Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Ecotoxicol Environ Saf ; 270: 115808, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38198896

RESUMEN

Despite various plans to rationalize antibiotic use, antibiotic resistance in environmental bacteria is increasing due to the accumulation of antibiotic residues in the environment. This study aimed to test the ability of basidiomycete fungal strains to biotransform the antibiotic levofloxacin, a widely-used third-generation broad-spectrum fluoroquinolone, and to propose enzyme targets potentially involved in this biotransformation. The biotransformation process was performed using fungal strains. Levofloxacin biotransformation reached 100% after 9 days of culture with Porostereum spadiceum BS34. Using genomics and proteomics analyses coupled with activity tests, we showed that P. spadiceum produces several heme-peroxidases together with H2O2-producing enzymes that could be involved in the antibiotic biotransformation process. Using UV and high-resolution mass spectrometry, we were able to detect five levofloxacin degradation products. Their putative identity based on their MS2 fragmentation patterns led to the conclusion that the piperazine moiety was the main target of oxidative modification of levofloxacin by P. spadiceum, leading to a decrease in antibiotic activity.


Asunto(s)
Peróxido de Hidrógeno , Levofloxacino , Polyporales , Antibacterianos/química , Fluoroquinolonas/química , Hongos/metabolismo
2.
Molecules ; 28(12)2023 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-37375426

RESUMEN

Here, we report work on developing an enzymatic process to improve the functionalities of industrial lignin. A kraft lignin sample prepared from marine pine was treated with the high-redox-potential laccase from the basidiomycete fungus Pycnoporus cinnabarinus at three different concentrations and pH conditions, and with and without the chemical mediator 1-hydroxybenzotriazole (HBT). Laccase activity was tested in the presence and absence of kraft lignin. The optimum pH of PciLac was initially 4.0 in the presence and absence of lignin, but at incubation times over 6 h, higher activities were found at pH 4.5 in the presence of lignin. Structural changes in lignin were investigated by Fourier-transform infrared spectroscopy (FTIR) with differential scanning calorimetry (DSC), and solvent-extractable fractions were analyzed using high-performance size-exclusion chromatography (HPSEC) and gas chromatography-mass spectrometry (GC-MS). The FTIR spectral data were analyzed with two successive multivariate series using principal component analysis (PCA) and ANOVA statistical analysis to identify the best conditions for the largest range of chemical modifications. DSC combined with modulated DSC (MDSC) revealed that the greatest effect on glass transition temperature (Tg) was obtained at 130 U g cm-1 and pH 4.5, with the laccase alone or combined with HBT. HPSEC data suggested that the laccase treatments led to concomitant phenomena of oligomerization and depolymerization, and GC-MS revealed that the reactivity of the extractable phenolic monomers depended on the conditions tested. This study demonstrates that P. cinnabarinus laccase can be used to modify marine pine kraft lignin, and that the set of analytical methods implemented here provides a valuable tool for screening enzymatic treatment conditions.


Asunto(s)
Lacasa , Polyporaceae , Lacasa/química , Lignina/química
3.
Appl Environ Microbiol ; 88(23): e0158122, 2022 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-36354345

RESUMEN

Filamentous fungi are keystone microorganisms in the regulation of many processes occurring on Earth, such as plant biomass decay and pathogenesis as well as symbiotic associations. In many of these processes, fungi secrete carbohydrate-active enzymes (CAZymes) to modify and/or degrade carbohydrates. Ten years ago, while evaluating the potential of a secretome from the maize pathogen Ustilago maydis to supplement lignocellulolytic cocktails, we noticed it contained many unknown or poorly characterized CAZymes. Here, and after reannotation of this data set and detailed phylogenetic analyses, we observed that several CAZymes (including glycoside hydrolases and carbohydrate oxidases) are predicted to act on the fungal cell wall (FCW), notably on ß-1,3-glucans. We heterologously produced and biochemically characterized two new CAZymes, called UmGH16_1-A and UmAA3_2-A. We show that UmGH16_1-A displays ß-1,3-glucanase activity, with a preference for ß-1,3-glucans with short ß-1,6 substitutions, and UmAA3_2-A is a dehydrogenase catalyzing the oxidation of ß-1,3- and ß-1,6-gluco-oligosaccharides into the corresponding aldonic acids. Working on model ß-1,3-glucans, we show that the linear oligosaccharide products released by UmGH16_1-A are further oxidized by UmAA3_2-A, bringing to light a putative biocatalytic cascade. Interestingly, analysis of available transcriptomics data indicates that both UmGH16_1-A and UmAA3_2-A are coexpressed, only during early stages of U. maydis infection cycle. Altogether, our results suggest that both enzymes are connected and that additional accessory activities still need to be uncovered to fully understand the biocatalytic cascade at play and its physiological role. IMPORTANCE Filamentous fungi play a central regulatory role on Earth, notably in the global carbon cycle. Regardless of their lifestyle, filamentous fungi need to remodel their own cell wall (mostly composed of polysaccharides) to grow and proliferate. To do so, they must secrete a large arsenal of enzymes, most notably carbohydrate-active enzymes (CAZymes). However, research on fungal CAZymes over past decades has mainly focused on finding efficient plant biomass conversion processes while CAZymes directed at the fungus itself have remained little explored. In the present study, using the maize pathogen Ustilago maydis as model, we set off to evaluate the prevalence of CAZymes directed toward the fungal cell wall during growth of the fungus on plant biomass and characterized two new CAZymes active on fungal cell wall components. Our results suggest the existence of a biocatalytic cascade that remains to be fully understood.


Asunto(s)
Glicósido Hidrolasas , Ustilago , Glicósido Hidrolasas/metabolismo , Zea mays/metabolismo , Oxidorreductasas/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Filogenia , Pared Celular/metabolismo , Hongos/metabolismo , Plantas/metabolismo , Carbohidratos , Glucanos/metabolismo
4.
BMC Biotechnol ; 20(1): 27, 2020 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-32398071

RESUMEN

BACKGROUND: Environmental pollution is one of the major problems that the world is facing today. Several approaches have been taken, from physical and chemical methods to biotechnological strategies (e.g. the use of oxidoreductases). Oxidative enzymes from microorganisms offer eco-friendly, cost-effective processes amenable to biotechnological applications, such as in industrial dye decolorization. The aim of this study was to screen marine-derived fungal strains isolated from three coastal areas in Tunisia to identify laccase-like activities, and to produce and characterize active cell-free supernatants of interest for dye decolorization. RESULTS: Following the screening of 20 fungal strains isolated from the harbors of Sfax and Monastir (Tunisia), five strains were identified that displayed laccase-like activities. Molecular-based taxonomic approaches identified these strains as belonging to the species Trichoderma asperellum, Stemphylium lucomagnoense and Aspergillus nidulans. Among these five isolates, one T. asperellum strain (T. asperellum 1) gave the highest level of secreted oxidative activities, and so was chosen for further studies. Optimization of the growth medium for liquid cultures was first undertaken to improve the level of laccase-like activity in culture supernatants. Finally, the culture supernatant of T. asperellum 1 decolorized different synthetic dyes belonging to diverse dye families, in the presence or absence of 1-hydroxybenzotriazole (HBT) as a mediator. CONCLUSIONS: The optimal growth conditions to produce laccase-like active cell-free supernatants from T. asperellum 1 were 1.8 mM CuSO4 as an inducer, 1% NaCl to mimic a seawater environment and 3% sucrose as a carbon source. The culture supernatant of T. asperellum 1 effectively decolorized different synthetic dyes belonging to diverse chemical classes, and the presence of HBT as a mediator improved the decolorization process.


Asunto(s)
Biotecnología , Hongos/enzimología , Lacasa/metabolismo , Ascomicetos , Aspergillus nidulans , Colorantes/química , Hongos/clasificación , Hongos/genética , Hongos/aislamiento & purificación , Hypocreales , Lacasa/genética , Tamizaje Masivo , Filogenia , Agua de Mar/microbiología , Algas Marinas/microbiología
5.
Mar Drugs ; 18(9)2020 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-32916905

RESUMEN

Even if the ocean represents a large part of Earth's surface, only a few studies describe marine-derived fungi compared to their terrestrial homologues. In this ecosystem, marine-derived fungi have had to adapt to the salinity and to the plant biomass composition. This articles studies the growth of five marine isolates and the tuning of lignocellulolytic activities under different conditions, including the salinity. A de novo transcriptome sequencing and assembly were used in combination with a proteomic approach to characterize the Carbohydrate Active Enzymes (CAZy) repertoire of one of these strains. Following these approaches, Stemphylium lucomagnoense was selected for its adapted growth on xylan in saline conditions, its high xylanase activity, and its improved laccase activities in seagrass-containing cultures with salt. De novo transcriptome sequencing and assembly indicated the presence of 51 putative lignocellulolytic enzymes. Its secretome composition was studied in detail when the fungus was grown on either a terrestrial or a marine substrate, under saline and non-saline conditions. Proteomic analysis of the four S. lucomagnoense secretomes revealed a minimal suite of extracellular enzymes for plant biomass degradation and highlighted potential enzyme targets to be further studied for their adaptation to salts and for potential biotechnological applications.


Asunto(s)
Ascomicetos/enzimología , Enzimas/metabolismo , Proteínas Fúngicas/metabolismo , Lignina/metabolismo , Tolerancia a la Sal , Ascomicetos/genética , Ascomicetos/crecimiento & desarrollo , Bases de Datos Genéticas , Enzimas/genética , Enzimas/aislamiento & purificación , Proteínas Fúngicas/genética , Proteínas Fúngicas/aislamiento & purificación , Perfilación de la Expresión Génica , Proteoma , Proteómica , Salinidad , Agua de Mar/microbiología , Especificidad por Sustrato , Transcriptoma , Microbiología del Agua
6.
Int J Mol Sci ; 21(21)2020 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-33182389

RESUMEN

Only a few studies have examined how marine-derived fungi and their enzymes adapt to salinity and plant biomass degradation. This work concerns the production and characterisation of an oxidative enzyme identified from the transcriptome of marine-derived fungus Stemphylium lucomagnoense. The laccase-encoding gene SlLac2 from S. lucomagnoense was cloned for heterologous expression in Aspergillus niger D15#26 for protein production in the extracellular medium of around 30 mg L-1. The extracellular recombinant enzyme SlLac2 was successfully produced and purified in three steps protocol: ultrafiltration, anion-exchange chromatography, and size exclusion chromatography, with a final recovery yield of 24%. SlLac2 was characterised by physicochemical properties, kinetic parameters, and ability to oxidise diverse phenolic substrates. We also studied its activity in the presence and absence of sea salt. The molecular mass of SlLac2 was about 75 kDa, consistent with that of most ascomycete fungal laccases. With syringaldazine as substrate, SlLac2 showed an optimal activity at pH 6 and retained nearly 100% of its activity when incubated at 50°C for 180 min. SlLac2 exhibited more than 50% of its activity with 5% wt/vol of sea salt.


Asunto(s)
Organismos Acuáticos/genética , Organismos Acuáticos/metabolismo , Ascomicetos/genética , Ascomicetos/metabolismo , Lacasa/genética , Lacasa/metabolismo , Transcriptoma/genética , Aspergillus niger/genética , Aspergillus niger/metabolismo , Clonación Molecular , Concentración de Iones de Hidrógeno , Oxidación-Reducción , Salinidad
7.
Environ Microbiol ; 21(4): 1407-1424, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30807675

RESUMEN

Mangroves are forest ecosystems located at the interface between land and sea where sediments presented a variety of contrasted environmental conditions (i.e. oxic/anoxic, non-sulfidic/sulfidic, organic matter content) providing an ideal ecosystem to study microbial communities with niche differentiation and distinct community structures. In this work, prokaryotic and fungal compositions were investigated during both wet and dry seasons in New Caledonian mangrove sediments, from the surface to deeper horizons under the two most common tree species in this region (Avicennia marina and Rhizophora stylosa), using high-throughput sequencing. Our results showed that Bacteria and Archaea communities were mainly shaped by sediment depth while the fungal community was almost evenly distributed according to sediment depth, vegetation cover and season. A detailed analysis of prokaryotic and fungal phyla showed a dominance of Ascomycota over Basidiomycota whatever the compartment, while there was a clear shift in prokaryotic composition. Some prokaryotic phyla were enriched in surface layers such as Proteobacteria, Euryarchaeota while others were mostly associated with deeper layers as Chloroflexi, Bathyarchaeota, Aminicenantes. Our results highlight the importance of considering fungal and prokaryotic counterparts for a better understanding of the microbial succession involved in plant organic matter decomposition in tropical coastal sediments.


Asunto(s)
Archaea/clasificación , Bacterias/clasificación , Fenómenos Fisiológicos Bacterianos , Ecosistema , Hongos/fisiología , Microbiota/fisiología , Avicennia/microbiología , Sedimentos Geológicos/microbiología
8.
Appl Environ Microbiol ; 85(24)2019 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-31604773

RESUMEN

Pyrroloquinoline quinone (PQQ) is an ortho-quinone cofactor of several prokaryotic oxidases. Widely available in the diet and necessary for the correct growth of mice, PQQ has been suspected to be a vitamin for eukaryotes. However, no PQQ-dependent eukaryotic enzyme had been identified to use the PQQ until 2014, when a basidiomycete enzyme catalyzing saccharide dehydrogenation using PQQ as a cofactor was characterized and served to define auxiliary activity family 12 (AA12). Here we report the biochemical characterization of the AA12 enzyme encoded by the genome of the ascomycete Trichoderma reesei (TrAA12). Surprisingly, only weak activity against uncommon carbohydrates like l-fucose or d-arabinose was measured. The three-dimensional structure of TrAA12 reveals important similarities with bacterial soluble glucose dehydrogenases (sGDH). The enzymatic characterization and the structure solved in the presence of calcium confirm the importance of this ion in catalysis, as observed for sGDH. The structural characterization of TrAA12 was completed by modeling PQQ and l-fucose in the enzyme active site. Based on these results, the AA12 family of enzymes is likely to have a catalytic mechanism close to that of bacterial sGDH.IMPORTANCE Pyrroloquinoline quinone (PQQ) is an important cofactor synthesized by prokaryotes and involved in enzymatic alcohol and sugar oxidation. In eukaryotes, the benefit of PQQ as a vitamin has been suggested but never proved. Recently, the first eukaryotic enzyme using PQQ was characterized in the basidiomycete Coprinopsis cinerea, demonstrating that fungi are able to use PQQ as an enzyme cofactor. This discovery led to the classification of the fungal PQQ-dependent enzymes in auxiliary activity family 12 (AA12) of the Carbohydrate-Active Enzymes (CAZy) database (www.cazy.org) classification. In the present paper, we report on the characterization of the ascomycete AA12 enzyme from Trichoderma reesei (TrAA12). Our enzymatic and phylogenetic results show divergence with the only other member of the family characterized, that from the basidiomycete Coprinopsis cinerea The crystallographic structure of TrAA12 shows similarities to the global active-site architecture of bacterial glucose dehydrogenases, suggesting a common evolution between the two families.


Asunto(s)
Glucosa Deshidrogenasas/metabolismo , Oxidorreductasas/metabolismo , Cofactor PQQ/metabolismo , Trichoderma/enzimología , Trichoderma/metabolismo , Secuencia de Aminoácidos , Arabinosa/metabolismo , Basidiomycota/enzimología , Carbohidratos , Catálisis , Fucosa/metabolismo , Oxidación-Reducción , Filogenia , Conformación Proteica
9.
PLoS Genet ; 12(5): e1006017, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-27153332

RESUMEN

Drechmeria coniospora is an obligate fungal pathogen that infects nematodes via the adhesion of specialized spores to the host cuticle. D. coniospora is frequently found associated with Caenorhabditis elegans in environmental samples. It is used in the study of the nematode's response to fungal infection. Full understanding of this bi-partite interaction requires knowledge of the pathogen's genome, analysis of its gene expression program and a capacity for genetic engineering. The acquisition of all three is reported here. A phylogenetic analysis placed D. coniospora close to the truffle parasite Tolypocladium ophioglossoides, and Hirsutella minnesotensis, another nematophagous fungus. Ascomycete nematopathogenicity is polyphyletic; D. coniospora represents a branch that has not been molecularly characterized. A detailed in silico functional analysis, comparing D. coniospora to 11 fungal species, revealed genes and gene families potentially involved in virulence and showed it to be a highly specialized pathogen. A targeted comparison with nematophagous fungi highlighted D. coniospora-specific genes and a core set of genes associated with nematode parasitism. A comparative gene expression analysis of samples from fungal spores and mycelia, and infected C. elegans, gave a molecular view of the different stages of the D. coniospora lifecycle. Transformation of D. coniospora allowed targeted gene knock-out and the production of fungus that expresses fluorescent reporter genes. It also permitted the initial characterisation of a potential fungal counter-defensive strategy, involving interference with a host antimicrobial mechanism. This high-quality annotated genome for D. coniospora gives insights into the evolution and virulence of nematode-destroying fungi. Coupled with genetic transformation, it opens the way for molecular dissection of D. coniospora physiology, and will allow both sides of the interaction between D. coniospora and C. elegans, as well as the evolutionary arms race that exists between pathogen and host, to be studied.


Asunto(s)
Caenorhabditis elegans/microbiología , Micosis/microbiología , Filogenia , Spiroplasma/genética , Animales , Ascomicetos/genética , Ascomicetos/patogenicidad , Caenorhabditis elegans/parasitología , Hibridación Genómica Comparativa , Hypocreales/clasificación , Hypocreales/genética , Micosis/parasitología , Spiroplasma/clasificación , Spiroplasma/patogenicidad , Esporas Fúngicas/clasificación , Esporas Fúngicas/genética , Esporas Fúngicas/patogenicidad , Virulencia/genética
11.
Int J Mol Sci ; 20(8)2019 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-30991752

RESUMEN

: Two laccase-encoding genes from the marine-derived fungus Pestalotiopsis sp. have been cloned in Aspergillus niger for heterologous production, and the recombinant enzymes have been characterized to study their physicochemical properties, their ability to decolorize textile dyes for potential biotechnological applications, and their activity in the presence of sea salt. The optimal pH and temperature of PsLac1 and PsLac2 differed in relation to the substrates tested, and both enzymes were shown to be extremely stable at temperatures up to 50 °C, retaining 100% activity after 3 h at 50 °C. Both enzymes were stable between pH 4-6. Different substrate specificities were exhibited, and the lowest Km and highest catalytic efficiency values were obtained against syringaldazine and 2,6-dimethoxyphenol (DMP) for PsLac1 and PsLac2, respectively. The industrially important dyes-Acid Yellow, Bromo Cresol Purple, Nitrosulfonazo III, and Reactive Black 5-were more efficiently decolorized by PsLac1 in the presence of the redox mediator 1-hydroxybenzotriazole (HBT). Activities were compared in saline conditions, and PsLac2 seemed more adapted to the presence of sea salt than PsLac1. The overall surface charges of the predicted PsLac three-dimensional models showed large negatively charged surfaces for PsLac2, as found in proteins for marine organisms, and more balanced solvent exposed charges for PsLac1, as seen in proteins from terrestrial organisms.


Asunto(s)
Colorantes/metabolismo , Hongos/enzimología , Lacasa/metabolismo , Secuencia de Aminoácidos , Aspergillus niger/genética , Clonación Molecular/métodos , Colorantes/aislamiento & purificación , Estabilidad de Enzimas , Hongos/genética , Concentración de Iones de Hidrógeno , Microbiología Industrial , Lacasa/química , Lacasa/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Salinidad , Especificidad por Sustrato , Temperatura
12.
Appl Environ Microbiol ; 84(8)2018 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-29453263

RESUMEN

Trametesversicolor is a wood-inhabiting agaricomycete known for its ability to cause strong white-rot decay on hardwood and for its high tolerance of phenolic compounds. The goal of the present work was to gain insights into the molecular biology and biochemistry of the heme-including class II and dye-decolorizing peroxidases secreted by this fungus. Proteomic analysis of the secretome of T. versicolor BRFM 1218 grown on oak wood revealed a set of 200 secreted proteins, among which were the dye-decolorizing peroxidase TvDyP1 and the versatile peroxidase TvVP2. Both peroxidases were heterologously produced in Escherichia coli, biochemically characterized, and tested for the ability to oxidize complex substrates. Both peroxidases were found to be active against several substrates under acidic conditions, and TvDyP1 was very stable over a relatively large pH range of 2.0 to 6.0, while TvVP2 was more stable at pH 5.0 to 6.0 only. The thermostability of both enzymes was also tested, and TvDyP1 was globally found to be more stable than TvVP2. After 180 min of incubation at temperatures ranging from 30 to 50°C, the activity of TvVP2 drastically decreased, with 10 to 30% of the initial activity retained. Under the same conditions, TvDyP1 retained 20 to 80% of its enzyme activity. The two proteins were catalytically characterized, and TvVP2 was shown to accept a wider range of reducing substrates than TvDyP1. Furthermore, both enzymes were found to be active against two flavonoids, quercetin and catechin, found in oak wood, with TvVP2 displaying more rapid oxidation of the two compounds. They were tested for the ability to decolorize five industrial dyes, and TvVP2 presented a greater ability to oxidize and decolorize the dye substrates than TvDyP1.IMPORTANCETrametesversicolor is a wood-inhabiting agaricomycete known for its ability to cause strong white-rot decay on hardwood and for its high tolerance of phenolic compounds. Among white-rot fungi, the basidiomycete T. versicolor has been extensively studied for its ability to degrade wood, specifically lignin, thanks to an extracellular oxidative enzymatic system. The corresponding oxidative system was previously studied in several works for classical lignin and manganese peroxidases, and in this study, two new components of the oxidative system of T. versicolor, one dye-decolorizing peroxidase and one versatile peroxidase, were biochemically characterized in depth and compared to other fungal peroxidases.


Asunto(s)
Colorantes/metabolismo , Proteínas Fúngicas/genética , Peroxidasas/genética , Trametes/genética , Contaminantes Químicos del Agua/metabolismo , Proteínas Fúngicas/metabolismo , Oxidación-Reducción , Peroxidasas/metabolismo , Proteómica , Trametes/enzimología
13.
Microb Cell Fact ; 16(1): 37, 2017 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-28245812

RESUMEN

BACKGROUND: Cellobiose dehydrogenase (CDH) is an extracellular enzyme produced by lignocellulolytic fungi. cdh gene expression is high in cellulose containing media, but relatively low CDH concentrations are found in the supernatant of fungal cultures due to strong binding to cellulose. Therefore, heterologous expression of CDH in Pichia pastoris was employed in the last 15 years, but the obtained enzymes were over glycosylated and had a reduced specific activity. RESULTS: We compare the well-established CDH expression host P. pastoris with the less frequently used hosts Escherichia coli, Aspergillus niger, and Trichoderma reesei. The study evaluates the produced quantity and protein homogeneity of Corynascus thermophilus CDH in the culture supernatants, the purification, and finally compares the enzymes in regard to cofactor loading, glycosylation, catalytic constants and thermostability. CONCLUSIONS: Whereas E. coli could only express the catalytic dehydrogenase domain of CDH, all eukaryotic hosts could express full length CDH including the cytochrome domain. The CDH produced by T. reesei was most similar to the CDH originally isolated from the fungus C. thermophilus in regard to glycosylation, cofactor loading and catalytic constants. Under the tested experimental conditions the fungal expression hosts produce CDH of superior quality and uniformity compared to P. pastoris.


Asunto(s)
Aspergillus niger/genética , Deshidrogenasas de Carbohidratos/genética , Deshidrogenasas de Carbohidratos/metabolismo , Escherichia coli/genética , Expresión Génica , Trichoderma/genética , Aspergillus niger/enzimología , Deshidrogenasas de Carbohidratos/aislamiento & purificación , Catálisis , Medios de Cultivo/química , Estabilidad de Enzimas , Escherichia coli/enzimología , Glicosilación , Cinética , Pichia/enzimología , Pichia/genética , Proteínas Recombinantes/metabolismo , Sordariales/enzimología , Temperatura , Trichoderma/enzimología
14.
Appl Environ Microbiol ; 82(16): 4867-75, 2016 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-27260365

RESUMEN

UNLABELLED: The genome of the white rot fungus Pycnoporus cinnabarinus includes a large number of genes encoding enzymes implicated in lignin degradation. Among these, three genes are predicted to encode glyoxal oxidase, an enzyme previously isolated from Phanerochaete chrysosporium The glyoxal oxidase of P. chrysosporium is physiologically coupled to lignin-oxidizing peroxidases via generation of extracellular H2O2 and utilizes an array of aldehydes and α-hydroxycarbonyls as the substrates. Two of the predicted glyoxal oxidases of P. cinnabarinus, GLOX1 (PciGLOX1) and GLOX2 (PciGLOX2), were heterologously produced in Aspergillus niger strain D15#26 (pyrG negative) and purified using immobilized metal ion affinity chromatography, yielding 59 and 5 mg of protein for PciGLOX1 and PciGLOX2, respectively. Both proteins were approximately 60 kDa in size and N-glycosylated. The optimum temperature for the activity of these enzymes was 50°C, and the optimum pH was 6. The enzymes retained most of their activity after incubation at 50°C for 4 h. The highest relative activity and the highest catalytic efficiency of both enzymes occurred with glyoxylic acid as the substrate. The two P. cinnabarinus enzymes generally exhibited similar substrate preferences, but PciGLOX2 showed a broader substrate specificity and was significantly more active on 3-phenylpropionaldehyde. IMPORTANCE: This study addresses the poorly understood role of how fungal peroxidases obtain an in situ supply of hydrogen peroxide to enable them to oxidize a variety of organic and inorganic compounds. This cooperative activity is intrinsic in the living organism to control the amount of toxic H2O2 in its environment, thus providing a feed-on-demand scenario, and can be used biotechnologically to supply a cheap source of peroxide for the peroxidase reaction. The secretion of multiple glyoxal oxidases by filamentous fungi as part of a lignocellulolytic mechanism suggests a controlled system, especially as these enzymes utilize fungal metabolites as the substrates. Two glyoxal oxidases have been isolated and characterized to date, and the differentiation of the substrate specificity of the two enzymes produced by Pycnoporus cinnabarinus illustrates the alternative mechanisms existing in a single fungus, together with the utilization of these enzymes to prepare platform chemicals for industry.


Asunto(s)
Oxidorreductasas de Alcohol/genética , Proteínas Fúngicas/genética , Pycnoporus/enzimología , Pycnoporus/genética , Oxidorreductasas de Alcohol/química , Oxidorreductasas de Alcohol/metabolismo , Secuencia de Aminoácidos , Aspergillus niger/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Organismos Modificados Genéticamente/metabolismo , Oxidación-Reducción , Filogenia , Alineación de Secuencia , Especificidad por Sustrato
15.
Appl Environ Microbiol ; 82(8): 2411-2423, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26873317

RESUMEN

Auxiliary activities family 3 subfamily 2 (AA3_2) from the CAZy database comprises various functions related to ligninolytic enzymes, such as fungal aryl alcohol oxidases (AAO) and glucose oxidases, both of which are flavoenzymes. The recent study of the Pycnoporus cinnabarinus CIRM BRFM 137 genome combined with its secretome revealed that four AA3_2 enzymes are secreted during biomass degradation. One of these AA3_2 enzymes, scf184803.g17, has recently been produced heterologously in Aspergillus niger Based on the enzyme's activity and specificity, it was assigned to the glucose dehydrogenases (PcinnabarinusGDH [PcGDH]). Here, we analyze the distribution of the other three AA3_2 enzymes (scf185002.g8, scf184611.g7, and scf184746.g13) to assess their putative functions. These proteins showed the highest homology with aryl alcohol oxidase from Pleurotus eryngii Biochemical characterization demonstrated that they were also flavoenzymes harboring flavin adenine dinucleotide (FAD) as a cofactor and able to oxidize a wide variety of phenolic and nonphenolic aryl alcohols and one aliphatic polyunsaturated primary alcohol. Though presenting homology with fungal AAOs, these enzymes exhibited greater efficiency in reducing electron acceptors (quinones and one artificial acceptor) than molecular oxygen and so were defined as aryl-alcohol:quinone oxidoreductases (AAQOs) with two enzymes possessing residual oxidase activity (PcAAQO2 and PcAAQO3). Structural comparison of PcAAQO homology models with P. eryngii AAO demonstrated a wider substrate access channel connecting the active-site cavity to the solvent, explaining the absence of activity with molecular oxygen. Finally, the ability of PcAAQOs to reduce radical intermediates generated by laccase from P. cinnabarinus was demonstrated, shedding light on the ligninolytic system of this fungus.


Asunto(s)
Oxidorreductasas de Alcohol/metabolismo , Lignina/metabolismo , Pycnoporus/enzimología , Quinonas/metabolismo , Oxidorreductasas de Alcohol/química , Oxidorreductasas de Alcohol/genética , Biomasa , Biotransformación , Coenzimas/metabolismo , Flavina-Adenina Dinucleótido/metabolismo , Flavoproteínas/química , Flavoproteínas/genética , Flavoproteínas/metabolismo , Modelos Moleculares , Conformación Proteica , Homología de Secuencia de Aminoácido , Especificidad por Sustrato
16.
Annu Rev Microbiol ; 65: 57-69, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21639784

RESUMEN

For more than a century, filamentous fungi have been used for the production of a wide variety of endogenous enzymes of industrial interest. More recently, with the use of genetic engineering tools developed for these organisms, this use has expanded for the production of nonnative heterologous proteins. In this review, an overview is given of examples describing the production of a special class of these proteins, namely chimeric proteins. The production of two types of chimeric proteins have been explored: (a) proteins grafted for a specific substrate-binding domain and (b) fusion proteins containing two separate enzymatic activities. Various application areas for the use of these chimeric proteins are described.


Asunto(s)
Proteínas Fúngicas/metabolismo , Hongos/enzimología , Proteínas Recombinantes/metabolismo , Biotecnología , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Hongos/química , Hongos/genética , Ingeniería Genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética
17.
BMC Genomics ; 15: 486, 2014 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-24942338

RESUMEN

BACKGROUND: Saprophytic filamentous fungi are ubiquitous micro-organisms that play an essential role in photosynthetic carbon recycling. The wood-decayer Pycnoporus cinnabarinus is a model fungus for the study of plant cell wall decomposition and is used for a number of applications in green and white biotechnology. RESULTS: The 33.6 megabase genome of P. cinnabarinus was sequenced and assembled, and the 10,442 predicted genes were functionally annotated using a phylogenomic procedure. In-depth analyses were carried out for the numerous enzyme families involved in lignocellulosic biomass breakdown, for protein secretion and glycosylation pathways, and for mating type. The P. cinnabarinus genome sequence revealed a consistent repertoire of genes shared with wood-decaying basidiomycetes. P. cinnabarinus is thus fully equipped with the classical families involved in cellulose and hemicellulose degradation, whereas its pectinolytic repertoire appears relatively limited. In addition, P. cinnabarinus possesses a complete versatile enzymatic arsenal for lignin breakdown. We identified several genes encoding members of the three ligninolytic peroxidase types, namely lignin peroxidase, manganese peroxidase and versatile peroxidase. Comparative genome analyses were performed in fungi displaying different nutritional strategies (white-rot and brown-rot modes of decay). P. cinnabarinus presents a typical distribution of all the specific families found in the white-rot life style. Growth profiling of P. cinnabarinus was performed on 35 carbon sources including simple and complex substrates to study substrate utilization and preferences. P. cinnabarinus grew faster on crude plant substrates than on pure, mono- or polysaccharide substrates. Finally, proteomic analyses were conducted from liquid and solid-state fermentation to analyze the composition of the secretomes corresponding to growth on different substrates. The distribution of lignocellulolytic enzymes in the secretomes was strongly dependent on growth conditions, especially for lytic polysaccharide mono-oxygenases. CONCLUSIONS: With its available genome sequence, P. cinnabarinus is now an outstanding model system for the study of the enzyme machinery involved in the degradation or transformation of lignocellulosic biomass.


Asunto(s)
Lignina/metabolismo , Pycnoporus/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Sitios Genéticos , Genoma Fúngico , Glicosilación , Anotación de Secuencia Molecular , Peroxidasas/genética , Procesamiento Proteico-Postraduccional , Proteoma/genética , Proteoma/metabolismo , Pycnoporus/enzimología , Análisis de Secuencia de ADN , Madera/microbiología
18.
Appl Microbiol Biotechnol ; 98(24): 10105-18, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24965558

RESUMEN

Data on glucose dehydrogenases (GDHs) are scarce and availability of these enzymes for application purposes is limited. This paper describes a new GDH from the fungus Pycnoporus cinnabarinus CIRM BRFM 137 that is the first reported GDH from a white-rot fungus belonging to the Basidiomycota. The enzyme was recombinantly produced in Aspergillus niger, a well-known fungal host producing an array of homologous or heterologous enzymes for industrial applications. The full-length gene that encodes GDH from P. cinnabarinus (PcGDH) consists of 2,425 bp and codes for a deduced protein of 620 amino acids with a calculated molecular mass of 62.5 kDa. The corresponding complementary DNA was cloned and placed under the control of the strong and constitutive glyceraldehyde-3-phosphate dehydrogenase promoter. The signal peptide of the glucoamylase prepro sequence of A. niger was used to target PcGDH secretion into the culture medium, achieving a yield of 640 mg L(-1), which is tenfold higher than any other reported value. The recombinant PcGDH was purified twofold to homogeneity in a one-step procedure with a 41 % recovery using a Ni Sepharose column. The identity of the recombinant protein was further confirmed by immunodetection using western blot analysis and N-terminal sequencing. The molecular mass of the native PcGDH was 130 kDa, suggesting a homodimeric form. Optimal pH and temperature were found to be similar (5.5 and 60 °C, respectively) to those determined for the previously characterized GDH, i.e., from Glomerella cingulata. However PcGDH exhibits a lower catalytic efficiency of 67 M(-1) s(-1) toward glucose. This substrate is by far the preferred substrate, which constitutes an advantage over other sugar oxidases in the case of blood glucose monitoring. The substrate-binding domain of PcGDH turns out to be conserved as compared to other glucose-methanol-choline (GMCs) oxidoreductases. In addition, the ability of PcGDH to reduce oxidized quinones or radical intermediates was clearly demonstrated, which raises prospects for applying this enzyme to detoxify toxic compounds formed during the degradation of lignin.


Asunto(s)
Fenómenos Químicos , Glucosa 1-Deshidrogenasa/aislamiento & purificación , Glucosa 1-Deshidrogenasa/metabolismo , Pycnoporus/enzimología , Secuencia de Aminoácidos , Aspergillus niger/genética , Aspergillus niger/metabolismo , Cromatografía de Afinidad , ADN de Hongos/química , ADN de Hongos/genética , Estabilidad de Enzimas , Expresión Génica , Glucosa/metabolismo , Glucosa 1-Deshidrogenasa/química , Glucosa 1-Deshidrogenasa/genética , Concentración de Iones de Hidrógeno , Modelos Moleculares , Datos de Secuencia Molecular , Peso Molecular , Oxidación-Reducción , Multimerización de Proteína , Quinonas/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Análisis de Secuencia de ADN , Especificidad por Sustrato , Temperatura
19.
Appl Microbiol Biotechnol ; 98(17): 7457-69, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24695830

RESUMEN

The genome of the coprophilous fungus Podospora anserina harbors a large and highly diverse set of putative lignocellulose-acting enzymes. In this study, we investigated the enzymatic diversity of a broad range of P. anserina secretomes induced by various carbon sources (dextrin, glucose, xylose, arabinose, lactose, cellobiose, saccharose, Avicel, Solka-floc, birchwood xylan, wheat straw, maize bran, and sugar beet pulp (SBP)). Compared with the Trichoderma reesei enzymatic cocktail, P. anserina secretomes displayed similar cellulase, xylanase, and pectinase activities and greater arabinofuranosidase, arabinanase, and galactanase activities. The secretomes were further tested for their capacity to supplement a T. reesei cocktail. Four of them improved significantly the saccharification yield of steam-exploded wheat straw up to 48 %. Fine analysis of the P. anserina secretomes produced with Avicel and SBP using proteomics revealed a large array of CAZymes with a high number of GH6 and GH7 cellulases, CE1 esterases, GH43 arabinofuranosidases, and AA1 laccase-like multicopper oxidases. Moreover, a preponderance of AA9 (formerly GH61) was exclusively produced in the SBP condition. This study brings additional insights into the P. anserina enzymatic machinery and will facilitate the selection of promising targets for the development of future biorefineries.


Asunto(s)
Hidrolasas/metabolismo , Lignina/metabolismo , Podospora/enzimología , Tallos de la Planta/metabolismo , Podospora/química , Proteoma/análisis , Triticum/metabolismo
20.
Appl Microbiol Biotechnol ; 98(11): 4949-61, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24463760

RESUMEN

Since the first report on a laccase, there has been a notable development in the interest towards this class of enzymes, highlighted from the number of scientific papers and patents about them. At the same time, interest in exploiting laccases-mainly high redox potential-for various functions has been growing exponentially over the last 10 years. Despite decades of work, the molecular determinants of the redox potential are far to be fully understood. For this reason, interest in tuning laccase redox potential to provide more efficient catalysts has been growing since the last years. The work herein described takes advantage of the filamentous fungus Aspergillus niger as host for the heterologous production of the high redox potential laccase POXA1b from Pleurotus ostreatus and of one of its in vitro selected variants (1H6C). The system herein developed allowed to obtain a production level of 35,000 U/L (583.3 µkat/L) for POXA1b and 60,000 U/L (1,000 µkat/L) for 1H6C, corresponding to 13 and 20 mg/L for POXA1b and 1H6C, respectively. The characterised proteins exhibit very similar characteristics, with some exceptions regarding catalytic behaviour, stability and spectro-electrochemical properties. Remarkably, the 1H6C variant shows a higher redox potential with respect to POXA1b. Furthermore, the spectro-electrochemical results obtained for 1H6C make it tempting to claim that we spectro-electrochemically determined the redox potential of the 1H6C T2 site, which has not been studied in any detail by spectro-electrochemistry yet.


Asunto(s)
Lacasa/genética , Lacasa/metabolismo , Mutación , Pleurotus/enzimología , Aspergillus niger/genética , Aspergillus niger/metabolismo , Técnicas Electroquímicas , Estabilidad de Enzimas , Concentración de Iones de Hidrógeno , Lacasa/química , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Oxidación-Reducción , Pleurotus/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Análisis Espectral , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA