Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Curr Issues Mol Biol ; 46(5): 4701-4720, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38785552

RESUMEN

A crucial feature of life is its spatial organization and compartmentalization on the molecular, cellular, and tissue levels. Spatial transcriptomics (ST) technology has opened a new chapter of the sequencing revolution, emerging rapidly with transformative effects across biology. This technique produces extensive and complex sequencing data, raising the need for computational methods for their comprehensive analysis and interpretation. We developed the ST browser web tool for the interactive discovery of ST images, focusing on different functional aspects such as single gene expression, the expression of functional gene sets, as well as the inspection of the spatial patterns of cell-cell interactions. As a unique feature, our tool applies self-organizing map (SOM) machine learning to the ST data. Our SOM data portrayal method generates individual gene expression landscapes for each spot in the ST image, enabling its downstream analysis with high resolution. The performance of the spatial browser is demonstrated by disentangling the intra-tumoral heterogeneity of melanoma and the microarchitecture of the mouse brain. The integration of machine-learning-based SOM portrayal into an interactive ST analysis environment opens novel perspectives for the comprehensive knowledge mining of the organization and interactions of cellular ecosystems.

2.
Mol Med ; 30(1): 19, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38302875

RESUMEN

BACKGROUND: Clinical manifestation of prostate cancer (PCa) is highly variable. Aggressive tumors require radical treatment while clinically non-significant ones may be suitable for active surveillance. We previously developed the prognostic ProstaTrend RNA signature based on transcriptome-wide microarray and RNA-sequencing (RNA-Seq) analyses, primarily of prostatectomy specimens. An RNA-Seq study of formalin-fixed paraffin-embedded (FFPE) tumor biopsies has now allowed us to use this test as a basis for the development of a novel test that is applicable to FFPE biopsies as a tool for early routine PCa diagnostics. METHODS: All patients of the FFPE biopsy cohort were treated by radical prostatectomy and median follow-up for biochemical recurrence (BCR) was 9 years. Based on the transcriptome data of 176 FFPE biopsies, we filtered ProstaTrend for genes susceptible to FFPE-associated degradation via regression analysis. ProstaTrend was additionally restricted to genes with concordant prognostic effects in the RNA-Seq TCGA prostate adenocarcinoma (PRAD) cohort to ensure robust and broad applicability. The prognostic relevance of the refined Transcriptomic Risk Score (TRS) was analyzed by Kaplan-Meier curves and Cox-regression models in our FFPE-biopsy cohort and 9 other public datasets from PCa patients with BCR as primary endpoint. In addition, we developed a prostate single-cell atlas of 41 PCa patients from 5 publicly available studies to analyze gene expression of ProstaTrend genes in different cell compartments. RESULTS: Validation of the TRS using the original ProstaTrend signature in the cohort of FFPE biopsies revealed a relevant impact of FFPE-associated degradation on gene expression and consequently no significant association with prognosis (Cox-regression, p-value > 0.05) in FFPE tissue. However, the TRS based on the new version of the ProstaTrend-ffpe signature, which included 204 genes (of originally 1396 genes), was significantly associated with BCR in the FFPE biopsy cohort (Cox-regression p-value < 0.001) and retained prognostic relevance when adjusted for Gleason Grade Groups. We confirmed a significant association with BCR in 9 independent cohorts including 1109 patients. Comparison of the prognostic performance of the TRS with 17 other prognostically relevant PCa panels revealed that ProstaTrend-ffpe was among the best-ranked panels. We generated a PCa cell atlas to associate ProstaTrend genes with cell lineages or cell types. Tumor-specific luminal cells have a significantly higher TRS than normal luminal cells in all analyzed datasets. In addition, TRS of epithelial and luminal cells was correlated with increased Gleason score in 3 studies. CONCLUSIONS: We developed a prognostic gene-expression signature for PCa that can be applied to FFPE biopsies and may be suitable to support clinical decision-making.


Asunto(s)
Neoplasias de la Próstata , Transcriptoma , Masculino , Humanos , Adhesión en Parafina , Perfilación de la Expresión Génica , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología , Factores de Riesgo , Formaldehído , ARN , Biopsia
3.
BMC Cancer ; 23(1): 575, 2023 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-37349736

RESUMEN

BACKGROUND: Prostate cancer (PCa) is one of the most prevalent cancers worldwide. The clinical manifestations and molecular characteristics of PCa are highly variable. Aggressive types require radical treatment, whereas indolent ones may be suitable for active surveillance or organ-preserving focal therapies. Patient stratification by clinical or pathological risk categories still lacks sufficient precision. Incorporating molecular biomarkers, such as transcriptome-wide expression signatures, improves patient stratification but so far excludes chromosomal rearrangements. In this study, we investigated gene fusions in PCa, characterized potential novel candidates, and explored their role as prognostic markers for PCa progression. METHODS: We analyzed 630 patients in four cohorts with varying traits regarding sequencing protocols, sample conservation, and PCa risk group. The datasets included transcriptome-wide expression and matched clinical follow-up data to detect and characterize gene fusions in PCa. With the fusion calling software Arriba, we computationally predicted gene fusions. Following detection, we annotated the gene fusions using published databases for gene fusions in cancer. To relate the occurrence of gene fusions to Gleason Grading Groups and disease prognosis, we performed survival analyses using the Kaplan-Meier estimator, log-rank test, and Cox regression. RESULTS: Our analyses identified two potential novel gene fusions, MBTTPS2,L0XNC01::SMS and AMACR::AMACR. These fusions were detected in all four studied cohorts, providing compelling evidence for the validity of these fusions and their relevance in PCa. We also found that the number of gene fusions detected in a patient sample was significantly associated with the time to biochemical recurrence in two of the four cohorts (log-rank test, p-value < 0.05 for both cohorts). This was also confirmed after adjusting the prognostic model for Gleason Grading Groups (Cox regression, p-values < 0.05). CONCLUSIONS: Our gene fusion characterization workflow revealed two potential novel fusions specific for PCa. We found evidence that the number of gene fusions was associated with the prognosis of PCa. However, as the quantitative correlations were only moderately strong, further validation and assessment of clinical value is required before potential application.


Asunto(s)
Neoplasias de la Próstata , Masculino , Humanos , Pronóstico , Neoplasias de la Próstata/patología , Clasificación del Tumor , Transcriptoma , Fusión Génica , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo
4.
J Dtsch Dermatol Ges ; 21(5): 482-491, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37035902

RESUMEN

BACKGROUND: The histogenetic origin of atypical fibroxanthoma (AFX) and pleomorphic dermal sarcoma (PDS) has not been definitively elucidated. In addition to a fibroblastic origin, a keratinocytic differentiation is discussed due to strong clinical, histomorphological and molecular genetic similarities with undifferentiated cutaneous squamous cell carcinoma (cSCC). PATIENTS AND METHODS: 56 cases (36 AFXs, 8 PDSs, 12 undifferentiated cSCCs) were evaluated for their clinical, histomorphological, and immunohistochemical characteristics. RNA transcriptome analysis was performed on 18 cases (6 AFXs/PDSs, 6 undifferentiated cSCCs, 6 differentiated cSCCs). RESULTS: Clinically, the strong similarities in age, gender and tumor location were confirmed. Without further immunohistochemical staining, histomorphological differentiation between AFX/PDS and undifferentiated cSCC is often impossible. Principal component analysis of the RNA transcriptome analysis showed that AFX/PDS and differentiated cSCC each formed their own cluster, while the undifferentiated cSCCs fall in between these two groups, but without forming a cluster of their own. When examining differentially expressed genes (DEGs), the heat maps showed that there were cases within the undifferentiated cSCC that were more likely to be AFX/PDS than differentiated cSCC based on their expression profile. CONCLUSIONS: The results provide evidence of molecular similarities between AFX/PDS and undifferentiated cSCC and suggest a common histogenetic origin.


Asunto(s)
Carcinoma de Células Escamosas , Histiocitoma Fibroso Maligno , Sarcoma , Neoplasias Cutáneas , Humanos , Neoplasias Cutáneas/patología , Carcinoma de Células Escamosas/genética , Biomarcadores de Tumor/análisis , Sarcoma/diagnóstico , Histiocitoma Fibroso Maligno/diagnóstico , Perfilación de la Expresión Génica , Diagnóstico Diferencial
5.
Mol Psychiatry ; 26(10): 5790-5796, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-32203153

RESUMEN

Alzheimer's disease (AD) is a neurodegenerative disorder of unknown cause with complex genetic and environmental traits. While AD is extremely prevalent in human elderly, it hardly occurs in non-primate mammals and even non-human-primates develop only an incomplete form of the disease. This specificity of AD to human clearly implies a phylogenetic aspect. Still, the evolutionary dimension of AD pathomechanism remains difficult to prove and has not been established so far. To analyze the evolutionary age and dynamics of AD-associated-genes, we established the AD-associated genome-wide RNA-profile comprising both protein-coding and non-protein-coding transcripts. We than applied a systematic analysis on the conservation of splice-sites as a measure of gene-structure based on multiple alignments across vertebrates of homologs of AD-associated-genes. Here, we show that nearly all AD-associated-genes are evolutionarily old and did not originate later in evolution than not-AD-associated-genes. However, the gene-structures of loci, that exhibit AD-associated changes in their expression, evolve faster than the genome at large. While protein-coding-loci exhibit an enhanced rate of small changes in gene structure, non-coding loci show even much larger changes. The accelerated evolution of AD-associated-genes indicates a more rapid functional adaptation of these genes. In particular AD-associated non-coding-genes play an important, as yet largely unexplored, role in AD. This phylogenetic trait indicates that recent adaptive evolution of human brain is causally involved in basic principles of neurodegeneration. It highlights the necessity for a paradigmatic change of our disease-concepts and to reconsider the appropriateness of current animal-models to develop disease-modifying strategies that can be translated to human.


Asunto(s)
Enfermedad de Alzheimer , Enfermedad de Alzheimer/genética , Animales , Encéfalo , Genoma , Estudio de Asociación del Genoma Completo , Filogenia
6.
Int J Mol Sci ; 22(15)2021 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-34360781

RESUMEN

To identify potential early biomarkers of treatment response and immune-related adverse events (irAE), a pilot immune monitoring study was performed in stage IV melanoma patients by flow cytometric analysis of peripheral blood mononuclear cells (PBMC). Overall, 17 patients were treated with either nivolumab or pembrolizumab alone, or with a combination of nivolumab and ipilimumab every three weeks. Of 15 patients for which complete response assessment was available, treatment responders (n = 10) as compared to non-responders (n = 5) were characterized by enhanced PD-1 expression on CD8+ T cells immediately before treatment (median ± median absolute deviation/MAD 26.7 ± 10.4% vs. 17.2 ± 5.3%). Responders showed a higher T cell responsiveness after T cell receptor ex vivo stimulation as determined by measurement of programmed cell death 1 (PD-1) expression on CD3+ T cells before the second cycle of treatment. The percentage of CD8+ effector memory (CD8+CD45RA-CD45RO+CCR7-) T cells was higher in responders compared to non-responders before and immediately after the first cycle of treatment (median ± MAD 39.2 ± 7.3% vs. 30.5 ± 4.1% and 37.7 ± 4.6 vs. 24.0 ± 6.4). Immune-related adverse events (irAE) were accompanied by a higher percentage of activated CD4+ (CD4+CD38+HLADR+) T cells before the second treatment cycle (median ± MAD 14.9 ± 3.9% vs. 5.3 ± 0.4%). In summary, PBMC immune monitoring of immune-checkpoint inhibition (ICI) treatment in melanoma appears to be a promising approach to identify early markers of treatment response and irAEs.


Asunto(s)
Anticuerpos Monoclonales Humanizados/administración & dosificación , Inhibidores de Puntos de Control Inmunológico/administración & dosificación , Melanoma , Nivolumab/administración & dosificación , Adulto , Anciano , Anciano de 80 o más Años , Anticuerpos Monoclonales Humanizados/efectos adversos , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/patología , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/patología , Femenino , Citometría de Flujo , Humanos , Inhibidores de Puntos de Control Inmunológico/efectos adversos , Memoria Inmunológica/efectos de los fármacos , Activación de Linfocitos/efectos de los fármacos , Masculino , Melanoma/tratamiento farmacológico , Melanoma/inmunología , Melanoma/patología , Persona de Mediana Edad , Proteínas de Neoplasias/inmunología , Nivolumab/efectos adversos , Receptor de Muerte Celular Programada 1/inmunología
7.
BMC Bioinformatics ; 20(1): 664, 2019 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-31830916

RESUMEN

BACKGROUND: A lack of reproducibility has been repeatedly criticized in computational research. High throughput sequencing (HTS) data analysis is a complex multi-step process. For most of the steps a range of bioinformatic tools is available and for most tools manifold parameters need to be set. Due to this complexity, HTS data analysis is particularly prone to reproducibility and consistency issues. We have defined four criteria that in our opinion ensure a minimal degree of reproducible research for HTS data analysis. A series of workflow management systems is available for assisting complex multi-step data analyses. However, to the best of our knowledge, none of the currently available work flow management systems satisfies all four criteria for reproducible HTS analysis. RESULTS: Here we present uap, a workflow management system dedicated to robust, consistent, and reproducible HTS data analysis. uap is optimized for the application to omics data, but can be easily extended to other complex analyses. It is available under the GNU GPL v3 license at https://github.com/yigbt/uap. CONCLUSIONS: uap is a freely available tool that enables researchers to easily adhere to reproducible research principles for HTS data analyses.


Asunto(s)
Análisis de Datos , Secuenciación de Nucleótidos de Alto Rendimiento , Programas Informáticos , Algoritmos , Biología Computacional , Genoma , Reproducibilidad de los Resultados , Transcriptoma/genética
9.
Hum Mol Genet ; 24(16): 4746-63, 2015 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-26019233

RESUMEN

Genetics of gene expression (eQTLs or expression QTLs) has proved an indispensable tool for understanding biological pathways and pathomechanisms of trait-associated SNPs. However, power of most genome-wide eQTL studies is still limited. We performed a large eQTL study in peripheral blood mononuclear cells of 2112 individuals increasing the power to detect trans-effects genome-wide. Going beyond univariate SNP-transcript associations, we analyse relations of eQTLs to biological pathways, polygenetic effects of expression regulation, trans-clusters and enrichment of co-localized functional elements. We found eQTLs for about 85% of analysed genes, and 18% of genes were trans-regulated. Local eSNPs were enriched up to a distance of 5 Mb to the transcript challenging typically implemented ranges of cis-regulations. Pathway enrichment within regulated genes of GWAS-related eSNPs supported functional relevance of identified eQTLs. We demonstrate that nearest genes of GWAS-SNPs might frequently be misleading functional candidates. We identified novel trans-clusters of potential functional relevance for GWAS-SNPs of several phenotypes including obesity-related traits, HDL-cholesterol levels and haematological phenotypes. We used chromatin immunoprecipitation data for demonstrating biological effects. Yet, we show for strongly heritable transcripts that still little trans-chromosomal heritability is explained by all identified trans-eSNPs; however, our data suggest that most cis-heritability of these transcripts seems explained. Dissection of co-localized functional elements indicated a prominent role of SNPs in loci of pseudogenes and non-coding RNAs for the regulation of coding genes. In summary, our study substantially increases the catalogue of human eQTLs and improves our understanding of the complex genetic regulation of gene expression, pathways and disease-related processes.


Asunto(s)
Regulación de la Expresión Génica , Leucocitos Mononucleares , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , Secuencias Reguladoras de Ácidos Nucleicos , Femenino , Estudio de Asociación del Genoma Completo , Humanos , Masculino
10.
RNA ; 21(5): 801-12, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25802408

RESUMEN

Large-scale RNA sequencing has revealed a large number of long mRNA-like transcripts (lncRNAs) that do not code for proteins. The evolutionary history of these lncRNAs has been notoriously hard to study systematically due to their low level of sequence conservation that precludes comprehensive homology-based surveys and makes them nearly impossible to align. An increasing number of special cases, however, has been shown to be at least as old as the vertebrate lineage. Here we use the conservation of splice sites to trace the evolution of lncRNAs. We show that >85% of the human GENCODE lncRNAs were already present at the divergence of placental mammals and many hundreds of these RNAs date back even further. Nevertheless, we observe a fast turnover of intron/exon structures. We conclude that lncRNA genes are evolutionary ancient components of vertebrate genomes that show an unexpected and unprecedented evolutionary plasticity. We offer a public web service (http://splicemap.bioinf.uni-leipzig.de) that allows to retrieve sets of orthologous splice sites and to produce overview maps of evolutionarily conserved splice sites for visualization and further analysis. An electronic supplement containing the ncRNA data sets used in this study is available at http://www.bioinf.uni-leipzig.de/publications/supplements/12-001.


Asunto(s)
Secuencia Conservada , Evolución Molecular , Sitios de Empalme de ARN/genética , ARN Largo no Codificante/genética , Animales , Mapeo Cromosómico , Humanos , Mamíferos/genética , Filogenia , Primates/genética , Empalme del ARN , ARN Largo no Codificante/metabolismo , ARN Mensajero/genética , Análisis de Secuencia de ARN
11.
Nature ; 464(7286): 250-5, 2010 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-20164839

RESUMEN

Genome sequencing of Helicobacter pylori has revealed the potential proteins and genetic diversity of this prevalent human pathogen, yet little is known about its transcriptional organization and noncoding RNA output. Massively parallel cDNA sequencing (RNA-seq) has been revolutionizing global transcriptomic analysis. Here, using a novel differential approach (dRNA-seq) selective for the 5' end of primary transcripts, we present a genome-wide map of H. pylori transcriptional start sites and operons. We discovered hundreds of transcriptional start sites within operons, and opposite to annotated genes, indicating that complexity of gene expression from the small H. pylori genome is increased by uncoupling of polycistrons and by genome-wide antisense transcription. We also discovered an unexpected number of approximately 60 small RNAs including the epsilon-subdivision counterpart of the regulatory 6S RNA and associated RNA products, and potential regulators of cis- and trans-encoded target messenger RNAs. Our approach establishes a paradigm for mapping and annotating the primary transcriptomes of many living species.


Asunto(s)
Perfilación de la Expresión Génica , Genoma Bacteriano/genética , Infecciones por Helicobacter/microbiología , Helicobacter pylori/genética , ARN Bacteriano/genética , Regiones no Traducidas 5'/genética , Secuencia de Aminoácidos , Secuencia de Bases , Células Cultivadas , Humanos , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , Operón/genética , ARN Bacteriano/química , ARN Bacteriano/metabolismo , ARN Mensajero/genética , ARN no Traducido , Alineación de Secuencia , Transcripción Genética/genética
12.
NPJ Precis Oncol ; 8(1): 23, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38291217

RESUMEN

Until recently the application of artificial intelligence (AI) in precision oncology was confined to activities in drug development and had limited impact on the personalisation of therapy. Now, a number of approaches have been proposed for the personalisation of drug and cell therapies with AI applied to therapy design, planning and delivery at the patient's bedside. Some drug and cell-based therapies are already tuneable to the individual to optimise efficacy, to reduce toxicity, to adapt the dosing regime, to design combination therapy approaches and, preclinically, even to personalise the receptor design of cell therapies. Developments in AI-based healthcare are accelerating through the adoption of foundation models, and generalist medical AI models have been proposed. The application of these approaches in therapy design is already being explored and realistic short-term advances include the application to the personalised design and delivery of drugs and cell therapies. With this pace of development, the limiting step to adoption will likely be the capacity and appropriateness of regulatory frameworks. This article explores emerging concepts and new ideas for the regulation of AI-enabled personalised cancer therapies in the context of existing and in development governance frameworks.

13.
Leukemia ; 38(2): 372-382, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38184754

RESUMEN

B-cell maturation antigen (BCMA)-targeting chimeric antigen receptor (CAR) T cells revolutionized the treatment of relapsed/refractory multiple myeloma (RRMM). However, data on cellular (CAR) T cell dynamics and the association with response, resistance or the occurrence of cytokine release syndrome (CRS) are limited. Therefore, we performed a comprehensive flow cytometry analysis of 27 RRMM patients treated with Idecabtagene vicleucel (Ide-cel) to assess the expansion capacity, persistence and effects on bystander cells of BCMA-targeting CAR T cells. Additionally, we addressed side effects, like cytokine release syndrome (CRS) and cytopenia. Our results show that in vivo expansion of CD8+ CAR T cells is correlated to response, however persistence is not essential for durable remission in RRMM patients. In addition, our data provide evidence, that an increased fraction of CD8+ T cells at day of leukapheresis in combination with successful lymphodepletion positively influence the outcome. We show that patients at risk for higher-grade CRS can be identified already prior to lymphodepletion. Our extensive characterization contributes to a better understanding of the dynamics and effects of BCMA-targeting CAR T cells, in order to predict the response of individual patients as well as side effects, which can be counteracted at an early stage or even prevented.


Asunto(s)
Inmunoterapia Adoptiva , Mieloma Múltiple , Humanos , Inmunoterapia Adoptiva/efectos adversos , Inmunoterapia Adoptiva/métodos , Mieloma Múltiple/tratamiento farmacológico , Linfocitos T CD8-positivos , Síndrome de Liberación de Citoquinas , Antígeno de Maduración de Linfocitos B
14.
Nat Cancer ; 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38641734

RESUMEN

Markers that predict response and resistance to chimeric antigen receptor (CAR) T cells in relapsed/refractory multiple myeloma are currently missing. We subjected mononuclear cells isolated from peripheral blood and bone marrow before and after the application of approved B cell maturation antigen-directed CAR T cells to single-cell multiomic analyses to identify markers associated with resistance and early relapse. Differences between responders and nonresponders were identified at the time of leukapheresis. Nonresponders showed an immunosuppressive microenvironment characterized by increased numbers of monocytes expressing the immune checkpoint molecule CD39 and suppressed CD8+ T cell and natural killer cell function. Analysis of CAR T cells showed cytotoxic and exhausted phenotypes in hyperexpanded clones compared to low/intermediate expanded clones. We identified potential immunotherapy targets on CAR T cells, like PD1, to improve their functionality and durability. Our work provides evidence that an immunosuppressive microenvironment causes resistance to CAR T cell therapies in multiple myeloma.

15.
Bioinformatics ; 28(11): 1471-9, 2012 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-22492638

RESUMEN

MOTIVATION: Tiling arrays have been a mainstay of unbiased genome-wide transcriptomics over the last decade. Currently available approaches to identify expressed or differentially expressed segments in tiling array data are limited in the recovery of the underlying gene structures and require several parameters that are intensity-related or partly dataset-specific. RESULTS: We have developed TileShuffle, a statistical approach that identifies transcribed and differentially expressed segments as significant differences from the background distribution while considering sequence-specific affinity biases and cross-hybridization. It avoids dataset-specific parameters in order to provide better comparability of different tiling array datasets, based on different technologies or array designs. TileShuffle detects highly and differentially expressed segments in biological data with significantly lower false discovery rates under equal sensitivities than commonly used methods. Also, it is clearly superior in the recovery of exon-intron structures. It further provides window z-scores as a normalized and robust measure for visual inspection. AVAILABILITY: The R package including documentation and examples is freely available at http://www.bioinf.uni-leipzig.de/Software/TileShuffle/


Asunto(s)
Genoma Humano , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Transcriptoma , Exones , Estudio de Asociación del Genoma Completo , Humanos , Intrones , Programas Informáticos
16.
Front Immunol ; 14: 1156493, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37287978

RESUMEN

Introduction: The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that regulates a broad range of target genes involved in the xenobiotic response, cell cycle control and circadian rhythm. AhR is constitutively expressed in macrophages (Mϕ), acting as key regulator of cytokine production. While proinflammatory cytokines, i.e., IL-1ß, IL-6, IL-12, are suppressed through AhR activation, anti-inflammatory IL-10 is induced. However, the underlying mechanisms of those effects and the importance of the specific ligand structure are not yet completely understood. Methods: Therefore, we have compared the global gene expression pattern in activated murine bone marrow-derived macrophages (BMMs) subsequently to exposure with either benzo[a]pyrene (BaP) or indole-3-carbinol (I3C), representing high-affinity vs. low-affinity AhR ligands, respectively, by means of mRNA sequencing. AhR dependency of observed effects was proved using BMMs from AhR-knockout (Ahr-/-) mice. Results and discussion: In total, more than 1,000 differentially expressed genes (DEGs) could be mapped, covering a plethora of AhR-modulated effects on basal cellular processes, i.e., transcription and translation, but also immune functions, i.e., antigen presentation, cytokine production, and phagocytosis. Among DEGs were genes that are already known to be regulated by AhR, i.e., Irf1, Ido2, and Cd84. However, we identified DEGs not yet described to be AhR-regulated in Mϕ so far, i.e., Slpi, Il12rb1, and Il21r. All six genes likely contribute to shifting the Mϕ phenotype from proinflammatory to anti-inflammatory. The majority of DEGs induced through BaP were not affected through I3C exposure, probably due to higher AhR affinity of BaP in comparison to I3C. Mapping of known aryl hydrocarbon response element (AHRE) sequence motifs in identified DEGs revealed more than 200 genes not possessing any AHRE, and therefore being not eligible for canonical regulation. Bioinformatic approaches modeled a central role of type I and type II interferons in the regulation of those genes. Additionally, RT-qPCR and ELISA confirmed a AhR-dependent expressional induction and AhR-dependent secretion of IFN-γ in response to BaP exposure, suggesting an auto- or paracrine activation pathway of Mϕ.


Asunto(s)
Interferón gamma , Transcriptoma , Animales , Ratones , Antiinflamatorios/farmacología , Citocinas/metabolismo , Interferón gamma/metabolismo , Ligandos , Macrófagos , Receptores de Hidrocarburo de Aril/metabolismo
17.
Genome Biol ; 24(1): 287, 2023 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-38098113

RESUMEN

BACKGROUND: The coordinated transcriptional regulation of activated T-cells is based on a complex dynamic behavior of signaling networks. Given an external stimulus, T-cell gene expression is characterized by impulse and sustained patterns over the course. Here, we analyze the temporal pattern of activation across different T-cell populations to develop consensus gene signatures for T-cell activation. RESULTS: Here, we identify and verify general biomarker signatures robustly evaluating T-cell activation in a time-resolved manner. We identify time-resolved gene expression profiles comprising 521 genes of up to 10 disjunct time points during activation and different polarization conditions. The gene signatures include central transcriptional regulators of T-cell activation, representing successive waves as well as sustained patterns of induction. They cover sustained repressed, intermediate, and late response expression rates across multiple T-cell populations, thus defining consensus biomarker signatures for T-cell activation. In addition, intermediate and late response activation signatures in CAR T-cell infusion products are correlated to immune effector cell-associated neurotoxicity syndrome. CONCLUSION: This study is the first to describe temporally resolved gene expression patterns across T-cell populations. These biomarker signatures are a valuable source, e.g., monitoring transcriptional changes during T-cell activation with a reasonable number of genes, annotating T-cell states in single-cell transcriptome studies, or assessing dysregulated functions of human T-cell immunity.


Asunto(s)
Perfilación de la Expresión Génica , Transcriptoma , Humanos , Consenso , Regulación de la Expresión Génica , Biomarcadores
18.
Front Immunol ; 13: 994885, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36248848

RESUMEN

Anti-CD19 CAR-T cell immunotherapy is a hopeful treatment option for patients with B cell lymphomas, however it copes with partly severe adverse effects like neurotoxicity. Single-cell resolved molecular data sets in combination with clinical parametrization allow for comprehensive characterization of cellular subpopulations, their transcriptomic states, and their relation to the adverse effects. We here present a re-analysis of single-cell RNA sequencing data of 24 patients comprising more than 130,000 cells with focus on cellular states and their association to immune cell related neurotoxicity. For this, we developed a single-cell data portraying workflow to disentangle the transcriptional state space with single-cell resolution and its analysis in terms of modularly-composed cellular programs. We demonstrated capabilities of single-cell data portraying to disentangle transcriptional states using intuitive visualization, functional mining, molecular cell stratification, and variability analyses. Our analysis revealed that the T cell composition of the patient's infusion product as well as the spectrum of their transcriptional states of cells derived from patients with low ICANS grade do not markedly differ from those of cells from high ICANS patients, while the relative abundancies, particularly that of cycling cells, of LAG3-mediated exhaustion and of CAR positive cells, vary. Our study provides molecular details of the transcriptomic landscape with possible impact to overcome neurotoxicity.


Asunto(s)
Síndromes de Neurotoxicidad , Receptores Quiméricos de Antígenos , Antígenos CD19 , Humanos , Inmunoterapia Adoptiva/efectos adversos , Síndromes de Neurotoxicidad/genética , Receptores Quiméricos de Antígenos/genética , Linfocitos T
19.
FEBS Open Bio ; 12(2): 480-493, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34923780

RESUMEN

One of the major challenges in cancer research is finding models that closely resemble tumors within patients. Human tissue slice cultures are a promising approach to provide a model of the patient's tumor biology ex vivo. Recently, it was shown that these slices can be successfully analyzed by whole transcriptome sequencing as well as automated histochemistry, increasing their usability as preclinical model. Glioblastoma multiforme (GBM) is a highly malignant brain tumor with poor prognosis and little is known about its genetic background and heterogeneity regarding therapy success. In this study, tissue from the tumors of 25 patients with primary GBM was processed into slice cultures and treated with standard therapy (irradiation and temozolomide). Total RNA sequencing and automated histochemistry were performed to enable analysis of treatment effects at a transcriptional and histological level. Slice cultures from long-term survivors (overall survival [OS] > 24 months) exhibited more apoptosis than cultures from patients with shorter OS. Proliferation within these slices was slightly increased in contrast to other groups, but not significantly. Among all samples, 58 protein-coding genes were upregulated and 32 downregulated in treated vs. untreated slice cultures. In general, an upregulation of DNA damage-related and cell cycle checkpoint genes as well as enrichment of genotoxicity pathways and p53-dependent signaling was found after treatment. Overall, the current study reproduces knowledge from former studies regarding the feasibility of transcriptomic analyses and automated histology in tissue slice cultures. We further demonstrate that the experimental data merge with the clinical follow-up of the patients, which improves the applicability of our model system.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Neoplasias Encefálicas/genética , Glioblastoma/metabolismo , Humanos , Análisis de Secuencia de ARN , Temozolomida/farmacología , Temozolomida/uso terapéutico , Secuenciación del Exoma
20.
J Immunother Cancer ; 10(5)2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35577501

RESUMEN

Immunotherapy with gene engineered CAR and TCR transgenic T-cells is a transformative treatment in cancer medicine. There is a rich pipeline with target antigens and sophisticated technologies that will enable establishing this novel treatment not only in rare hematological malignancies, but also in common solid tumors. The T2EVOLVE consortium is a public private partnership directed at accelerating the preclinical development of and increasing access to engineered T-cell immunotherapies for cancer patients. A key ambition in T2EVOLVE is to assess the currently available preclinical models for evaluating safety and efficacy of engineered T cell therapy and developing new models and test parameters with higher predictive value for clinical safety and efficacy in order to improve and accelerate the selection of lead T-cell products for clinical translation. Here, we review existing and emerging preclinical models that permit assessing CAR and TCR signaling and antigen binding, the access and function of engineered T-cells to primary and metastatic tumor ligands, as well as the impact of endogenous factors such as the host immune system and microbiome. Collectively, this review article presents a perspective on an accelerated translational development path that is based on innovative standardized preclinical test systems for CAR and TCR transgenic T-cell products.


Asunto(s)
Neoplasias , Receptores Quiméricos de Antígenos , Humanos , Inmunoterapia , Inmunoterapia Adoptiva , Neoplasias/terapia , Linfocitos T
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA