Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 116
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Transl Med ; 21(1): 908, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-38087354

RESUMEN

BACKGROUND: Chronic itch (chronic pruritus) is a major therapeutic challenge that remains poorly understood despite the extensive recent analysis of human pruriceptors. It is unclear how the peripheral nervous system differentiates the signaling of non-histaminergic itch and pain. METHODS: Here we used psychophysical analysis and microneurography (single nerve fiber recordings) in healthy human volunteers to explore the distinct signaling mechanisms of itch, using the pruritogens ß-alanine, BAM 8-22 and cowhage extract. RESULTS: The mode of application (injection or focal application using inactivated cowhage spicules) influenced the itch/pain ratio in sensations induced by BAM 8-22 and cowhage but not ß-alanine. We found that sensitizing pre-injections of prostaglandin E2 increased the pain component of BAM 8-22 but not the other pruritogens. A-fibers contributed only to itch induced by ß-alanine. TRPV1 and TRPA1 were necessary for itch signaling induced by all three pruritogens. In single-fiber recordings, we found that BAM 8-22 and ß-alanine injection activated nearly all CM-fibers (to different extents) but not CMi-fibers, whereas cowhage extract injection activated only 56% of CM-fibers but also 25% of CMi-fibers. A "slow bursting discharge pattern" was evoked in 25% of CM-fibers by ß-alanine, in 35% by BAM 8-22, but in only 10% by cowhage extract. CONCLUSION: Our results indicate that no labeled line exists for these pruritogens in humans. A combination of different mechanisms, specific for each pruritogen, leads to itching sensations rather than pain. Notably, non-receptor-based mechanisms such as spatial contrast or discharge pattern coding seem to be important processes. These findings will facilitate the discovery of therapeutic targets for chronic pruritus, which are unlikely to be treated effectively by single receptor blockade.


Asunto(s)
Capsaicina , Piel , Humanos , Capsaicina/farmacología , Prurito/inducido químicamente , Dolor , Transducción de Señal , beta-Alanina/efectos adversos
2.
J Peripher Nerv Syst ; 28(2): 202-225, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37029502

RESUMEN

BACKGROUND: Diabetic metabolism causes changes of the chemical milieu including accumulation of reactive carbonyl species, for example, methylglyoxal (MGO). MGO activates chemosensitive TRPA1 on nociceptors, but the contribution to neuronal pathophysiology causing pain and hyperalgesia in diabetic neuropathy is not fully understood. METHODS: We employed single-nerve-fiber recordings in type 2 diabetes patients with (spDN) and without cutaneous pain (DN) and in streptozotocin-diabetic and healthy mice. In mice, we measured Ca++ transients in cultured DRG neurons and stimulated CGRP release from hairy skin. RESULTS: In diabetic patients, we recorded a large proportion of pathologically altered nerve C-fibers (79%). In spDN patients we found a higher percentage (72%) of spontaneously active C-nociceptors than in DN patients (15%). The proportion of spontaneous activity was highest among pathological fibers with mechanoinsensitive fiber properties which are particularly sensitive to MGO in contrast to mechanosensitive fibers. Mouse polymodal nociceptors, in contrast to purely mechanosensitive C-fibers, showed highest prevalence of TRPA1-related chemosensitivity. In diabetic mice about 37% of polymodal nociceptors developed spontaneous activity and exhibited significantly greater MGO responses, indicating sensitized TRPA1 receptors. Low-threshold mechanosensitive Aδ-fibers were vigorously activated by MGO but independently of TRPA1 activation. INTERPRETATION: Our translational findings suggest that TRPA1-expressing C-nociceptors, which in human correspond to mechanoinsensitive and in mice to polymodal nociceptors, are especially vulnerable to develop spontaneous activity. Those two different nociceptor classes might share the functional role as dicarbonyl-sensitive chemosensors and represent the critical nociceptor population that support the development of pain and hyperalgesia in diabetic neuropathy.


Asunto(s)
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Neuropatías Diabéticas , Canales de Potencial de Receptor Transitorio , Humanos , Ratones , Animales , Nociceptores/metabolismo , Hiperalgesia/etiología , Canales de Potencial de Receptor Transitorio/metabolismo , Neuropatías Diabéticas/metabolismo , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/complicaciones , Óxido de Magnesio/metabolismo , Dolor
3.
Pflugers Arch ; 474(4): 405-420, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35157132

RESUMEN

The Nobel prices 2021 for Physiology and Medicine have been awarded to David Julius and Ardem Patapoutian "for their discoveries of receptors for temperature and touch", TRPV1 and PIEZO1/2. The present review tells the past history of the capsaicin receptor, covers further selected TRP channels, TRPA1 in particular, and deals with mechanosensitivity in general and mechanical hyperalgesia in particular. Other achievements of the laureates and translational aspects of their work are shortly treated.


Asunto(s)
Hiperalgesia , Dolor , Capsaicina , Humanos , Canales Iónicos , Premio Nobel , Canal Catiónico TRPA1 , Canales Catiónicos TRPV , Temperatura
4.
Nicotine Tob Res ; 24(12): 1849-1860, 2022 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-35199839

RESUMEN

Tobacco smoking-related diseases are estimated to kill more than 8 million people/year and most smokers are willing to stop smoking. The pharmacological approach to aid smoking cessation comprises nicotine replacement therapy (NRT) and inhibitors of the nicotinic acetylcholine receptor, which is activated by nicotine. Common side effects of oral NRT products include hiccoughs, gastrointestinal disturbances and, most notably, irritation, burning and pain in the mouth and throat, which are the most common reasons for premature discontinuation of NRT and termination of cessation efforts. Attempts to reduce the unwanted sensory side effects are warranted, and research discovering the most optimal masking procedures is urgently needed. This requires a firm mechanistic understanding of the neurobiology behind the activation of sensory nerves and their receptors by nicotine. The sensory nerves in the oral cavity and throat express the so-called transient receptor potential (TRP) channels, which are responsible for mediating the nicotine-evoked irritation, burning and pain sensations. Targeting the TRP channels is one way to modulate the unwanted sensory side effects. A variety of natural (Generally Recognized As Safe [GRAS]) compounds interact with the TRP channels, thus making them interesting candidates as safe additives to oral NRT products. The present narrative review will discuss (1) current evidence on how nicotine contributes to irritation, burning and pain in the oral cavity and throat, and (2) options to modulate these unwanted side-effects with the purpose of increasing adherence to NRT. Nicotine provokes irritation, burning and pain in the oral cavity and throat. Managing these side effects will ensure better compliance to oral NRT products and hence increase the success of smoking cessation. A specific class of sensory receptors (TRP channels) are involved in mediating nicotine's sensory side effects, making them to potential treatment targets. Many natural (Generally Recognized As Safe [GRAS]) compounds are potentially beneficial modulators of TRP channels.


Asunto(s)
Cese del Hábito de Fumar , Canales de Potencial de Receptor Transitorio , Humanos , Animales , Dispositivos para Dejar de Fumar Tabaco , Nicotina/efectos adversos , Cese del Hábito de Fumar/métodos , Agonistas Nicotínicos/uso terapéutico , Faringe , Boca , Dolor
5.
J Biol Chem ; 295(19): 6330-6343, 2020 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-32198181

RESUMEN

The plasmas of diabetic or uremic patients and of those receiving peritoneal dialysis treatment have increased levels of the glucose-derived dicarbonyl metabolites like methylglyoxal (MGO), glyoxal (GO), and 3-deoxyglucosone (3-DG). The elevated dicarbonyl levels can contribute to the development of painful neuropathies. Here, we used stimulated immunoreactive Calcitonin Gene-Related Peptide (iCGRP) release as a measure of nociceptor activation, and we found that each dicarbonyl metabolite induces a concentration-, TRPA1-, and Ca2+-dependent iCGRP release. MGO, GO, and 3-DG were about equally potent in the millimolar range. We hypothesized that another dicarbonyl, 3,4-dideoxyglucosone-3-ene (3,4-DGE), which is present in peritoneal dialysis (PD) solutions after heat sterilization, activates nociceptors. We also showed that at body temperatures 3,4-DGE is formed from 3-DG and that concentrations of 3,4-DGE in the micromolar range effectively induced iCGRP release from isolated murine skin. In a novel preparation of the isolated parietal peritoneum PD fluid or 3,4-DGE alone, at concentrations found in PD solutions, stimulated iCGRP release. We also tested whether inflammatory tissue conditions synergize with dicarbonyls to induce iCGRP release from isolated skin. Application of MGO together with bradykinin or prostaglandin E2 resulted in an overadditive effect on iCGRP release, whereas MGO applied at a pH of 5.2 resulted in reduced release, probably due to an MGO-mediated inhibition of transient receptor potential (TRP) V1 receptors. These results indicate that several reactive dicarbonyls activate nociceptors and potentiate inflammatory mediators. Our findings underline the roles of dicarbonyls and TRPA1 receptors in causing pain during diabetes or renal disease.


Asunto(s)
Péptido Relacionado con Gen de Calcitonina/metabolismo , Desoxiglucosa/análogos & derivados , Peritoneo/efectos de los fármacos , Peritoneo/metabolismo , Piruvaldehído/farmacología , Piel/efectos de los fármacos , Piel/metabolismo , Animales , Bradiquinina/farmacología , Desoxiglucosa/farmacología , Interacciones Farmacológicas , Inflamación/metabolismo , Ratones , Ratones Endogámicos C57BL , Fibras Nerviosas/efectos de los fármacos , Fibras Nerviosas/fisiología , Prostaglandinas/farmacología , Temperatura
6.
Am J Physiol Renal Physiol ; 319(5): F822-F832, 2020 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-33017188

RESUMEN

Afferent renal nerves exhibit a dual function controlling central sympathetic outflow via afferent electrical activity and influencing intrarenal immunological processes by releasing peptides such as calcitonin gene-related peptide (CGRP). We tested the hypothesis that increased afferent and efferent renal nerve activity occur with augmented release of CGRP in anti-Thy1.1 nephritis, in which enhanced CGRP release exacerbates inflammation. Nephritis was induced in Sprague-Dawley rats by intravenous injection of OX-7 antibody (1.75 mg/kg), and animals were investigated neurophysiologically, electrophysiologically, and pathomorphologically 6 days later. Nephritic rats exhibited proteinuria (169.3 ± 10.2 mg/24 h) with increased efferent renal nerve activity (14.7 ± 0.9 bursts/s vs. control 11.5 ± 0.9 bursts/s, n = 11, P < 0.05). However, afferent renal nerve activity (in spikes/s) decreased in nephritis (8.0 ± 1.8 Hz vs. control 27.4 ± 4.1 Hz, n = 11, P < 0.05). In patch-clamp recordings, neurons with renal afferents from nephritic rats showed a lower frequency of high activity following electrical stimulation (43.4% vs. 66.4% in controls, P < 0.05). In vitro assays showed that renal tissue from nephritic rats exhibited increased CGRP release via spontaneous (14 ± 3 pg/mL vs. 6.8 ± 2.8 pg/ml in controls, n = 7, P < 0.05) and stimulated mechanisms. In nephritic animals, marked infiltration of macrophages in the interstitium (26 ± 4 cells/mm2) and glomeruli (3.7 ± 0.6 cells/glomerular cross-section) occurred. Pretreatment with the CGRP receptor antagonist CGRP8-37 reduced proteinuria, infiltration, and proliferation. In nephritic rats, it can be speculated that afferent renal nerves lose their ability to properly control efferent sympathetic nerve activity while influencing renal inflammation through increased CGRP release.


Asunto(s)
Péptido Relacionado con Gen de Calcitonina/farmacología , Riñón/efectos de los fármacos , Nefritis/tratamiento farmacológico , Neuronas Aferentes/efectos de los fármacos , Vías Aferentes/efectos de los fármacos , Animales , Neuronas/efectos de los fármacos , Ratas Sprague-Dawley , Sustancia P/metabolismo
7.
Physiol Rev ; 92(4): 1699-775, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23073630

RESUMEN

Peripheral mediators can contribute to the development and maintenance of inflammatory and neuropathic pain and its concomitants (hyperalgesia and allodynia) via two mechanisms. Activation or excitation by these substances of nociceptive nerve endings or fibers implicates generation of action potentials which then travel to the central nervous system and may induce pain sensation. Sensitization of nociceptors refers to their increased responsiveness to either thermal, mechanical, or chemical stimuli that may be translated to corresponding hyperalgesias. This review aims to give an account of the excitatory and sensitizing actions of inflammatory mediators including bradykinin, prostaglandins, thromboxanes, leukotrienes, platelet-activating factor, and nitric oxide on nociceptive primary afferent neurons. Manifestations, receptor molecules, and intracellular signaling mechanisms of the effects of these mediators are discussed in detail. With regard to signaling, most data reported have been obtained from transfected nonneuronal cells and somata of cultured sensory neurons as these structures are more accessible to direct study of sensory and signal transduction. The peripheral processes of sensory neurons, where painful stimuli actually affect the nociceptors in vivo, show marked differences with respect to biophysics, ultrastructure, and equipment with receptors and ion channels compared with cellular models. Therefore, an effort was made to highlight signaling mechanisms for which supporting data from molecular, cellular, and behavioral models are consistent with findings that reflect properties of peripheral nociceptive nerve endings. Identified molecular elements of these signaling pathways may serve as validated targets for development of novel types of analgesic drugs.


Asunto(s)
Bradiquinina/metabolismo , Eicosanoides/metabolismo , Óxido Nítrico/metabolismo , Nociceptores/metabolismo , Factor de Activación Plaquetaria/metabolismo , Transducción de Señal/fisiología , Animales , Humanos , Dolor/metabolismo
8.
J Allergy Clin Immunol ; 141(5): 1677-1689.e8, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29427643

RESUMEN

BACKGROUND: TH2 cell-released IL-31 is a critical mediator in patients with atopic dermatitis (AD), a prevalent and debilitating chronic skin disorder. Brain-derived natriuretic peptide (BNP) has been described as a central itch mediator. The importance of BNP in peripheral (skin-derived) itch and its functional link to IL-31 within the neuroimmune axis of the skin is unknown. OBJECTIVE: We sought to investigate the function of BNP in the peripheral sensory system and skin in IL-31-induced itch and neuroepidermal communication in patients with AD. METHODS: Ca2+ imaging, immunohistochemistry, quantitative real-time PCR, RNA sequencing, knockdown, cytokine/phosphokinase arrays, enzyme immune assay, and pharmacologic inhibition were performed to examine the cellular basis of the IL-31-stimulated, BNP-related itch signaling in dorsal root ganglionic neurons (DRGs) and skin cells, transgenic AD-like mouse models, and human skin of patients with AD and healthy subjects. RESULTS: In human DRGs we confirmed expression and co-occurrence of oncostatin M receptor ß subunit and IL-31 receptor A in a small subset of the neuronal population. Furthermore, IL-31 activated approximately 50% of endothelin-1-responsive neurons, and half of the latter also responded to histamine. In murine DRGs IL-31 upregulated Nppb and induced soluble N-ethylmaleimide-sensitive factor activating protein receptor-dependent BNP release. In Grhl3PAR2/+ mice house dust mite-induced severe AD-like dermatitis was associated with Nppb upregulation. Lesional IL-31 transgenic mice also exhibited increased Nppb transcripts in DRGs and the skin; accordingly, skin BNP receptor levels were increased. Importantly, expression of BNP and its receptor were increased in the skin of patients with AD. In human skin cells BNP stimulated a proinflammatory and itch-promoting phenotype. CONCLUSION: For the first time, our findings show that BNP is implicated in AD and that IL-31 regulates BNP in both DRGs and the skin. IL-31 enhances BNP release and synthesis and orchestrates cytokine and chemokine release from skin cells, thereby coordinating the signaling pathways involved in itch. Inhibiting peripheral BNP function might be a novel therapeutic strategy for AD and pruritic conditions.


Asunto(s)
Dermatitis Atópica/metabolismo , Interleucinas/metabolismo , Adulto , Animales , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Estudios de Casos y Controles , Citocinas/metabolismo , Modelos Animales de Enfermedad , Femenino , Ganglios Espinales/metabolismo , Histamina/metabolismo , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Transducción de Señal/fisiología , Piel/metabolismo , Regulación hacia Arriba/fisiología
9.
J Neurosci ; 37(20): 5204-5214, 2017 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-28450535

RESUMEN

Voltage-gated sodium (NaV) channels are responsible for the initiation and conduction of action potentials within primary afferents. The nine NaV channel isoforms recognized in mammals are often functionally divided into tetrodotoxin (TTX)-sensitive (TTX-s) channels (NaV1.1-NaV1.4, NaV1.6-NaV1.7) that are blocked by nanomolar concentrations and TTX-resistant (TTX-r) channels (NaV1.8 and NaV1.9) inhibited by millimolar concentrations, with NaV1.5 having an intermediate toxin sensitivity. For small-diameter primary afferent neurons, it is unclear to what extent different NaV channel isoforms are distributed along the peripheral and central branches of their bifurcated axons. To determine the relative contribution of TTX-s and TTX-r channels to action potential conduction in different axonal compartments, we investigated the effects of TTX on C-fiber-mediated compound action potentials (C-CAPs) of proximal and distal peripheral nerve segments and dorsal roots from mice and pigtail monkeys (Macaca nemestrina). In the dorsal roots and proximal peripheral nerves of mice and nonhuman primates, TTX reduced the C-CAP amplitude to 16% of the baseline. In contrast, >30% of the C-CAP was resistant to TTX in distal peripheral branches of monkeys and WT and NaV1.9-/- mice. In nerves from NaV1.8-/- mice, TTX-r C-CAPs could not be detected. These data indicate that NaV1.8 is the primary isoform underlying TTX-r conduction in distal axons of somatosensory C-fibers. Furthermore, there is a differential spatial distribution of NaV1.8 within C-fiber axons, being functionally more prominent in the most distal axons and terminal regions. The enrichment of NaV1.8 in distal axons may provide a useful target in the treatment of pain of peripheral origin.SIGNIFICANCE STATEMENT It is unclear whether individual sodium channel isoforms exert differential roles in action potential conduction along the axonal membrane of nociceptive, unmyelinated peripheral nerve fibers, but clarifying the role of sodium channel subtypes in different axonal segments may be useful for the development of novel analgesic strategies. Here, we provide evidence from mice and nonhuman primates that a substantial portion of the C-fiber compound action potential in distal peripheral nerves, but not proximal nerves or dorsal roots, is resistant to tetrodotoxin and that, in mice, this effect is mediated solely by voltage-gated sodium channel 1.8 (NaV1.8). The functional prominence of NaV1.8 within the axonal compartment immediately proximal to its termination may affect strategies targeting pain of peripheral origin.


Asunto(s)
Axones/fisiología , Canal de Sodio Activado por Voltaje NAV1.8/fisiología , Conducción Nerviosa/fisiología , Nervios Periféricos/fisiología , Piel/inervación , Tetrodotoxina/administración & dosificación , Vías Aferentes/efectos de los fármacos , Vías Aferentes/fisiología , Animales , Axones/efectos de los fármacos , Activación del Canal Iónico/efectos de los fármacos , Activación del Canal Iónico/fisiología , Macaca nemestrina , Masculino , Canal de Sodio Activado por Voltaje NAV1.8/efectos de los fármacos , Fibras Nerviosas Amielínicas , Conducción Nerviosa/efectos de los fármacos , Nervios Periféricos/efectos de los fármacos , Piel/efectos de los fármacos , Fenómenos Fisiológicos de la Piel/efectos de los fármacos , Bloqueadores del Canal de Sodio Activado por Voltaje/administración & dosificación
10.
Mol Pain ; 14: 1744806918811699, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30345869

RESUMEN

BACKGROUND: Etomidate is a preferred drug for the induction of general anesthesia in cardiovascular risk patients. As with propofol and other perioperatively used anesthetics, the application of aqueous etomidate formulations causes an intensive burning pain upon injection. Such algogenic properties of etomidate have been attributed to the solubilizer propylene glycol which represents 35% of the solution administered clinically. The aim of this study was to investigate the underlying molecular mechanisms which lead to injection pain of aqueous etomidate formulations. RESULTS: Activation of the nociceptive transient receptor potential (TRP) ion channels TRPA1 and TRPV1 was studied in a transfected HEK293t cell line by whole-cell voltage clamp recordings of induced inward ion currents. Calcium influx in sensory neurons of wild-type and trp knockout mice was ratiometrically measured by Fura2-AM staining. Stimulated calcitonin gene-related peptide release from mouse sciatic nerves was detected by enzyme immunoassay. Painfulness of different etomidate formulations was tested in a translational human pain model. Etomidate as well as propylene glycol proved to be effective agonists of TRPA1 and TRPV1 ion channels at clinically relevant concentrations. Etomidate consistently activated TRPA1, but there was also evidence for a contribution of TRPV1 in dependence of drug concentration ranges and species specificities. Distinct N-terminal cysteine and lysine residues seemed to mediate gating of TRPA1, although the electrophile scavenger N-acetyl-L-cysteine did not prevent its activation by etomidate. Propylene glycol-induced activation of TRPA1 and TRPV1 appeared independent of the concomitant high osmolarity. Intradermal injections of etomidate as well as propylene glycol evoked severe burning pain in the human pain model that was absent with emulsification of etomidate. CONCLUSIONS: Data in our study provided evidence that pain upon injection of clinical aqueous etomidate formulations is not an unspecific effect of hyperosmolarity but rather due to a specific action mediated by activated nociceptive TRPA1 and TRPV1 ion channels in sensory neurons.


Asunto(s)
Etomidato/farmacología , Dolor/fisiopatología , Canales Catiónicos TRPV/efectos de los fármacos , Canales de Potencial de Receptor Transitorio/efectos de los fármacos , Animales , Péptido Relacionado con Gen de Calcitonina/metabolismo , Calcio/metabolismo , Femenino , Ganglios Espinales/efectos de los fármacos , Ganglios Espinales/metabolismo , Células HEK293 , Humanos , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Dolor/inducido químicamente , Dolor/metabolismo , Células Receptoras Sensoriales/efectos de los fármacos , Células Receptoras Sensoriales/metabolismo , Canales Catiónicos TRPV/metabolismo , Canales de Potencial de Receptor Transitorio/metabolismo
11.
Eur J Neurosci ; 47(3): 201-210, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29247491

RESUMEN

Spices in food and beverages and compounds in tobacco smoke interact with sensory irritant receptors of the transient receptor potential (TRP) cation channel family. TRPV1 (vanilloid type 1), TRPA1 (ankyrin 1) and TRPM8 (melastatin 8) not only elicit action potential signaling through trigeminal nerves, eventually evoking pungent or cooling sensations, but by their calcium conductance they also stimulate the release of calcitonin gene-related peptide (CGRP). This is measured as an index of neuronal activation to elucidate the chemo- and thermosensory transduction in the isolated mouse buccal mucosa of wild types and pertinent knockouts. We found that the lipophilic capsaicin, mustard oil and menthol effectively get access to the nerve endings below the multilayered squamous epithelium, while cigarette smoke and its gaseous phase were weakly effective releasing CGRP. The hydrophilic nicotine was ineffective unless applied unprotonated in alkaline (pH9) solution, activating TRPA1 and TRPV1. Also, mustard oil activated both these irritant receptors in millimolar but only TRPA1 in micromolar concentrations; in combination (1 mm) with heat (45 °C), it showed supraadditive, that is heat sensitizing, effects in TRPV1 and TRPA1 knockouts, suggesting action on an unknown heat-activated channel and mustard oil receptor. Menthol caused little CGRP release by itself, but in subliminal concentration (2 mm), it enabled a robust cold response that was absent in TRPM8-/- but retained in TRPA1-/- and strongly reduced by TRPM8 inhibitors. In conclusion, all three relevant irritant receptors are functionally expressed in the oral mucosa and play their specific roles in inducing neurogenic inflammation and sensitization to heat and cold.


Asunto(s)
Capsaicina/farmacología , Mucosa Bucal/efectos de los fármacos , Canal Catiónico TRPA1/efectos de los fármacos , Canales Catiónicos TRPM/efectos de los fármacos , Canales Catiónicos TRPV/efectos de los fármacos , Animales , Péptido Relacionado con Gen de Calcitonina/metabolismo , Ratones , Células Receptoras Sensoriales/metabolismo , Canales de Potencial de Receptor Transitorio/efectos de los fármacos
12.
Pain Med ; 19(6): 1206-1218, 2018 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-29228247

RESUMEN

Objectives: To evaluate the analgesic/antihyperalgesic effect of ASP8477. Design: Randomized, double-blind, double-dummy, cross-over, placebo- and active comparator-controlled study. Setting: HPR Dr. Schaffler GmbH, Munich, Germany. Subjects: Healthy female subjects aged 18-65 years. Methods: Eligible subjects were randomly assigned to one of six treatment sequences and received multiple ascending doses of ASP8477, duloxetine, and placebo over three treatment periods (each consisting of 21-day dosing separated by 14-day washout periods). On the last day of each dose level, laser evoked potentials (LEPs) and visual analog scales (VAS pain) on capsaicin-treated skin at baseline and at multiple postdose time points were assessed. The primary end point was the difference in LEP N2-P2 peak-to-peak (PtP) amplitudes for ASP8477 100 mg vs placebo. Results: Twenty-five subjects were randomized. In all subjects, LEP N2-P2 PtP amplitudes were numerically lower for ASP8477 100 mg vs placebo (P = 0.0721); in subjects who demonstrated positive capsaicin skin effects, a greater mean difference of -2.24 µV (P = 0.0146) was observed. Across all doses, LEP N2-P2 PtP amplitudes were lower for duloxetine compared with ASP8477 (mean difference -3.80 µV; P < 0.0001) or placebo (mean difference -5.21 µV; P < 0.0001). The effect of ASP8477 (all doses) on down-scoring the VAS pain score was significant compared with placebo (mean difference -2.55%; P < 0.0007). Conclusions: ASP8477 was well tolerated in this study. Analysis of all subjects did not demonstrate a significant difference in LEP for ASP8477 100 mg over placebo but did in subjects who demonstrated positive capsaicin skin effects.


Asunto(s)
Amidohidrolasas/antagonistas & inhibidores , Analgésicos/farmacología , Manejo del Dolor , Piperidinas/farmacología , Piridinas/farmacología , Adulto , Estudios Cruzados , Relación Dosis-Respuesta a Droga , Método Doble Ciego , Femenino , Voluntarios Sanos , Humanos , Dimensión del Dolor
13.
Proc Natl Acad Sci U S A ; 112(11): E1363-72, 2015 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-25733887

RESUMEN

Transient receptor potential (TRP) cation channel subfamily M member 3 (TRPM3), a member of the TRP channel superfamily, was recently identified as a nociceptor channel in the somatosensory system, where it is involved in the detection of noxious heat; however, owing to the lack of potent and selective agonists, little is known about other potential physiological consequences of the opening of TRPM3. Here we identify and characterize a synthetic TRPM3 activator, CIM0216, whose potency and apparent affinity greatly exceeds that of the canonical TRPM3 agonist, pregnenolone sulfate (PS). In particular, a single application of CIM0216 causes opening of both the central calcium-conducting pore and the alternative cation permeation pathway in a membrane-delimited manner. CIM0216 evoked robust calcium influx in TRPM3-expressing somatosensory neurons, and intradermal injection of the compound induced a TRPM3-dependent nocifensive behavior. Moreover, CIM0216 elicited the release of the peptides calcitonin gene-related peptide (CGRP) from sensory nerve terminals and insulin from isolated pancreatic islets in a TRPM3-dependent manner. These experiments identify CIM0216 as a powerful tool for use in investigating the physiological roles of TRPM3, and indicate that TRPM3 activation in sensory nerve endings can contribute to neurogenic inflammation.


Asunto(s)
Neuropéptidos/metabolismo , Quinolinas/farmacología , Canales Catiónicos TRPM/metabolismo , Animales , Calcio/metabolismo , Permeabilidad de la Membrana Celular/efectos de los fármacos , Células HEK293 , Calor , Humanos , Insulina/metabolismo , Secreción de Insulina , Células Secretoras de Insulina/efectos de los fármacos , Células Secretoras de Insulina/metabolismo , Activación del Canal Iónico/efectos de los fármacos , Ligandos , Ratones Endogámicos C57BL , Terminaciones Nerviosas/efectos de los fármacos , Terminaciones Nerviosas/metabolismo , Nocicepción/efectos de los fármacos , Dolor/patología , Dolor/fisiopatología , Pregnenolona/farmacología , Quinolinas/química , Células Receptoras Sensoriales/efectos de los fármacos , Células Receptoras Sensoriales/metabolismo , Canales Catiónicos TRPM/agonistas , Transfección
14.
J Neurosci ; 36(19): 5264-78, 2016 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-27170124

RESUMEN

UNLABELLED: Photosensitization, an exaggerated sensitivity to harmless light, occurs genetically in rare diseases, such as porphyrias, and in photodynamic therapy where short-term toxicity is intended. A common feature is the experience of pain from bright light. In human subjects, skin exposure to 405 nm light induced moderate pain, which was intensified by pretreatment with aminolevulinic acid. In heterologous expression systems and cultured sensory neurons, exposure to blue light activated TRPA1 and, to a lesser extent, TRPV1 channels in the absence of additional photosensitization. Pretreatment with aminolevulinic acid or with protoporphyrin IX dramatically increased the light sensitivity of both TRPA1 and TRPV1 via generation of reactive oxygen species. Artificial lipid bilayers equipped with purified human TRPA1 showed substantial single-channel activity only in the presence of protoporphyrin IX and blue light. Photosensitivity and photosensitization could be demonstrated in freshly isolated mouse tissues and led to TRP channel-dependent release of proinflammatory neuropeptides upon illumination. With antagonists in clinical development, these findings may help to alleviate pain during photodynamic therapy and also allow for disease modification in porphyria patients. SIGNIFICANCE STATEMENT: Cutaneous porphyria patients suffer from burning pain upon exposure to sunlight and other patients undergoing photodynamic therapy experience similar pain, which can limit the therapeutic efforts. This study elucidates the underlying molecular transduction mechanism and identifies potential targets of therapy. Ultraviolet and blue light generates singlet oxygen, which oxidizes and activates the ion channels TRPA1 and TRPV1. The disease and the therapeutic options could be reproduced in models ranging from isolated ion channels to human subjects, applying protoporphyrin IX or its precursor aminolevulinic acid. There is an unmet medical need, and our results suggest a therapeutic use of the pertinent antagonists in clinical development.


Asunto(s)
Fotoquimioterapia , Fármacos Fotosensibilizantes/farmacología , Porfirias/metabolismo , Canales Catiónicos TRPV/metabolismo , Canales de Potencial de Receptor Transitorio/metabolismo , Ácido Aminolevulínico/farmacología , Animales , Células Cultivadas , Células HEK293 , Humanos , Ratones , Ratones Endogámicos C57BL , Neuropéptidos/metabolismo , Porfirias/terapia , Protoporfirinas/farmacología , Especies Reactivas de Oxígeno/metabolismo , Células Receptoras Sensoriales/metabolismo , Piel/efectos de los fármacos , Piel/efectos de la radiación , Canal Catiónico TRPA1
15.
Pflugers Arch ; 474(6): 647, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35378618
16.
Mar Drugs ; 15(9)2017 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-28867800

RESUMEN

Ciguatoxins (CTXs) are marine toxins that cause ciguatera fish poisoning, a debilitating disease dominated by sensory and neurological disturbances that include cold allodynia and various painful symptoms as well as long-lasting pruritus. Although CTXs are known as the most potent mammalian sodium channel activator toxins, the etiology of many of its neurosensory symptoms remains unresolved. We recently described that local application of 1 nM Pacific Ciguatoxin-1 (P-CTX-1) into the skin of human subjects induces a long-lasting, painful axon reflex flare and that CTXs are particularly effective in releasing calcitonin-gene related peptide (CGRP) from nerve terminals. In this study, we used mouse and rat skin preparations and enzyme-linked immunosorbent assays (ELISA) to study the molecular mechanism by which P-CTX-1 induces CGRP release. We show that P-CTX-1 induces CGRP release more effectively in mouse as compared to rat skin, exhibiting EC50 concentrations in the low nanomolar range. P-CTX-1-induced CGRP release from skin is dependent on extracellular calcium and sodium, but independent from the activation of various thermosensory transient receptor potential (TRP) ion channels. In contrast, lidocaine and tetrodotoxin (TTX) reduce CGRP release by 53-75%, with the remaining fraction involving L-type and T-type voltage-gated calcium channels (VGCC). Using transgenic mice, we revealed that the TTX-resistant voltage-gated sodium channel (VGSC) NaV1.9, but not NaV1.8 or NaV1.7 alone and the combined activation of the TTX-sensitive VGSC subtypes NaV1.7 and NaV1.1 carry the largest part of the P-CTX-1-caused CGRP release of 42% and 34%, respectively. Given the contribution of CGRP to nociceptive and itch sensing pathways, our findings contribute to a better understanding of sensory symptoms of acute and chronic ciguatera that may help in the identification of potential therapeutics.


Asunto(s)
Ciguatoxinas/farmacología , Canal de Sodio Activado por Voltaje NAV1.1/efectos de los fármacos , Canal de Sodio Activado por Voltaje NAV1.7/efectos de los fármacos , Canal de Sodio Activado por Voltaje NAV1.9/efectos de los fármacos , Receptores de Péptido Relacionado con el Gen de Calcitonina/efectos de los fármacos , Animales , Péptido Relacionado con Gen de Calcitonina/efectos de los fármacos , Calcio/metabolismo , Intoxicación por Ciguatera/metabolismo , Ciguatoxinas/química , Ensayo de Inmunoadsorción Enzimática , Humanos , Hiperalgesia/inducido químicamente , Lidocaína/farmacología , Masculino , Toxinas Marinas/farmacología , Potenciales de la Membrana/efectos de los fármacos , Ratones , Ratones Transgénicos , Ratas , Tetrodotoxina/farmacología
17.
J Physiol ; 594(19): 5529-41, 2016 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-27105013

RESUMEN

KEY POINTS: This study examines conduction in peripheral nerves and its use dependence in tetrodotoxin-resistant (TTXr) sodium channel (Nav 1.8, Nav 1.9) knockout and wildtype animals. We observed use-dependent decreases of single fibre and compound action potential amplitude in peripheral mouse C-fibres (wildtype). This matches the previously published hypothesis that increased Na/K-pump activity is not the underlying mechanism for use-dependent changes of neural conduction. Knocking out TTXr sodium channels influences use-dependent changes of conductive properties (action potential amplitude, latency, conduction safety) in the order Nav 1.8 KO > Nav 1.9KO > wildtype. This is most likely explained by different subsets of presumably (relatively) Nav 1.7-rich conducting fibres in knockout animals as compared to wildtypes, in combination with reduced per-pulse sodium influx. ABSTRACT: Use dependency of peripheral nerves, especially of nociceptors, correlates with receptive properties. Slow inactivation of voltage-gated sodium channels has been discussed to be the underlying mechanism - pointing to a receptive class-related difference of sodium channel equipment. Using electrophysiological recordings of single unmyelinated cutaneous fibres and their compound action potential (AP), we evaluated use-dependent changes in mouse peripheral nerves, and the contribution of the tetrodotoxin-resistant (TTXr) sodium channels Nav 1.8 and Nav 1.9 to these changes. Nerve fibres were electrically stimulated using single or double pulses at 2 Hz. Use-dependent changes of latency, AP amplitude, and duration as well as the fibres' ability to follow the stimulus were evaluated. AP amplitudes substantially diminished in used fibres from C57BL/6 but increased in Nav 1.8 knockout (KO) mice, with Nav 1.9 KO in between. Activity-induced latency slowing was in contrast the most pronounced in Nav 1.8 KOs and the least in wildtype mice. The genotype was also predictive of how long fibres could follow the double pulsed stimulus with wildtype fibres blocking first and Nav 1.8 KO fibres enduring the longest. In contrast, changes in spike duration were less pronounced and displayed no significant tendency. Thus, all major measures of peripheral nerve accommodation (amplitude, latency and durability) depended on genotype. All use-dependent changes appeared in the order NaV 1.8 KO > NaV 1.9 KO > wildtype, which is most likely explained by the relative contribution of Nav 1.7 varying in the same order and the amounts of per-pulse sodium influx expected in the opposite order.


Asunto(s)
Fibras Nerviosas/fisiología , Nociceptores/fisiología , Canales de Sodio/fisiología , Potenciales de Acción , Animales , Resistencia a Medicamentos , Estimulación Eléctrica , Femenino , Pie/inervación , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Conducción Nerviosa , Bloqueadores de los Canales de Sodio/farmacología , Canales de Sodio/genética , Tetrodotoxina/farmacología
18.
J Biol Chem ; 290(24): 15185-96, 2015 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-25903127

RESUMEN

Streptozotocin (STZ)-induced diabetes is the most commonly used animal model of diabetes. Here, we have demonstrated that intraplantar injections of low dose STZ evoked acute polymodal hypersensitivities in mice. These hypersensitivities were inhibited by a TRPA1 antagonist and were absent in TRPA1-null mice. In wild type mice, systemic STZ treatment (180 mg/kg) evoked a loss of cold and mechanical sensitivity within an hour of injection, which lasted for at least 10 days. In contrast, Trpa1(-/-) mice developed mechanical, cold, and heat hypersensitivity 24 h after STZ. The TRPA1-dependent sensory loss produced by STZ occurs before the onset of diabetes and may thus not be readily distinguished from the similar sensory abnormalities produced by the ensuing diabetic neuropathy. In vitro, STZ activated TRPA1 in isolated sensory neurons, TRPA1 cell lines, and membrane patches. Mass spectrometry studies revealed that STZ oxidizes TRPA1 cysteines to disulfides and sulfenic acids. Furthermore, incubation of tyrosine with STZ resulted in formation of dityrosine, suggesting formation of peroxynitrite. Functional analysis of TRPA1 mutants showed that cysteine residues that were oxidized by STZ were important for TRPA1 responsiveness to STZ. Our results have identified oxidation of TRPA1 cysteine residues, most likely by peroxynitrite, as a novel mechanism of action of STZ. Direct stimulation of TRPA1 complicates the interpretation of results from STZ models of diabetic sensory neuropathy and strongly argues that more refined models of diabetic neuropathy should replace the use of STZ.


Asunto(s)
Ácido Peroxinitroso/metabolismo , Estreptozocina/farmacología , Canales de Potencial de Receptor Transitorio/efectos de los fármacos , Analgésicos/farmacología , Animales , Espectrometría de Masas , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Oxidación-Reducción , Canal Catiónico TRPA1 , Canales de Potencial de Receptor Transitorio/química , Canales de Potencial de Receptor Transitorio/genética
19.
Mol Pain ; 122016.
Artículo en Inglés | MEDLINE | ID: mdl-27030709

RESUMEN

BACKGROUND: Opioids are the gold standard for the treatment of acute pain despite serious side effects in the central and enteric nervous system. µ-opioid receptors (MOPs) are expressed and functional at the terminals of sensory axons, when activated by exogenous or endogenous ligands. However, the presence and function of MOP along nociceptive axons remains controversial particularly in naïve animals. Here, we characterized axonal MOPs by immunofluorescence, ultrastructural, and functional analyses. Furthermore, we evaluated hypertonic saline as a possible enhancer of opioid receptor function. RESULTS: Comparative immunolabeling showed that, among several tested antibodies, which all provided specific MOP detection in the rat central nervous system (CNS), only one monoclonal MOP-antibody yielded specificity and reproducibility for MOP detection in the rat peripheral nervous system including the sciatic nerve. Double immunolabeling documented that MOP immunoreactivity was confined to calcitonin gene-related peptide (CGRP) positive fibers and fiber bundles. Almost identical labeling and double labeling patterns were found using mcherry-immunolabeling on sciatic nerves of mice producing a MOP-mcherry fusion protein (MOP-mcherry knock-in mice). Preembedding immunogold electron microscopy on MOP-mcherry knock-in sciatic nerves indicated presence of MOP in cytoplasm and at membranes of unmyelinated axons. Application of [D-Ala(2), N-MePhe(4), Gly-ol]-enkephalin (DAMGO) or fentanyl dose-dependently inhibited depolarization-induced CGRP release from rat sciatic nerve axons ex vivo, which was blocked by naloxone. When the lipophilic opioid fentanyl was applied perisciatically in naïve Wistar rats, mechanical nociceptive thresholds increased. Subthreshold doses of fentanyl or the hydrophilic opioid DAMGO were only effective if injected together with hypertonic saline. In vitro, using ß-arrestin-2/MOP double-transfected human embryonic kidney cells, DAMGO as well as fentanyl lead to a recruitment of ß-arrestin-2 to the membrane followed by a ß-arrestin-2 reappearance in the cytosol and MOP internalization. Pretreatment with hypertonic saline prevented MOP internalization. CONCLUSION: MOPs are present and functional in the axonal membrane from naïve animals. Hypertonic saline acutely decreases ligand-induced internalization of MOP and thereby might improve MOP function. Further studies should explore potential clinical applications of opioids together with enhancers for regional analgesia.


Asunto(s)
Analgesia , Axones/metabolismo , Receptores Opioides mu/química , Receptores Opioides mu/metabolismo , Amígdala del Cerebelo/efectos de los fármacos , Amígdala del Cerebelo/metabolismo , Animales , Anticuerpos Monoclonales/metabolismo , Axones/efectos de los fármacos , Axones/ultraestructura , Conducta Animal/efectos de los fármacos , Péptido Relacionado con Gen de Calcitonina/metabolismo , Endocitosis/efectos de los fármacos , Encefalina Ala(2)-MeFe(4)-Gli(5)/farmacología , Femenino , Fentanilo/farmacología , Técnicas de Sustitución del Gen , Masculino , Potenciales de la Membrana/efectos de los fármacos , Ratones , Nocicepción/efectos de los fármacos , Potasio/farmacología , Ratas Wistar , Reproducibilidad de los Resultados , Nervio Ciático/efectos de los fármacos , Nervio Ciático/metabolismo , beta-Arrestinas/metabolismo
20.
EMBO J ; 31(19): 3795-808, 2012 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-22850668

RESUMEN

Ciguatoxins are sodium channel activator toxins that cause ciguatera, the most common form of ichthyosarcotoxism, which presents with peripheral sensory disturbances, including the pathognomonic symptom of cold allodynia which is characterized by intense stabbing and burning pain in response to mild cooling. We show that intraplantar injection of P-CTX-1 elicits cold allodynia in mice by targeting specific unmyelinated and myelinated primary sensory neurons. These include both tetrodotoxin-resistant, TRPA1-expressing peptidergic C-fibres and tetrodotoxin-sensitive A-fibres. P-CTX-1 does not directly open heterologously expressed TRPA1, but when co-expressed with Na(v) channels, sodium channel activation by P-CTX-1 is sufficient to drive TRPA1-dependent calcium influx that is responsible for the development of cold allodynia, as evidenced by a large reduction of excitatory effect of P-CTX-1 on TRPA1-deficient nociceptive C-fibres and of ciguatoxin-induced cold allodynia in TRPA1-null mutant mice. Functional MRI studies revealed that ciguatoxin-induced cold allodynia enhanced the BOLD (Blood Oxygenation Level Dependent) signal, an effect that was blunted in TRPA1-deficient mice, confirming an important role for TRPA1 in the pathogenesis of cold allodynia.


Asunto(s)
Ciguatoxinas/toxicidad , Dolor/inducido químicamente , Animales , Frío , Hiperalgesia/inducido químicamente , Imagen por Resonancia Magnética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratas , Ratas Wistar , Células Receptoras Sensoriales/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Canal Catiónico TRPA1 , Canales de Potencial de Receptor Transitorio/efectos de los fármacos , Canales de Potencial de Receptor Transitorio/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA