants are thought to alter excitation-inhibition (E/I) balance at the synaptic level, which could impact neuronal network dynamics; however, this has not been investigated yet. Here, we present the first EEG study of patients with STXBP1 syndrome to quantify the impact of the synaptic E/I dysregulation on ongoing brain activity. We used high-frequency-resolution analyses of classical and recently developed methods known to be sensitive to E/I balance. EEG was recorded during eyes-open rest in children with STXBP1 syndrome (n = 14) and age-matched typically developing children (n = 50). Brain-wide abnormalities were observed in each of the four resting-state measures assessed here: (i) slowing of activity and increased low-frequency power in the range 1.75-4.63 Hz, (ii) increased long-range temporal correlations in the 11-18 Hz range, (iii) a decrease of our recently introduced measure of functional E/I ratio in a similar frequency range (12-24 Hz), and (iv) a larger exponent of the 1/f-like aperiodic component of the power spectrum. Overall, these findings indicate that large-scale brain activity in STXBP1 syndrome exhibits inhibition-dominated dynamics, which may be compensatory to counteract local circuitry imbalances expected to shift E/I balance toward excitation, as observed in preclinical models. We argue that quantitative EEG investigations in STXBP1 and other neurodevelopmental disorders are a crucial step to understand large-scale functional consequences of synaptic E/I perturbations.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA