Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
J Pharmacol Exp Ther ; 376(3): 410-427, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33384303

RESUMEN

Relationships between µ-opioid receptor (MOR) efficacy and effects of mitragynine and 7-hydroxymitragynine are not fully established. We assessed in vitro binding affinity and efficacy and discriminative stimulus effects together with antinociception in rats. The binding affinities of mitragynine and 7-hydroxymitragynine at MOR (Ki values 77.9 and 709 nM, respectively) were higher than their binding affinities at κ-opioid receptor (KOR) or δ-opioid receptor (DOR). [35S]guanosine 5'-O-[γ-thio]triphosphate stimulation at MOR demonstrated that mitragynine was an antagonist, whereas 7-hydroxymitragynine was a partial agonist (Emax = 41.3%). In separate groups of rats discriminating either morphine (3.2 mg/kg) or mitragynine (32 mg/kg), mitragynine produced a maximum of 72.3% morphine-lever responding, and morphine produced a maximum of 65.4% mitragynine-lever responding. Other MOR agonists produced high percentages of drug-lever responding in the morphine and mitragynine discrimination assays: 7-hydroxymitragynine (99.7% and 98.1%, respectively), fentanyl (99.7% and 80.1%, respectively), buprenorphine (99.8% and 79.4%, respectively), and nalbuphine (99.4% and 98.3%, respectively). In the morphine and mitragynine discrimination assays, the KOR agonist U69,593 produced maximums of 72.3% and 22.3%, respectively, and the DOR agonist SNC 80 produced maximums of 34.3% and 23.0%, respectively. 7-Hydroxymitragynine produced antinociception; mitragynine did not. Naltrexone antagonized all of the effects of morphine and 7-hydroxymitragynine; naltrexone antagonized the discriminative stimulus effects of mitragynine but not its rate-decreasing effects. Mitragynine increased the potency of the morphine discrimination yet decreased morphine antinociception. Here we illustrate striking differences in MOR efficacy, with mitragynine having less than 7-hydroxymitragynine. SIGNIFICANCE STATEMENT: At human µ-opioid receptor (MOR) in vitro, mitragynine has low affinity and is an antagonist, whereas 7-hydroxymitragynine has 9-fold higher affinity than mitragynine and is an MOR partial agonist. In rats, intraperitoneal mitragynine exhibits a complex pharmacology including MOR agonism; 7-hydroxymitragynine has higher MOR potency and efficacy than mitragynine. These results are consistent with 7-hydroxymitragynine being a highly selective MOR agonist and with mitragynine having a complex pharmacology that combines low efficacy MOR agonism with activity at nonopioid receptors.


Asunto(s)
Conducta Animal/efectos de los fármacos , Receptores Opioides mu/metabolismo , Alcaloides de Triptamina Secologanina/metabolismo , Alcaloides de Triptamina Secologanina/farmacología , Analgésicos Opioides/metabolismo , Analgésicos Opioides/farmacología , Animales , Células CHO , Cricetulus , Aprendizaje Discriminativo/efectos de los fármacos , Células HEK293 , Humanos , Unión Proteica , Ratas
2.
J Pharmacol Toxicol Methods ; 111: 107101, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34242797

RESUMEN

INTRODUCTION: Whole-body plethysmography (WBP) in unrestrained, non-anesthetized rodents is a preclinical method to assess the respiratory depressant effects of opioids, the leading cause of opioid overdose death in humans. However, low baseline respiration rates under normocapnic conditions (i.e., "floor" effect) can render the measurement of respiratory decreases challenging. We assessed hypercapnia-induced increases in respiration as a strategy to assess opioid-induced decreases in respiration in rats. METHODS: WBP was used to assess respiration frequency, tidal volume and minute volume in the presence of normocapnic and hypercapnic (8% CO2) conditions in rats during the rat diurnal period of the light cycle. The mu-opioid receptor agonist fentanyl was administered intravenously, and the hot plate test was used to assess acute antinociception. RESULTS AND DISCUSSION: Hypercapnia-induced increases in respiratory parameters (frequency, minute volume, and tidal volume) were decreased by fentanyl at doses that did not decrease the same parameters under the normocapnic conditions. These findings show that hypercapnia increases sensitivity to respiratory depressant effects of fentanyl, as compared with assessments during the rat diurnal period when activity and breathing rate are generally low, i.e., there is a floor effect. The current approach is highly sensitive to opioid-induced respiratory depression, and therefore provides a useful method for assessment in a pre-clinical setting.


Asunto(s)
Analgésicos Opioides , Insuficiencia Respiratoria , Analgésicos Opioides/toxicidad , Animales , Fentanilo/toxicidad , Hipercapnia , Ratas , Insuficiencia Respiratoria/inducido químicamente , Volumen de Ventilación Pulmonar
3.
J Med Chem ; 63(1): 433-439, 2020 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-31834797

RESUMEN

Selected indole-based kratom alkaloids were evaluated for their opioid and adrenergic receptor binding and functional effects, in vivo antinociceptive effects, plasma protein binding, and metabolic stability. Mitragynine, the major alkaloid in Mitragyna speciosa (kratom), had higher affinity at opioid receptors than at adrenergic receptors while the vice versa was observed for corynantheidine. The observed polypharmacology of kratom alkaloids may support its utilization to treat opioid use disorder and withdrawal.


Asunto(s)
Adrenérgicos/farmacología , Analgésicos/farmacología , Proteínas Sanguíneas/metabolismo , Dopaminérgicos/farmacología , Alcaloides de Triptamina Secologanina/farmacología , Adrenérgicos/metabolismo , Analgésicos/metabolismo , Animales , Células CHO , Cricetulus , Dopaminérgicos/metabolismo , Cobayas , Humanos , Microsomas Hepáticos/metabolismo , Ratas , Receptores Adrenérgicos/metabolismo , Receptores Opioides/metabolismo , Alcaloides de Triptamina Secologanina/metabolismo
4.
Psychopharmacology (Berl) ; 236(9): 2725-2734, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31098655

RESUMEN

RATIONALE: Mitragyna speciosa (kratom) may hold promise as both an analgesic and treatment for opioid use disorder. Mitragynine, its primary alkaloid constituent, is an opioid receptor ligand. However, the extent to which the in vivo effects of mitragynine are mediated by opioid receptors, or whether mitragynine interacts with other opioid agonists, is not fully established. OBJECTIVES: The effects of mitragynine and the prototypical opioid agonist morphine were compared for their capacity to decrease operant responding for food delivery, and to increase response latency to a thermal stimulus. METHODS: Male and female Sprague-Dawley rats responded under a multiple cycle fixed ratio 10 schedule of food delivery and were tested on a hot plate (52 °C) immediately after each cycle. Morphine and mitragynine were administered alone, in combination with each other, and in combination with the opioid antagonist naltrexone. RESULTS: Morphine and mitragynine dose-dependently decreased schedule-controlled responding; the ED50 values were 7.3 and 31.5 mg/kg, respectively. Both drugs increased thermal antinociception; the ED50 value for morphine was 18.3. Further, doses of naltrexone that antagonized morphine did not antagonize mitragynine. Mitragynine (17.8 mg/kg) did not alter the rate-decreasing or antinociceptive effects of morphine. CONCLUSIONS: The antinociceptive effects of mitragynine and morphine occur at doses larger than those that disrupt learned behavior. Opioid receptors do not appear to mediate the disruptive effects of mitragynine on learned behavior. Mitragynine had lesser antinociceptive effects than morphine, and these did not appear to be mediated by opioid receptors. The pharmacology of mitragynine includes a substantial non-opioid mechanism.


Asunto(s)
Analgésicos/farmacología , Aprendizaje Discriminativo/efectos de los fármacos , Morfina/farmacología , Dimensión del Dolor/efectos de los fármacos , Alcaloides de Triptamina Secologanina/farmacología , Analgésicos Opioides/farmacología , Animales , Aprendizaje Discriminativo/fisiología , Relación Dosis-Respuesta a Droga , Femenino , Masculino , Mitragyna , Antagonistas de Narcóticos/farmacología , Dimensión del Dolor/métodos , Ratas , Ratas Sprague-Dawley , Receptores Opioides mu/agonistas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA