Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
J Immunol ; 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38912868

RESUMEN

Neutrophils play important roles in inflammatory airway diseases. In this study, we assessed whether apolipoprotein A-I modifies neutrophil heterogeneity as part of the mechanism by which it attenuates acute airway inflammation. Neutrophilic airway inflammation was induced by daily intranasal administration of LPS plus house dust mite (LPS+HDM) to Apoa1-/- and Apoa1+/+ mice for 3 d. Single-cell RNA sequencing was performed on cells recovered from bronchoalveolar lavage fluid on day 4. Unsupervised profiling identified 10 clusters of neutrophils in bronchoalveolar lavage fluid from Apoa1-/- and Apoa1+/+ mice. LPS+HDM-challenged Apoa1-/- mice had an increased proportion of the Neu4 neutrophil cluster that expressed S100a8, S100a9, and Mmp8 and had high maturation, aggregation, and TLR4 binding scores. There was also an increase in the Neu6 cluster of immature neutrophils, whereas neutrophil clusters expressing IFN-stimulated genes were decreased. An unsupervised trajectory analysis showed that Neu4 represented a distinct lineage in Apoa1-/- mice. LPS+HDM-challenged Apoa1-/- mice also had an increased proportion of recruited airspace macrophages, which was associated with a reciprocal reduction in resident airspace macrophages. Increased expression of a common set of proinflammatory genes, S100a8, S100a9, and Lcn2, was present in all neutrophils and airspace macrophages from LPS+HDM-challenged Apoa1-/- mice. These findings show that Apoa1-/- mice have increases in specific neutrophil and macrophage clusters in the lung during acute inflammation mediated by LPS+HDM, as well as enhanced expression of a common set of proinflammatory genes. This suggests that modifications in neutrophil and macrophage heterogeneity contribute to the mechanism by which apolipoprotein A-I attenuates acute airway inflammation.

2.
PLoS Pathog ; 19(7): e1011527, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37523399

RESUMEN

Members of the spotted fever group rickettsia express four large, surface-exposed autotransporters, at least one of which is a known virulence determinant. Autotransporter translocation to the bacterial outer surface, also known as type V secretion, involves formation of a ß-barrel autotransporter domain in the periplasm that inserts into the outer membrane to form a pore through which the N-terminal passenger domain is passed and exposed on the outer surface. Two major surface antigens of Rickettsia rickettsii, are known to be surface exposed and the passenger domain cleaved from the autotransporter domain. A highly passaged strain of R. rickettsii, Iowa, fails to cleave these autotransporters and is avirulent. We have identified a putative peptidase, truncated in the Iowa strain, that when reconstituted into Iowa restores appropriate processing of the autotransporters as well as restoring a modest degree of virulence.


Asunto(s)
Rickettsia rickettsii , Sistemas de Secreción Tipo V , Rickettsia rickettsii/genética , Sistemas de Secreción Tipo V/genética , Péptido Hidrolasas , Proteínas de la Membrana Bacteriana Externa , Factores de Virulencia
3.
Am J Respir Crit Care Med ; 209(6): 727-737, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38117233

RESUMEN

Rationale: Plasma cell-free DNA levels correlate with disease severity in many conditions. Pretransplant cell-free DNA may risk stratify lung transplant candidates for post-transplant complications. Objectives: To evaluate if pretransplant cell-free DNA levels and tissue sources identify patients at high risk of primary graft dysfunction and other pre- and post-transplant outcomes. Methods: This multicenter, prospective cohort study recruited 186 lung transplant candidates. Pretransplant plasma samples were collected to measure cell-free DNA. Bisulfite sequencing was performed to identify the tissue sources of cell-free DNA. Multivariable regression models determined the association between cell-free DNA levels and the primary outcome of primary graft dysfunction and other transplant outcomes, including Lung Allocation Score, chronic lung allograft dysfunction, and death. Measurements and Main Results: Transplant candidates had twofold greater cell-free DNA levels than healthy control patients (median [interquartile range], 23.7 ng/ml [15.1-35.6] vs. 12.9 ng/ml [9.9-18.4]; P < 0.0001), primarily originating from inflammatory innate immune cells. Cell-free DNA levels and tissue sources differed by native lung disease category and correlated with the Lung Allocation Score (P < 0.001). High pretransplant cell-free DNA increased the risk of primary graft dysfunction (odds ratio, 1.60; 95% confidence interval [CI], 1.09-2.46; P = 0.0220), and death (hazard ratio, 1.43; 95% CI, 1.07-1.92; P = 0.0171) but not chronic lung allograft dysfunction (hazard ratio, 1.37; 95% CI, 0.97-1.94; P = 0.0767). Conclusions: Lung transplant candidates demonstrate a heightened degree of tissue injury with elevated cell-free DNA, primarily originating from innate immune cells. Pretransplant plasma cell-free DNA levels predict post-transplant complications.


Asunto(s)
Ácidos Nucleicos Libres de Células , Trasplante de Pulmón , Disfunción Primaria del Injerto , Humanos , Estudios Prospectivos , Estudios Retrospectivos , Gravedad del Paciente
4.
PLoS Pathog ; 18(11): e1010502, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36318581

RESUMEN

The atypical IκB family member Bcl3 associates with p50/NF-κB1 or p52/NF-κB2 homodimers in the nucleus, and positively or negatively modulates transcription in a context-dependent manner. In mice lacking Bcl3 globally or specifically in CD11c+ cells, we previously reported that Toxoplasma gondii infection is uniformly fatal and is associated with an impaired Th1 immune response. Since Bcl3 expression in dendritic cells (DC) is pivotal for antigen presentation and since classical DCs (cDC) are major antigen presenting cells, we investigated the role of Bcl3 specifically in cDCs in vivo by crossing Zbtb46 cre mice with Bcl3flx/flx mice. Bcl3flx/flx Zbtb46 cre mice were as susceptible to lethal T. gondii infection as total Bcl3-/- mice and generated poor Th1 immune responses. Consistent with this, compared to wildtype controls, splenic Xcr1+ Bcl3-deficient cDC1 cells were defective in presenting Ova antigen to OT-I cells both for Ova257-264 peptide and after infection with Ovalbumin-expressing T. gondii. Moreover, splenic CD4+ and CD8+ T cells from infected Bcl3flx/flx Zbtb46 cre mice exhibited decreased T. gondii-specific priming as revealed by both reduced cytokine production and reduced T. gondii-specific tetramer staining. In vitro differentiation of cDCs from bone marrow progenitors also revealed Bcl3-dependent cDC-specific antigen-presentation activity. Consistent with this, splenocyte single cell RNA seq (scRNAseq) in infected mice revealed Bcl3-dependent expression of genes involved in antigen processing in cDCs. We also identified by scRNAseq, a unique Bcl3-dependent hybrid subpopulation of Zbtb46+ DCs co-expressing the monocyte/macrophage transcription factor Lysozyme M. This subpopulation exhibited Bcl3-dependent expansion after infection. Likewise, by flow cytometry we identified two T. gondii-induced hybrid subpopulations of Bcl3-dependent cDC1 and cDC2 cells both expressing monocyte/macrophage markers, designated as icDC1 and icDC2. Together, our results indicate that Bcl3 in classical DCs is a major determinant of protective T cell responses and survival in T. gondii-infection.


Asunto(s)
Proteínas del Linfoma 3 de Células B , Toxoplasma , Toxoplasmosis , Animales , Ratones , Linfocitos T CD8-positivos , Células Dendríticas , Ratones Endogámicos C57BL , FN-kappa B/metabolismo , Toxoplasma/metabolismo , Toxoplasmosis/metabolismo , Proteínas del Linfoma 3 de Células B/metabolismo
5.
Theor Appl Genet ; 129(3): 453-68, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26649868

RESUMEN

KEY MESSAGE: Discovery of new germplasm sources and identification of haplotypes for the durable Soybean mosaic virus resistance gene, Rsv 4, provide novel resources for map-based cloning and genetic improvement efforts in soybean. The Soybean mosaic virus (SMV) resistance locus Rsv4 is of interest because it provides a durable type of resistance in soybean [Glycine max (L.) Merr.]. To better understand its molecular basis, we used a population of 309 BC3F2 individuals to fine-map Rsv4 to a ~120 kb interval and leveraged this genetic information in a second study to identify accessions 'Haman' and 'Ilpumgeomjeong' as new sources of Rsv4. These two accessions along with three other Rsv4 and 14 rsv4 accessions were used to examine the patterns of nucleotide diversity at the Rsv4 region based on high-depth resequencing data. Through a targeted association analysis of these 19 accessions within the ~120 kb interval, a cluster of four intergenic single-nucleotide polymorphisms (SNPs) was found to perfectly associate with SMV resistance. Interestingly, this ~120 kb interval did not contain any genes similar to previously characterized dominant disease resistance genes. Therefore, a haplotype analysis was used to further resolve the association signal to a ~94 kb region, which also resulted in the identification of at least two Rsv4 haplotypes. A haplotype phylogenetic analysis of this region suggests that the Rsv4 locus in G. max is recently introgressed from G. soja. This integrated study provides a strong foundation for efforts focused on the cloning of this durable virus resistance gene and marker-assisted selection of Rsv4-mediated SMV resistance in soybean breeding programs.


Asunto(s)
Resistencia a la Enfermedad/genética , Genes de Plantas , Glycine max/genética , Virus del Mosaico/patogenicidad , Enfermedades de las Plantas/genética , Alelos , Mapeo Cromosómico , ADN de Plantas/genética , Haplotipos , Desequilibrio de Ligamiento , Filogenia , Enfermedades de las Plantas/virología , Polimorfismo de Nucleótido Simple , Análisis de Secuencia de ADN , Glycine max/virología
6.
BMC Genomics ; 16: 1074, 2015 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-26678836

RESUMEN

BACKGROUND: Low phytic acid (lpa) crops are potentially eco-friendly alternative to conventional normal phytic acid (PA) crops, improving mineral bioavailability in monogastric animals as well as decreasing phosphate pollution. The lpa crops developed to date carry mutations that are directly or indirectly associated with PA biosynthesis and accumulation during seed development. These lpa crops typically exhibit altered carbohydrate profiles, increased free phosphate, and lower seedling emergence, the latter of which reduces overall crop yield, hence limiting their large-scale cultivation. Improving lpa crop yield requires an understanding of the downstream effects of the lpa genotype on seed development. Towards that end, we present a comprehensive comparison of gene-expression profiles between lpa and normal PA soybean lines (Glycine max) at five stages of seed development using RNA-Seq approaches. The lpa line used in this study carries single point mutations in a myo-inositol phosphate synthase gene along with two multidrug-resistance protein ABC transporter genes. RESULTS: RNA sequencing data of lpa and normal PA soybean lines from five seed-developmental stages (total of 30 libraries) were used for differential expression and functional enrichment analyses. A total of 4235 differentially expressed genes, including 512-transcription factor genes were identified. Eighteen biological processes such as apoptosis, glucan metabolism, cellular transport, photosynthesis and 9 transcription factor families including WRKY, CAMTA3 and SNF2 were enriched during seed development. Genes associated with apoptosis, glucan metabolism, and cellular transport showed enhanced expression in early stages of lpa seed development, while those associated with photosynthesis showed decreased expression in late developmental stages. The results suggest that lpa-causing mutations play a role in inducing and suppressing plant defense responses during early and late stages of seed development, respectively. CONCLUSIONS: This study provides a global perspective of transcriptomal changes during soybean seed development in an lpa mutant. The mutants are characterized by earlier expression of genes associated with cell wall biosynthesis and a decrease in photosynthetic genes in late stages. The biological processes and transcription factors identified in this study are signatures of lpa-causing mutations.


Asunto(s)
Perfilación de la Expresión Génica , Estudio de Asociación del Genoma Completo , Glycine max/efectos de los fármacos , Glycine max/genética , Ácido Fítico/farmacología , Semillas/efectos de los fármacos , Semillas/genética , Transcriptoma , Transporte Biológico , Análisis por Conglomerados , Biología Computacional/métodos , Resistencia a la Enfermedad/genética , Regulación de la Expresión Génica de las Plantas , Ontología de Genes , Genes de Plantas , Glucanos/metabolismo , Anotación de Secuencia Molecular , Mutación , Fotosíntesis/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
7.
bioRxiv ; 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38464076

RESUMEN

The transplantation of gene-modified autologous hematopoietic stem and progenitor cells (HSPCs) offers a promising therapeutic approach for hematological and immunological disorders. However, this strategy is often limited by the toxicities associated with traditional conditioning regimens. Antibody-based conditioning strategies targeting cKIT and CD45 antigens have shown potential in mitigating these toxicities, but their long-term safety and efficacy in clinical settings require further validation. In this study, we investigate the thrombopoietin (TPO) receptor, cMPL, as a novel target for conditioning protocols. We demonstrate that high surface expression of cMPL is a hallmark feature of long-term repopulating hematopoietic stem cells (LT-HSCs) within the adult human CD34+ HSPC subset. Targeting the cMPL receptor facilitates the separation of human LT-HSCs from mature progenitors, a delineation not achievable with cKIT. Leveraging this finding, we developed a cMPL-targeting immunotoxin, demonstrating its ability to selectively deplete host cMPLhigh LT-HSCs with a favorable safety profile and rapid clearance within 24 hours post-infusion in rhesus macaques. These findings present significant potential to advance our understanding of human hematopoiesis and enhance the therapeutic outcomes of ex vivo autologous HSPC gene therapies.

8.
bioRxiv ; 2023 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-37425704

RESUMEN

Granulocyte colony stimulating factor (G-CSF) is commonly used as adjunct treatment to hasten recovery from neutropenia following chemotherapy and autologous transplantation of hematopoietic stem and progenitor cells (HSPCs) for malignant disorders. However, the utility of G-CSF administration after ex vivo gene therapy procedures targeting human HSPCs has not been thoroughly evaluated. Here, we provide evidence that post-transplant administration of G-CSF impedes engraftment of CRISPR-Cas9 gene edited human HSPCs in xenograft models. G-CSF acts by exacerbating the p53-mediated DNA damage response triggered by Cas9- mediated DNA double-stranded breaks. Transient p53 inhibition in culture attenuates the negative impact of G-CSF on gene edited HSPC function. In contrast, post-transplant administration of G-CSF does not impair the repopulating properties of unmanipulated human HSPCs or HSPCs genetically engineered by transduction with lentiviral vectors. The potential for post-transplant G-CSF administration to aggravate HSPC toxicity associated with CRISPR-Cas9 gene editing should be considered in the design of ex vivo autologous HSPC gene editing clinical trials.

9.
iScience ; 26(11): 108160, 2023 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-38026221

RESUMEN

Chronic graft-versus-host disease (cGvHD) is a devastating complication of hematopoietic stem cell transplantation (HSCT). Effective early detection may improve the outcome of cGvHD. The potential utility of circulating cell-free DNA (cfDNA), a sensitive marker for tissue injury, in HSCT and cGvHD remains to be established. Here, cfDNA of prospectively collected plasma samples from HSCT recipients (including both cGvHD and non-cGvHD) and healthy control (HC) subjects were evaluated. Deconvolution methods utilizing tissue-specific DNA methylation signatures were used to determine cfDNA tissue-of-origin. cfDNA levels were significantly higher in HSCT recipients than HC and significantly higher in cGvHD than non-cGvHD. cGvHD was characterized by a high level of cfDNA from innate immune cells, heart, and liver. Non-hematologic tissue-derived cfDNA was significantly higher in cGvHD than non-cGvHD. cfDNA temporal dynamics and tissue-of-origin composition have distinctive features in patients with cGvHD, supporting further exploration of the utility of cfDNA in the study of cGvHD.

10.
J Clin Invest ; 133(21)2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37651206

RESUMEN

Multisystem inflammatory syndrome in children (MIS-C) is a rare but life-threatening hyperinflammatory condition induced by infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that causes pediatric COVID-19 (pCOVID-19). The relationship of the systemic tissue injury to the pathophysiology of MIS-C is poorly defined. We leveraged the high sensitivity of epigenomics analyses of plasma cell-free DNA (cfDNA) and plasma cytokine measurements to identify the spectrum of tissue injury and glean mechanistic insights. Compared with pediatric healthy controls (pHCs) and patients with pCOVID-19, patients with MIS-C had higher levels of cfDNA primarily derived from innate immune cells, megakaryocyte-erythroid precursor cells, and nonhematopoietic tissues such as hepatocytes, cardiac myocytes, and kidney cells. Nonhematopoietic tissue cfDNA levels demonstrated significant interindividual variability, consistent with the heterogenous clinical presentation of MIS-C. In contrast, adaptive immune cell-derived cfDNA levels were comparable in MIS-C and pCOVID-19 patients. Indeed, the cfDNA of innate immune cells in patients with MIS-C correlated with the levels of innate immune inflammatory cytokines and nonhematopoietic tissue-derived cfDNA, suggesting a primarily innate immunity-mediated response to account for the multisystem pathology. These data provide insight into the pathogenesis of MIS-C and support the value of cfDNA as a sensitive biomarker to map tissue injury in MIS-C and likely other multiorgan inflammatory conditions.


Asunto(s)
COVID-19 , Ácidos Nucleicos Libres de Células , Humanos , Niño , COVID-19/genética , SARS-CoV-2 , Ácidos Nucleicos Libres de Células/genética , Citocinas
11.
PLoS One ; 15(4): e0231658, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32315334

RESUMEN

Resistance genes are an effective means for disease control in plants. They predominantly function by inducing a hypersensitive reaction, which results in localized cell death restricting pathogen spread. Some resistance genes elicit an atypical response, termed extreme resistance, where resistance is not associated with a hypersensitive reaction and its standard defense responses. Unlike hypersensitive reaction, the molecular regulatory mechanism(s) underlying extreme resistance is largely unexplored. One of the few known, naturally occurring, instances of extreme resistance is resistance derived from the soybean Rsv3 gene, which confers resistance against the most virulent Soybean mosaic virus strains. To discern the regulatory mechanism underlying Rsv3-mediated extreme resistance, we generated a gene regulatory network using transcriptomic data from time course comparisons of Soybean mosaic virus-G7-inoculated resistant (L29, Rsv3-genotype) and susceptible (Williams82, rsv3-genotype) soybean cultivars. Our results show Rsv3 begins mounting a defense by 6 hpi via a complex phytohormone network, where abscisic acid, cytokinin, jasmonic acid, and salicylic acid pathways are suppressed. We identified putative regulatory interactions between transcription factors and genes in phytohormone regulatory pathways, which is consistent with the demonstrated involvement of these pathways in Rsv3-mediated resistance. One such transcription factor identified as a putative transcriptional regulator was MYC2 encoded by Glyma.07G051500. Known as a master regulator of abscisic acid and jasmonic acid signaling, MYC2 specifically recognizes the G-box motif ("CACGTG"), which was significantly enriched in our data among differentially expressed genes implicated in abscisic acid- and jasmonic acid-related activities. This suggests an important role for Glyma.07G051500 in abscisic acid- and jasmonic acid-derived defense signaling in Rsv3. Resultantly, the findings from our network offer insights into genes and biological pathways underlying the molecular defense mechanism of Rsv3-mediated extreme resistance against Soybean mosaic virus. The computational pipeline used to reconstruct the gene regulatory network in this study is freely available at https://github.com/LiLabAtVT/rsv3-network.


Asunto(s)
Resistencia a la Enfermedad/genética , Redes Reguladoras de Genes/genética , Glycine max/genética , Potyvirus/genética , Ácido Abscísico/metabolismo , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Genotipo , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/virología , Potyvirus/patogenicidad , Glycine max/crecimiento & desarrollo , Glycine max/virología , Transcriptoma/genética
12.
PLoS One ; 15(6): e0235120, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32584851

RESUMEN

Two low-phytate soybean (Glycine max (L.) Merr.) mutant lines- V99-5089 (mips mutation on chromosome 11) and CX-1834 (mrp-l and mrp-n mutations on chromosomes 19 and 3, respectively) have proven to be valuable resources for breeding of low-phytate, high-sucrose, and low-raffinosaccharide soybeans, traits that are highly desirable from a nutritional and environmental standpoint. A recombinant inbred population derived from the cross CX1834 x V99-5089 provides an opportunity to study the effect of different combinations of these three mutations on soybean phytate and oligosaccharides levels. Of the 173 recombinant inbred lines tested, 163 lines were homozygous for various combinations of MIPS and two MRP loci alleles. These individuals were grouped into eight genotypic classes based on the combination of SNP alleles at the three mutant loci. The two genotypic classes that were homozygous mrp-l/mrp-n and either homozygous wild-type or mutant at the mips locus (MIPS/mrp-l/mrp-n or mips/mrp-l/mrp-n) displayed relatively similar ~55% reductions in seed phytate, 6.94 mg g -1 and 6.70 mg g-1 respectively, as compared with 15.2 mg g-1 in the wild-type MIPS/MRP-L/MRP-N seed. Therefore, in the presence of the double mutant mrp-l/mrp-n, the mips mutation did not cause a substantially greater decrease in seed phytate level. However, the nutritionally-desirable high-sucrose/low-stachyose/low-raffinose seed phenotype originally observed in soybeans homozygous for the mips allele was reversed in the presence of mrp-l/mrp-n mutations: homozygous mips/mrp-l/mrp-n seed displayed low-sucrose (7.70%), high-stachyose (4.18%), and the highest observed raffinose (0.94%) contents per gram of dry seed. Perhaps the block in phytic acid transport from its cytoplasmic synthesis site to its storage site, conditioned by mrp-l/mrp-n, alters myo-inositol flux in mips seeds in a way that restores to wild-type levels the mips conditioned reductions in raffinosaccharides. Overall this study determined the combinatorial effects of three low phytic acid causing mutations on regulation of seed phytate and oligosaccharides in soybean.


Asunto(s)
Sitios Genéticos , Glycine max , Mutación , Oligosacáridos , Ácido Fítico/metabolismo , Semillas , Oligosacáridos/genética , Oligosacáridos/metabolismo , Semillas/genética , Semillas/metabolismo , Glycine max/genética , Glycine max/metabolismo
13.
Water Res ; 183: 116050, 2020 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-32629181

RESUMEN

Recapture and recycling of irrigation water is often required to meet enormous water demands at horticultural nurseries. We tested four water types associated with a recycled irrigation system at a commercial container nursery in southern California for presence of oomycete plant pathogens from July 2015 to December 2017. These water types included: the main source of water originating from a reservoir, retention water from an on-site collection pond, irrigation water received by different growing areas within the nursery, and irrigation runoff captured in polyethylene sheet-lined runoff channels. The genera Phytophthora, Pythium, and Phytopythium together contributed more than 85% of the total oomycete population detected in the recycled irrigation system. The Phytophthora and Pythium genera were represented by member species from nine (1-4, 6-10) and eight (A, B, D-F, H-J) different sub-generic clades, respectively. Incoming water sourced from the reservoir was found to harbor known plant pathogens such as Phytophthora citricola-complex, P. capsici-cluster, P. tropicalis,P citrophthora-cluster, P. nemorosa-cluster, P. riparia, P. cryptogea-complex, P. parsiana-cluster, P. sp. nov. aff. kernoviae, Pythium dissotocum-complex, Py. oligandrum-cluster, Py. irregulare, and Phytopythium litorale. Runoff water showed the highest oomycete species richness and frequency of detection with both filtration and leaf baiting methods. In addition to plant pathogens, oomycete fish pathogens such as Aphanomyces laevis, Pythium chondricola-complex, Pythium flevoense-complex, and Saprolegnia diclina-complex were also detected in greater abundance in the recycled irrigation water. The oomycete species richness in the runoff water was correlated with several environmental parameters such as soil temperature. Greater oomycete richness in incoming water was associated with higher soil temperatures, whereas richness in runoff declines with increasing soil temperature, likely suggesting connections to weather-dependent nursery operations.


Asunto(s)
Phytophthora , Pythium , California , Reciclaje , Agua
15.
Front Plant Sci ; 8: 2029, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29250090

RESUMEN

A dominant loss of function mutation in myo-inositol phosphate synthase (MIPS) gene and recessive loss of function mutations in two multidrug resistant protein type-ABC transporter genes not only reduce the seed phytic acid levels in soybean, but also affect the pathways associated with seed development, ultimately resulting in low emergence. To understand the regulatory mechanisms and identify key genes that intervene in the seed development process in low phytic acid crops, we performed computational inference of gene regulatory networks in low and normal phytic acid soybeans using a time course transcriptomic data and multiple network inference algorithms. We identified a set of putative candidate transcription factors and their regulatory interactions with genes that have functions in myo-inositol biosynthesis, auxin-ABA signaling, and seed dormancy. We evaluated the performance of our unsupervised network inference method by comparing the predicted regulatory network with published regulatory interactions in Arabidopsis. Some contrasting regulatory interactions were observed in low phytic acid mutants compared to non-mutant lines. These findings provide important hypotheses on expression regulation of myo-inositol metabolism and phytohormone signaling in developing low phytic acid soybeans. The computational pipeline used for unsupervised network learning in this study is provided as open source software and is freely available at https://lilabatvt.github.io/LPANetwork/.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA