Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nanotechnology ; 35(8)2023 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-37931315

RESUMEN

Graphene nanowalls (GNWs) can be described as extended nanosheets of graphitic carbon where the basal planes are perpendicular to a substrate. Generally, existing techniques to grow films of GNWsare based on plasma-enhanced chemical vapor deposition (PECVD) and the use of diverse substrate materials (Cu, Ni, C, etc) shaped as foils or filaments. Usually, patterned films rely on substrates priorly modified by costly cleanroom procedures. Hence, we report here the characterization, transfer and application of wafer-scale patterned GNWsfilms that were grown on Cu meshes using low-power direct-current PECVD. Reaching wall heights of ∼300 nm, mats of vertically-aligned carbon nanosheets covered square centimeter wire meshes substrates, replicating well the thread dimensions and the tens of micrometer-wide openings of the meshes. Contrastingly, the same growth conditions applied to Cu foils resulted in limited carbon deposition, mostly confined to the substrate edges. Based on the wet transfer procedure turbostratic and graphitic carbon domains co-exist in the GNWsmicrostructure. Interestingly, these nanoscaled patterned films were quite hydrophobic, being able to reverse the wetting behavior of SiO2surfaces. Finally, we show that the GNWscan also be used as the active material for C-on-Cu anodes of Li-ion battery systems.

2.
Sci Rep ; 14(1): 1658, 2024 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-38238363

RESUMEN

The properties of layered materials are significantly dependent on their lattice orientations. Thus, the growth of graphene nanowalls (GNWs) on Cu through PECVD has been increasingly studied, yet the underlying mechanisms remain unclear. In this study, we examined the GNWs/Cu interface and investigated the evolution of their microstructure using advanced Scanning transmission electron microscopy and Electron Energy Loss Spectroscopy (STEM-EELS). GNWs interface and initial root layers of comprise graphitic carbon with horizontal basal graphene (BG) planes that conform well to the catalyst surface. In the vertical section, the walls show a mix of graphitic and turbostratic carbon, while the latter becomes more noticeable close to the top edges of the GMWs film. Importantly, we identified growth process began with catalysis at Cu interface forming BG, followed by defect induction and bending at 'coalescence points' of neighboring BG, which act as nucleation sites for vertical growth. We reported that although classical thermal CVD mechanism initially dominates, growth of graphene later deviates a few nanometers from the interface to form GNWs. Nascent walls are no longer subjected to the catalytic action of Cu, and their development is dominated by the stitching of charged carbon species originating in the plasma with basal plane edges.

3.
ACS Appl Mater Interfaces ; 14(15): 17899-17910, 2022 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-35357119

RESUMEN

Graphite sheets are known to exhibit remarkable performance in applications such as heating panels and critical elements of thermal management systems. Industrial-scale production of graphite films relies on high-temperature treatment of polymers or calendering of graphite flakes; however, these methods are limited to obtaining micrometer-scale thicknesses. Herein, we report the fabrication of a flexible and power-efficient cm2-scaled heater based on a polycrystalline nanoscale-thick graphite film (NGF, ∼100 nm thick) grown by chemical vapor deposition. The stability of these NGF heaters (operational in air over the range 30-300 °C) is demonstrated by a 12-day continuous heating test, at 215 °C. The NGF exhibits a fast switching response and attains a steady peak temperature of 300 °C at a driving bias of 7.8 V (power density of 1.1 W/cm2). This excellent heating performance is attributed to the structural characteristics of the NGF, which contains well-distributed wrinkles and micrometer-wide few-layer graphene domains (characterized using conductive imaging and finite element methods, respectively). The efficiency and flexibility of the NGF device are exemplified by externally heating a 2000 µm-thick Pyrex glass vial and bringing 5 mL of water to a temperature of 96 °C (at 2.4 W/cm2). Overall, the NGF could become an excellent active material for ultrathin, flexible, and sustainable heating panels that operate at low power.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA