Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
Development ; 151(6)2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38533736

RESUMEN

How complex organs coordinate cellular morphogenetic events to achieve three-dimensional (3D) form is a central question in development. The question is uniquely tractable in the late Drosophila pupal retina, where cells maintain stereotyped contacts as they elaborate the specialized cytoskeletal structures that pattern the apical, basal and longitudinal planes of the epithelium. In this study, we combined cell type-specific genetic manipulation of the cytoskeletal regulator Abelson (Abl) with 3D imaging to explore how the distinct cellular morphogenetic programs of photoreceptors and interommatidial pigment cells (IOPCs) organize tissue pattern to support retinal integrity. Our experiments show that photoreceptor and IOPC terminal differentiation is unexpectedly interdependent, connected by an intercellular feedback mechanism that coordinates and promotes morphogenetic change across orthogonal tissue planes to ensure correct 3D retinal pattern. We propose that genetic regulation of specialized cellular differentiation programs combined with inter-plane mechanical feedback confers spatial coordination to achieve robust 3D tissue morphogenesis.


Asunto(s)
Proteínas de Drosophila , Drosophila , Animales , Drosophila melanogaster/genética , Proteínas de Drosophila/genética , Pupa , Retroalimentación , Retina , Morfogénesis/genética
2.
Development ; 150(8)2023 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-36942737

RESUMEN

Cell state transitions are often triggered by large changes in the concentrations of transcription factors and therefore large differences in their stoichiometric ratios. Whether cells can elicit transitions using modest changes in the ratios of co-expressed factors is unclear. Here, we investigate how cells in the Drosophila eye resolve state transitions by quantifying the expression dynamics of the ETS transcription factors Pnt and Yan. Eye progenitor cells maintain a relatively constant ratio of Pnt/Yan protein, despite expressing both proteins with pulsatile dynamics. A rapid and sustained twofold increase in the Pnt/Yan ratio accompanies transitions to photoreceptor fates. Genetic perturbations that modestly disrupt the Pnt/Yan ratio produce fate transition defects consistent with the hypothesis that transitions are normally driven by a twofold shift in the ratio. A biophysical model based on cooperative Yan-DNA binding coupled with non-cooperative Pnt-DNA binding illustrates how twofold ratio changes could generate ultrasensitive changes in target gene transcription to drive fate transitions. Thus, coupling cell state transitions to the Pnt/Yan ratio sensitizes the system to modest fold-changes, conferring robustness and ultrasensitivity to the developmental program.


Asunto(s)
Proteínas de Drosophila , Factores de Transcripción , Animales , Factores de Transcripción/metabolismo , Drosophila/metabolismo , Proteínas de Unión al ADN/genética , Proteínas Represoras/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas del Ojo/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Proteínas del Tejido Nervioso/metabolismo , ADN
3.
Genes Dev ; 32(5-6): 389-401, 2018 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-29535190

RESUMEN

Cis-regulatory modules (CRMs) are defined by unique combinations of transcription factor-binding sites. Emerging evidence suggests that the number, affinity, and organization of sites play important roles in regulating enhancer output and, ultimately, gene expression. Here, we investigate how the cis-regulatory logic of a tissue-specific CRM responsible for even-skipped (eve) induction during cardiogenesis organizes the competing inputs of two E-twenty-six (ETS) members: the activator Pointed (Pnt) and the repressor Yan. Using a combination of reporter gene assays and CRISPR-Cas9 gene editing, we suggest that Yan and Pnt have distinct syntax preferences. Not only does Yan prefer high-affinity sites, but an overlapping pair of such sites is necessary and sufficient for Yan to tune Eve expression levels in newly specified cardioblasts and block ectopic Eve induction and cell fate specification in surrounding progenitors. Mechanistically, the efficient Yan recruitment promoted by this high-affinity ETS supersite not only biases Yan-Pnt competition at the specific CRM but also organizes Yan-repressive complexes in three dimensions across the eve locus. Taken together, our results uncover a novel mechanism by which differential interpretation of CRM syntax by a competing repressor-activator pair can confer both specificity and robustness to developmental transitions.


Asunto(s)
Diferenciación Celular/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citología , Drosophila melanogaster/embriología , Proteínas del Ojo/metabolismo , Regulación del Desarrollo de la Expresión Génica/genética , Miocardio/citología , Proteínas Represoras/metabolismo , Animales , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Embrión no Mamífero , Elementos de Facilitación Genéticos/genética , Proteínas del Ojo/química , Proteínas del Ojo/genética , Proteínas de Homeodominio/química , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Modelos Moleculares , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Organogénesis/genética , Unión Proteica , Estructura Cuaternaria de Proteína , Transporte de Proteínas , Proteínas Proto-Oncogénicas/química , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Represoras/química , Proteínas Represoras/genética , Factores de Transcripción/química , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
4.
PLoS Genet ; 16(11): e1009216, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33253156

RESUMEN

Spatiotemporally precise and robust cell fate transitions, which depend on specific signaling cues, are fundamental to the development of appropriately patterned tissues. The fidelity and precision with which photoreceptor fates are recruited in the Drosophila eye exemplifies these principles. The fly eye consists of a highly ordered array of ~750 ommatidia, each of which contains eight distinct photoreceptors, R1-R8, specified sequentially in a precise spatial pattern. Recruitment of R1-R7 fates requires reiterative receptor tyrosine kinase / mitogen activated protein kinase (MAPK) signaling mediated by the transcriptional effector Pointed (Pnt). However the overall signaling levels experienced by R2-R5 cells are distinct from those experienced by R1, R6 and R7. A relay mechanism between two Pnt isoforms initiated by MAPK activation directs the universal transcriptional response. Here we ask how the generic Pnt response is tailored to these two rounds of photoreceptor fate transitions. We find that during R2-R5 specification PntP2 is coexpressed with a closely related but previously uncharacterized isoform, PntP3. Using CRISPR/Cas9-generated isoform specific null alleles we show that under otherwise wild type conditions, R2-R5 fate specification is robust to loss of either PntP2 or PntP3, and that the two activate pntP1 redundantly; however under conditions of reduced MAPK activity, both are required. Mechanistically, our data suggest that intrinsic activity differences between PntP2 and PntP3, combined with positive and unexpected negative transcriptional auto- and cross-regulation, buffer first-round fates against conditions of compromised RTK signaling. In contrast, in a mechanism that may be adaptive to the stronger signaling environment used to specify R1, R6 and R7 fates, the Pnt network resets to a simpler topology in which PntP2 uniquely activates pntP1 and auto-activates its own transcription. We propose that differences in expression patterns, transcriptional activities and regulatory interactions between Pnt isoforms together facilitate context-appropriate cell fate specification in different signaling environments.


Asunto(s)
Diferenciación Celular/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Drosophila/metabolismo , Regulación del Desarrollo de la Expresión Génica , Sistema de Señalización de MAP Quinasas/genética , Proteínas del Tejido Nervioso/metabolismo , Células Fotorreceptoras de Invertebrados/fisiología , Proteínas Proto-Oncogénicas/metabolismo , Factores de Transcripción/metabolismo , Alelos , Animales , Proteínas de Unión al ADN/genética , Proteínas de Drosophila/genética , Drosophila melanogaster , Redes Reguladoras de Genes , Modelos Animales , Proteínas del Tejido Nervioso/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas Proto-Oncogénicas/genética , Análisis Espacio-Temporal , Factores de Transcripción/genética
5.
Development ; 145(13)2018 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-29848501

RESUMEN

The acquisition of cellular identity during development depends on precise spatiotemporal regulation of gene expression, with combinatorial interactions between transcription factors, accessory proteins and the basal transcription machinery together translating complex signaling inputs into appropriate gene expression outputs. The opposing repressive and activating inputs of the Drosophila ETS family transcription factors Yan and Pointed orchestrate numerous cell fate transitions downstream of receptor tyrosine kinase signaling, providing one of the premier systems for studying this process. Current models describe the differentiative transition as a switch from Yan-mediated repression to Pointed-mediated activation of common target genes. We describe here a new layer of regulation whereby Yan and Pointed co-occupy regulatory elements to repress gene expression in a coordinated manner, with Pointed being unexpectedly required for the genome-wide occupancy of both Yan and the co-repressor Groucho. Using even skipped as a test-case, synergistic genetic interactions between Pointed, Groucho, Yan and components of the RNA polymerase II pausing machinery suggest that Pointed integrates multiple scales of repressive regulation to confer robustness. We speculate that this mechanism may be used broadly to fine-tune the expression of many genes crucial for development.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas del Ojo/metabolismo , Regulación de la Expresión Génica/fisiología , Proteínas del Tejido Nervioso/metabolismo , Proteínas Proto-Oncogénicas c-ets/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Represoras/metabolismo , Factores de Transcripción/metabolismo , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Drosophila/genética , Drosophila melanogaster , Proteínas del Ojo/genética , Proteínas del Tejido Nervioso/genética , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas c-ets/genética , Proteínas Represoras/genética , Factores de Transcripción/genética
6.
Genes Dev ; 27(21): 2293-8, 2013 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-24186975

RESUMEN

Long-range integration of transcriptional inputs is critical for gene expression, yet the mechanisms remain poorly understood. We investigated the molecular determinants that confer fidelity to expression of the heart identity gene even-skipped (eve). Targeted deletion of regions bound by the repressor Yan defined two novel enhancers that contribute repressive inputs to stabilize tissue-specific output from a third enhancer. Deletion of any individual enhancer reduced Yan occupancy at the other elements, impacting eve expression, cell fate specification, and cardiac function. These long-range interactions may be stabilized by three-dimensional chromatin contacts that we detected between the elements. Our work provides a new paradigm for chromatin-level integration of general repressive inputs with specific patterning information to achieve robust gene expression.


Asunto(s)
Cromatina/química , Cromatina/metabolismo , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Proteínas del Ojo/química , Proteínas del Ojo/metabolismo , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/genética , Proteínas Represoras/química , Proteínas Represoras/metabolismo , Factores de Transcripción/genética , Animales , Drosophila melanogaster/química , Drosophila melanogaster/crecimiento & desarrollo , Elementos de Facilitación Genéticos/genética , Proteínas del Ojo/genética , Corazón/crecimiento & desarrollo , Heterocigoto , Unión Proteica , Proteínas Represoras/genética , Eliminación de Secuencia
7.
Development ; 144(14): 2640-2651, 2017 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-28619818

RESUMEN

The transition from proliferation to specification is fundamental to the development of appropriately patterned tissues. In the developing Drosophila eye, Eyes absent (Eya) and Sine oculis (So) orchestrate the progression of progenitor cells from asynchronous cell division to G1 arrest and neuronal specification at the morphogenetic furrow. Here, we uncover a novel role for Eya and So in promoting cell cycle exit in the second mitotic wave (SMW), a synchronized, terminal cell division that occurs several hours after passage of the furrow. We show that Combgap (Cg), a zinc-finger transcription factor, antagonizes Eya-So function in the SMW. Based on the ability of Cg to attenuate Eya-So transcriptional output in vivo and in cultured cells and on meta analysis of their chromatin occupancy profiles, we speculate that Cg limits Eya-So activation of select target genes posterior to the furrow to ensure properly timed mitotic exit. Our work supports a model in which context-specific modulation of transcriptional activity enables Eya and So to promote both entry into and exit from the cell cycle in a distinct spatiotemporal sequence.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/crecimiento & desarrollo , Drosophila melanogaster/metabolismo , Proteínas del Ojo/metabolismo , Proteínas de Homeodominio/metabolismo , Retina/crecimiento & desarrollo , Retina/metabolismo , Factores de Transcripción/metabolismo , Animales , Animales Modificados Genéticamente , Ciclo Celular , Linaje de la Célula , Proliferación Celular , Supervivencia Celular , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Proteínas del Ojo/genética , Regulación del Desarrollo de la Expresión Génica , Redes Reguladoras de Genes , Genes de Insecto , Proteínas de Homeodominio/genética , Mitosis , Mutación , Retina/citología , Factores de Transcripción/genética
8.
Dev Biol ; 421(2): 93-107, 2017 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-27979656

RESUMEN

Among the mechanisms that steer cells to their correct fate during development, master regulatory networks are unique in their sufficiency to trigger a developmental program outside of its normal context. In this review we discuss the key features that underlie master regulatory potency during normal and ectopic development, focusing on two examples, the retinal determination gene network (RDGN) that directs eye development in the fruit fly and the pluripotency gene network (PGN) that maintains cell fate competency in the early mammalian embryo. In addition to the hierarchical transcriptional activation, extensive positive transcriptional feedback, and cooperative protein-protein interactions that enable master regulators to override competing cellular programs, recent evidence suggests that network topology must also be dynamic, with extensive rewiring of the interactions and feedback loops required to navigate the correct sequence of developmental transitions to reach a final fate. By synthesizing the in vivo evidence provided by the RDGN with the extensive mechanistic insight gleaned from the PGN, we highlight the unique regulatory capabilities that continual reorganization into new hierarchies confers on master control networks. We suggest that deeper understanding of such dynamics should be a priority, as accurate spatiotemporal remodeling of network topology will undoubtedly be essential for successful stem cell based therapeutic efforts.


Asunto(s)
Drosophila/crecimiento & desarrollo , Drosophila/genética , Redes Reguladoras de Genes , Mamíferos/genética , Células Madre Pluripotentes/metabolismo , Retina/crecimiento & desarrollo , Retina/metabolismo , Animales , Humanos , Transcripción Genética
9.
Biophys J ; 112(1): 180-192, 2017 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-28076810

RESUMEN

Transcription factors use both protein-DNA and protein-protein interactions to assemble appropriate complexes to regulate gene expression. Although most transcription factors operate as monomers or dimers, a few, including the E26 transformation-specific family repressors Drosophila melanogaster Yan and its human homolog TEL/ETV6, can polymerize. Although polymerization is required for both the normal and oncogenic function of Yan and TEL/ETV6, the mechanisms by which it influences the recruitment, organization, and stability of transcriptional complexes remain poorly understood. Further, a quantitative description of the DNA occupancy of a polymerizing transcription factor is lacking, and such a description would have broader applications to the conceptually related area of polymerizing chromatin regulators. To expand the theoretical basis for understanding how the oligomeric state of a transcriptional regulator influences its chromatin occupancy and function, we leveraged the extensive biochemical characterization of E26 transformation-specific factors to develop a mathematical model of Yan occupancy at chemical equilibrium. We find that spreading condensation from a specific binding site can take place in a path-independent manner given reasonable values of the free energies of specific and non-specific DNA binding and protein-protein cooperativity. Our calculations show that polymerization confers upon a transcription factor the unique ability to extend occupancy across DNA regions far from specific binding sites. In contrast, dimerization promotes recruitment to clustered binding sites and maximizes discrimination between specific and non-specific sites. We speculate that the association with non-specific DNA afforded by polymerization may enable regulatory behaviors that are well-suited to transcriptional repressors but perhaps incompatible with precise activation.


Asunto(s)
ADN/metabolismo , Proteínas de Drosophila/química , Proteínas de Drosophila/metabolismo , Proteínas del Ojo/química , Proteínas del Ojo/metabolismo , Modelos Moleculares , Multimerización de Proteína , Proteínas Represoras/química , Proteínas Represoras/metabolismo , Animales , Sitios de Unión , Estructura Cuaternaria de Proteína , Especificidad por Sustrato
10.
Development ; 140(1): 176-84, 2013 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-23175629

RESUMEN

The development of a functional organ requires coordinated programs of cell fate specification, terminal differentiation and morphogenesis. Whereas signaling mechanisms that specify individual cell fates are well documented, little is known about the pathways and molecules that maintain these fates stably as normal development proceeds or how their dysregulation may contribute to altered cell states in diseases such as cancer. In Drosophila, the tyrosine kinase Abelson (Abl) interfaces with multiple signaling pathways to direct epithelial and neuronal morphogenesis during embryonic and retinal development. Here we show that Abl is required for photoreceptor cell fate maintenance, as Abl mutant photoreceptors lose neuronal markers during late pupal stages but do not re-enter a proliferative state or undergo apoptosis. Failure to maintain the differentiated state correlates with impaired trafficking of the Notch receptor and ectopic Notch signaling, and can be suppressed by reducing the genetic dose of Notch or of its downstream transcriptional effector Suppressor of Hairless. Together, these data reveal a novel mechanism for maintaining the terminally differentiated state of Drosophila photoreceptors and suggest that neuronal fates in the fly retina retain plasticity late into development. Given the general evolutionary conservation of developmental signaling mechanisms, Abl-mediated regulation of Notch could be broadly relevant to cell fate maintenance and reprogramming during normal development, regeneration and oncogenic transformation.


Asunto(s)
Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/fisiología , Drosophila melanogaster/metabolismo , Endocitosis/fisiología , Neuronas/citología , Neuronas/metabolismo , Células Fotorreceptoras de Invertebrados/fisiología , Proteínas Tirosina Quinasas/fisiología , Receptores Notch/metabolismo , Transducción de Señal/fisiología , Animales , Apoptosis/genética , Diferenciación Celular/genética , Proliferación Celular , Drosophila melanogaster/enzimología , Drosophila melanogaster/genética , Endocitosis/genética , Neuronas/enzimología , Células Fotorreceptoras de Invertebrados/enzimología , Transducción de Señal/genética
11.
Dev Biol ; 386(1): 152-64, 2014 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-24247006

RESUMEN

Proneural transcription factors drive the generation of specialized neurons during nervous system development, and their dynamic expression pattern is critical to their function. The activation of the proneural gene atonal (ato) in the Drosophila eye disc epithelium represents a critical step in the transition from retinal progenitor cell to developing photoreceptor neuron. We show here that the onset of ato transcription depends on two distant enhancers that function differently in subsets of retinal progenitor cells. A detailed analysis of the crosstalk between these enhancers identifies a critical role for three binding sites for the Retinal Determination factors Eyeless (Ey) and Sine oculis (So). We show how these sites interact to induce ato expression in distinct regions of the eye field and confirm them to be occupied by endogenous Ey and So proteins in vivo. Our study suggests that Ey and So operate differently through the same 3' cis-regulatory sites in distinct populations of retinal progenitors.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Drosophila/embriología , Proteínas del Ojo/metabolismo , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Factores de Transcripción Paired Box/metabolismo , Proteínas Represoras/metabolismo , Retina/embriología , Células Madre/citología , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/fisiología , Sitios de Unión , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Elementos de Facilitación Genéticos , Proteínas del Ojo/genética , Proteínas Fluorescentes Verdes/metabolismo , Proteínas de Homeodominio/genética , Hibridación in Situ , Proteínas del Tejido Nervioso/fisiología , Sistema Nervioso/embriología , Neuronas/metabolismo , Neuronas/fisiología , Factor de Transcripción PAX6 , Factores de Transcripción Paired Box/genética , Proteínas Represoras/genética , Transcripción Genética
12.
Dev Biol ; 385(2): 263-78, 2014 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-24240101

RESUMEN

The biochemical regulatory network downstream of receptor tyrosine kinase (RTK) signaling is controlled by two opposing ETS family members: the transcriptional activator Pointed (Pnt) and the transcriptional repressor Yan. A bistable switch model has been invoked to explain how pathway activation can drive differentiation by shifting the system from a high-Yan/low-Pnt activity state to a low-Yan/high-Pnt activity state. Although the model explains yan and pnt loss-of-function phenotypes in several different cell types, how Yan and Pointed protein expression dynamics contribute to these and other developmental transitions remains poorly understood. Toward this goal we have used a functional GFP-tagged Pnt transgene (Pnt-GFP) to perform a comparative study of Yan and Pnt protein expression throughout Drosophila development. Consistent with the prevailing model of the Pnt-Yan network, we found numerous instances where Pnt-GFP and Yan adopt a mutually exclusive pattern of expression. However we also observed many examples of co-expression. While some co-expression occurred in cells where RTK signaling is presumed low, other co-expression occurred in cells with high RTK signaling. The instances of co-expressed Yan and Pnt-GFP in tissues with high RTK signaling cannot be explained by the current model, and thus they provide important contexts for future investigation of how context-specific differences in RTK signaling, network topology, or responsiveness to other signaling inputs, affect the transcriptional response.


Asunto(s)
Proteínas de Unión al ADN/genética , Proteínas de Drosophila/genética , Proteínas del Ojo/genética , Proteínas del Tejido Nervioso/genética , Proteínas Proto-Oncogénicas/genética , Proteínas Tirosina Quinasas Receptoras/metabolismo , Proteínas Represoras/genética , Transducción de Señal , Factores de Transcripción/genética , Transcripción Genética , Animales , Drosophila melanogaster/embriología , Proteínas Fluorescentes Verdes/genética
13.
Dev Biol ; 365(1): 267-76, 2012 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-22394486

RESUMEN

The retinal determination gene network comprises a collection of transcription factors that respond to multiple signaling inputs to direct Drosophila eye development. Previous genetic studies have shown that nemo (nmo), a gene encoding a proline-directed serine/threonine kinase, can promote retinal specification through interactions with the retinal determination gene network, although the molecular point of cross-talk was not defined. Here, we report that the Nemo kinase positively and directly regulates Eyes absent (Eya). Genetic assays show that Nmo catalytic activity enhances Eya-mediated ectopic eye formation and potentiates induction of the Eya-Sine oculis (So) transcriptional targets dachshund and lozenge. Biochemical analyses demonstrate that Nmo forms a complex with and phosphorylates Eya at two consensus mitogen-activated protein kinase (MAPK) phosphorylation sites. These same sites appear crucial for Nmo-mediated activation of Eya function in vivo. Thus, we propose that Nmo phosphorylation of Eya potentiates its transactivation function to enhance transcription of Eya-So target genes during eye specification and development.


Asunto(s)
Proteínas de Drosophila/fisiología , Drosophila/embriología , Proteínas del Ojo/fisiología , Ojo/embriología , Proteínas de Homeodominio/fisiología , Proteínas Quinasas Activadas por Mitógenos/fisiología , Animales , Organogénesis , Fosforilación , Retina/embriología , Retina/fisiología , Activación Transcripcional
14.
Development ; 137(14): 2265-78, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20570936

RESUMEN

A major goal of developmental biology is to understand the molecular mechanisms whereby genetic signaling networks establish and maintain distinct cell types within multicellular organisms. Here, we review cell-fate decisions in the developing eye of Drosophila melanogaster and the experimental results that have revealed the topology of the underlying signaling circuitries. We then propose that switch-like network motifs based on positive feedback play a central role in cell-fate choice, and discuss how mathematical modeling can be used to understand and predict the bistable or multistable behavior of such networks.


Asunto(s)
Drosophila melanogaster/genética , Modelos Biológicos , Modelos Teóricos , Animales , Diferenciación Celular/genética , Drosophila/genética , Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Transducción de Señal/genética
15.
bioRxiv ; 2023 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-36945525

RESUMEN

How complex three-dimensional (3D) organs coordinate cellular morphogenetic events to achieve the correct final form is a central question in development. The question is uniquely tractable in the late Drosophila pupal retina where cells maintain stereotyped contacts as they elaborate the specialized cytoskeletal structures that pattern the apical, basal and longitudinal planes of the epithelium. In this study, we combined cell type-specific genetic manipulation of the cytoskeletal regulator Abelson (Abl) with 3D imaging to explore how the distinct cellular morphogenetic programs of photoreceptors and interommatidial pigment cells coordinately organize tissue pattern to support retinal integrity. Our experiments revealed an unanticipated intercellular feedback mechanism whereby correct cellular differentiation of either cell type can non-autonomously induce cytoskeletal remodeling in the other Abl mutant cell type, restoring retinal pattern and integrity. We propose that genetic regulation of specialized cellular differentiation programs combined with inter-plane mechanical feedback confers spatial coordination to achieve robust 3D tissue morphogenesis.

16.
Dev Dyn ; 240(7): 1745-55, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21674685

RESUMEN

Coordinated differentiation and morphogenesis transform the Drosophila retina from a layer of epithelial cells into a complex three-dimensional organ. In this study we show that the Abelson (Abl) tyrosine kinase localizes to the dynamically remodeling apical-junctional membrane domains of the developing photoreceptor cells. Analyses of abl mutant clone phenotypes demonstrate that abl is required for enriched localization of adherens junction and apical polarity complex proteins at photoreceptor-photoreceptor cell junctions and apical membrane domains, respectively, for rhabdomere generation and for spatial organization of ommatidial cells along the apical-basal axis of the epithelium. Loss of abl does not alter expression or localization of Enabled (Ena) nor does heterozygosity for ena dominantly suppress the abl phenotypes, suggesting the downstream effector mechanisms used by Abl in the eye may differ from those used in the embryo. Together our results reveal a prominent role for Abl in coordinating multiple aspects of photoreceptor morphogenesis.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/embriología , Drosophila melanogaster/metabolismo , Células Fotorreceptoras/citología , Retina/embriología , Retina/metabolismo , Epitelio Pigmentado de la Retina/embriología , Animales , Proteínas de Drosophila/genética , Células Fotorreceptoras/metabolismo , Epitelio Pigmentado de la Retina/metabolismo
17.
Nature ; 426(6964): 299-302, 2003 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-14628053

RESUMEN

Post-translational modifications provide sensitive and flexible mechanisms to dynamically modulate protein function in response to specific signalling inputs. In the case of transcription factors, changes in phosphorylation state can influence protein stability, conformation, subcellular localization, cofactor interactions, transactivation potential and transcriptional output. Here we show that the evolutionarily conserved transcription factor Eyes absent (Eya) belongs to the phosphatase subgroup of the haloacid dehalogenase (HAD) superfamily, and propose a function for it as a non-thiol-based protein tyrosine phosphatase. Experiments performed in cultured Drosophila cells and in vitro indicate that Eyes absent has intrinsic protein tyrosine phosphatase activity and can autocatalytically dephosphorylate itself. Confirming the biological significance of this function, mutations that disrupt the phosphatase active site severely compromise the ability of Eyes absent to promote eye specification and development in Drosophila. Given the functional importance of phosphorylation-dependent modulation of transcription factor activity, this evidence for a nuclear transcriptional coactivator with intrinsic phosphatase activity suggests an unanticipated method of fine-tuning transcriptional regulation.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/enzimología , Proteínas del Ojo/metabolismo , Proteínas Tirosina Fosfatasas/metabolismo , Factores de Transcripción/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Animales , Anticuerpos Fosfo-Específicos/inmunología , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Drosophila melanogaster/embriología , Drosophila melanogaster/genética , Inducción Embrionaria , Ojo/embriología , Ojo/enzimología , Ojo/metabolismo , Proteínas del Ojo/química , Proteínas del Ojo/genética , Regulación de la Expresión Génica , Cinética , Ratones , Modelos Moleculares , Datos de Secuencia Molecular , Mutación/genética , Fosforilación , Conformación Proteica , Proteínas Tirosina Fosfatasas/química , Proteínas Tirosina Fosfatasas/genética , Especificidad por Sustrato , Factores de Transcripción/química , Factores de Transcripción/genética
18.
Trends Genet ; 21(3): 163-71, 2005 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-15734575

RESUMEN

Post-translational modifications such as phosphorylation provide versatile context-specific strategies for modulating transcription factor activity. In the prevailing view of this process, modifying enzymes indirectly influence gene expression by shuttling to and from the nucleus where they alter the activity of their target transcription factors. However, a new paradigm has recently been suggested from studies of Eyes absent (EYA), a member of a conserved network of transcriptional regulators implicated in the development of numerous tissues and organs including the eye, ear, muscle and kidney. These findings indicate that EYA operates both as a transcriptional coactivator and as the prototype of a novel class of protein tyrosine phosphatases. The regulatory potential of such a bifunctional transcription factor is enormous and suggests a new layer of dynamic regulation in which transcription factors themselves might provide intrinsic enzymatic activities to fine-tune nuclear output.


Asunto(s)
Proteínas de Drosophila/fisiología , Proteínas del Ojo/fisiología , Proteínas Tirosina Fosfatasas/fisiología , Factores de Transcripción/fisiología , Animales , Drosophila melanogaster , Regulación de la Expresión Génica/fisiología
19.
Mech Dev ; 124(9-10): 792-806, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17588724

RESUMEN

The Notch and Epidermal Growth Factor Receptor (EGFR) signaling pathways interact cooperatively and antagonistically to regulate many aspects of Drosophila development, including the eye. How output from these two signaling networks is fine-tuned to achieve the precise balance needed for specific inductive interactions and patterning events remains an open and important question. Previously, we reported that the gene split ends (spen) functions within or parallel to the EGFR pathway during midline glial cell development in the embryonic central nervous system. Here, we report that the cellular defects caused by loss of spen function in the developing eye imaginal disc place spen as both an antagonist of the Notch pathway and a positive contributor to EGFR signaling during retinal cell differentiation. Specifically, loss of spen results in broadened expression of Scabrous, ectopic activation of Notch signaling, and a corresponding reduction in Atonal expression at the morphogenetic furrow. Consistent with Spen's role in antagonizing Notch signaling, reduction of spen levels is sufficient to suppress Notch-dependent phenotypes. At least in part due to loss of Spen-dependent down-regulation of Notch signaling, loss of spen also dampens EGFR signaling as evidenced by reduced activity of MAP kinase (MAPK). This reduced MAPK activity in turn leads to a failure to limit expression of the EGFR pathway antagonist and the ETS-domain transcriptional repressor Yan and to a corresponding loss of cell fate specification in spen mutant ommatidia. We propose that Spen plays a role in modulating output from the Notch and EGFR pathways to ensure appropriate patterning during eye development.


Asunto(s)
Proteínas de Drosophila/antagonistas & inhibidores , Proteínas de Drosophila/fisiología , Drosophila melanogaster/crecimiento & desarrollo , Receptores ErbB/fisiología , Ojo/crecimiento & desarrollo , Proteínas de Homeodominio/fisiología , Proteínas Nucleares/fisiología , Receptores Notch/antagonistas & inhibidores , Transducción de Señal/fisiología , Animales , Tipificación del Cuerpo/fisiología , Ojo/embriología , Proteínas de Unión al ARN , Receptores Notch/fisiología , Regulación hacia Arriba/fisiología , Alas de Animales/crecimiento & desarrollo
20.
Fly (Austin) ; 12(1): 62-70, 2018 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-29125381

RESUMEN

Master regulatory transcription factors cooperate in networks to shepherd cells through organogenesis. In the Drosophila eye, a collection of master control proteins known as the retinal determination gene network (RDGN) switches the direction and targets of its output to choreograph developmental transitions, but the molecular partners that enable such regulatory flexibility are not known. We recently showed that two RDGN members, Eyes absent (Eya) and Sine oculis (So), promote exit from the terminal cell cycle known as the second mitotic wave (SMW) to permit differentiation. A search for co-factors identified the ubiquitously expressed Combgap (Cg) as a novel transcriptional partner that impedes cell cycle exit and interferes with Eya-So activity specifically in this context. Here, we argue that Cg acts as a flexible transcriptional platform that contributes to numerous gene expression outcomes by a variety of mechanisms. For example, Cg provides repressive activities that dampen Eya-So output, but not by recruiting Polycomb chromatin-remodeling complexes as it does in other contexts. We propose that master regulators depend on both specifically expressed co-factors that assemble the combinatorial code and broadly expressed partners like Cg that recruit the diverse molecular activities needed to appropriately regulate their target enhancers.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/embriología , Drosophila melanogaster/genética , Redes Reguladoras de Genes , Factores de Transcripción/metabolismo , Animales , Ciclo Celular , Drosophila melanogaster/citología , Proteínas del Ojo/metabolismo , Proteínas de Homeodominio/metabolismo , Organogénesis , Retina/embriología , Transcripción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA