Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
J Immunol ; 200(5): 1817-1828, 2018 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-29374076

RESUMEN

Indirect acute respiratory distress syndrome (iARDS) is caused by a nonpulmonary inflammatory process resulting from insults such as nonpulmonary sepsis. Neutrophils are thought to play a significant role in mediating ARDS, with the development of iARDS being characterized by dysregulation and recruitment of activated neutrophils into the lung. Recently, a novel mechanism of microbial killing by neutrophils was identified through the formation of neutrophil extracellular traps (NETs). NETs are composed of large webs of decondensed chromatin released from activated neutrophils into the extracellular space; they are regulated by the enzyme peptidylarginine deiminase 4 (PAD4) through mediation of chromatin decondensation via citrullination of target histones. Components of NETs have been implicated in ARDS. However, it is unknown whether there is any pathological significance of NET formation in ARDS caused indirectly by nonpulmonary insult. We subjected PAD4-/- mice and wild-type mice to a "two-hit" model of hypovolemic shock (fixed-pressure hemorrhage [Hem]) followed by septic cecal ligation and puncture (CLP) insult (Hem/CLP). Mice were hemorrhaged and resuscitated; 24 h after Hem, mice were then subjected to CLP. Overall, PAD4 deletion led to an improved survival as compared with wild-type mice. PAD4-/- mice displayed a marked decrease in neutrophil influx into the lung, as well decreased presence of proinflammatory mediators. PAD4-/- mice were also able to maintain baseline kidney function after Hem/CLP. These data taken together suggest PAD4-mediated NET formation contributes to the mortality associated with shock/sepsis and may play a role in the pathobiology of end organ injury in response to combined hemorrhage plus sepsis.


Asunto(s)
Hidrolasas/metabolismo , Insuficiencia Multiorgánica/metabolismo , Sepsis/metabolismo , Choque Hemorrágico/metabolismo , Animales , Cromatina/metabolismo , Modelos Animales de Enfermedad , Trampas Extracelulares/metabolismo , Histonas/metabolismo , Pulmón/metabolismo , Pulmón/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Insuficiencia Multiorgánica/patología , Activación Neutrófila/fisiología , Neutrófilos/metabolismo , Arginina Deiminasa Proteína-Tipo 4 , Síndrome de Dificultad Respiratoria/metabolismo , Síndrome de Dificultad Respiratoria/patología , Sepsis/patología , Choque Hemorrágico/patología
2.
J Immunol ; 198(1): 318-334, 2017 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-27852744

RESUMEN

Candida albicans infection produces elongated hyphae resistant to phagocytic clearance compelling alternative neutrophil effector mechanisms to destroy these physically large microbial structures. Additionally, all tissue-based neutrophilic responses to fungal infections necessitate contact with the extracellular matrix (ECM). Neutrophils undergo a rapid, ECM-dependent mechanism of homotypic aggregation and NETosis in response to C. albicans mediated by the ß2 integrin, complement receptor 3 (CR3, CD11b/CD18, αMß2). Neither homotypic aggregation nor NETosis occurs when human neutrophils are exposed either to immobilized fungal ß-glucan or to C. albicans hyphae without ECM. The current study provides a mechanistic basis to explain how matrix controls the antifungal effector functions of neutrophils under conditions that preclude phagocytosis. We show that CR3 ligation initiates a complex mechanism of integrin cross-talk resulting in differential regulation of the ß1 integrins VLA3 (α3ß1) and VLA5 (α5ß1). These ß1 integrins control distinct antifungal effector functions in response to either fungal ß-glucan or C. albicans hyphae and fibronectin, with VLA3 inducing homotypic aggregation and VLA5 regulating NETosis. These integrin-dependent effector functions are controlled temporally whereby VLA5 and CR3 induce rapid, focal NETosis early after binding fibronectin and ß-glucan. Within minutes, CR3 undergoes inside-out auto-activation that drives the downregulation of VLA5 and the upregulation of VLA3 to support neutrophil swarming and aggregation. Forcing VLA5 to remain in the activated state permits NETosis but prevents homotypic aggregation. Therefore, CR3 serves as a master regulator during the antifungal neutrophil response, controlling the affinity states of two different ß1 integrins, which in turn elicit distinct effector functions.


Asunto(s)
Matriz Extracelular/inmunología , Trampas Extracelulares/inmunología , Integrina alfa3beta1/inmunología , Neutrófilos/inmunología , beta-Glucanos/inmunología , Candida albicans/inmunología , Separación Celular , Transferencia Resonante de Energía de Fluorescencia , Proteínas Fúngicas/inmunología , Humanos , Antígeno de Macrófago-1/inmunología , Microscopía Electrónica de Rastreo , Receptor Cross-Talk/inmunología
3.
Proc Natl Acad Sci U S A ; 113(11): 2898-903, 2016 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-26929377

RESUMEN

Mechanobiology relates cellular processes to mechanical signals, such as determining the effect of variations in matrix stiffness with cell tractions. Cell traction recorded via traction force microscopy (TFM) commonly takes place on materials such as polyacrylamide- and polyethylene glycol-based gels. Such experiments remain limited in physiological relevance because cells natively migrate within complex tissue microenvironments that are spatially heterogeneous and hierarchical. Yet, TFM requires determination of the matrix constitutive law (stress-strain relationship), which is not always readily available. In addition, the currently achievable displacement resolution limits the accuracy of TFM for relatively small cells. To overcome these limitations, and increase the physiological relevance of in vitro experimental design, we present a new approach and a set of associated biomechanical signatures that are based purely on measurements of the matrix's displacements without requiring any knowledge of its constitutive laws. We show that our mean deformation metrics (MDM) approach can provide significant biophysical information without the need to explicitly determine cell tractions. In the process of demonstrating the use of our MDM approach, we succeeded in expanding the capability of our displacement measurement technique such that it can now measure the 3D deformations around relatively small cells (∼10 micrometers), such as neutrophils. Furthermore, we also report previously unseen deformation patterns generated by motile neutrophils in 3D collagen gels.


Asunto(s)
Forma de la Célula , Fenómenos Biomecánicos , Adhesión Celular , Técnicas de Cultivo de Célula/instrumentación , Movimiento Celular , Forma de la Célula/fisiología , Microambiente Celular , Factores Quimiotácticos/farmacología , Quimiotaxis de Leucocito/efectos de los fármacos , Colágeno Tipo I , Fuerza Compresiva , Geles , Humanos , Microscopía Confocal , Modelos Biológicos , N-Formilmetionina Leucil-Fenilalanina/farmacología , Neutrófilos/efectos de los fármacos , Neutrófilos/fisiología , Neutrófilos/ultraestructura , Resistencia al Corte , Estrés Mecánico , Propiedades de Superficie , Imagen de Lapso de Tiempo
4.
Curr Opin Hematol ; 24(1): 66-71, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27820735

RESUMEN

PURPOSE OF REVIEW: This review will focus on in-vivo findings derived from animal models of sepsis regarding the trapping role of neutrophil extracellular traps (NETs) which is difficult to assess ex vivo. The NETotic response of neutrophils at sites of sterile injury or autoimmune disease is destructive as no antimicrobial advantage to the host is realized and dampening NETosis is largely beneficial. In early stages of local infection or in sepsis, the trapping function of NETs may help abscess formation and limit microbial dissemination. RECENT FINDINGS: The trapping function of NETs limits bacterial dissemination keeping an abscess from becoming bacteremic or confining tissue infection to local sites. Once containment is lost and disease has progressed, the best therapeutic approach suggested by animal studies to date is to inhibit protein arginine deiminase 4 and prevent NETosis rather than attempting to neutralize caustic NET components. Prognostic value may best be realized by taking cell free DNA, citrulllinated histones, neutrophil function and counts of immature granulocytes into consideration rather than rely on any one measure alone. SUMMARY: The trapping function of NETs may supercede the value of antimicrobial function in the early phases of sepsis such that degradation of the DNA backbone is contraindicated.


Asunto(s)
Trampas Extracelulares/inmunología , Trampas Extracelulares/metabolismo , Neutrófilos/inmunología , Neutrófilos/metabolismo , Sepsis/etiología , Sepsis/metabolismo , Animales , Bacterias/inmunología , Desoxirribonucleasas/metabolismo , Modelos Animales de Enfermedad , Histonas/metabolismo , Humanos , Hidrolasas/metabolismo , Infiltración Neutrófila , Arginina Deiminasa Proteína-Tipo 4 , Desiminasas de la Arginina Proteica , Especies Reactivas de Oxígeno/metabolismo , Sepsis/patología , Transducción de Señal
5.
J Infect Dis ; 213(4): 634-9, 2016 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-26333942

RESUMEN

Release of neutrophil extracellular traps (NETs) is a significant antimicrobial host defense mechanism in adults. In neonates, fungal sepsis is a frequent cause of morbidity and mortality and may be a consequence of inadequate neutrophil defense functions. Like neutrophils from adult donors, we found that neutrophils from neonates formed robust cellular aggregates and released NETs in response to fungal ß-glucan and Candida albicans hyphae when presented with extracellular matrix. Therefore, in response to fungal stimulation, neonatal neutrophils are capable of NETosis. Neonate susceptibility to fungal infections may not be due to an inability of their neutrophils to produce NETs.


Asunto(s)
Candida albicans/inmunología , Trampas Extracelulares/metabolismo , Neutrófilos/inmunología , Adulto , Humanos , Hifa/inmunología , Recién Nacido , beta-Glucanos/inmunología
6.
J Biol Chem ; 290(6): 3752-63, 2015 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-25525264

RESUMEN

Neutrophils are capable of switching from integrin-dependent motility on two-dimensional substrata to integrin-independent motion following entry into the confined three-dimensional matrix of an afflicted tissue. However, whether integrins still maintain a regulatory role for cell traction generation and cell locomotion under the physical confinement of the three-dimensional matrix is unknown, and this is challenging to deduce from motility studies alone. Using three-dimensional traction force microscopy and a double hydrogel sandwich system, we determined the three-dimensional spatiotemporal traction forces of motile neutrophils at unprecedented resolution and show, for the first time, that entry into a highly confined space (2.5D) is a sufficient trigger to convert to integrin-independent migration. We find that integrins exert a significant regulatory role in determining the magnitude and spatial distribution of tractions and cell speed on confined cells. We also find that 90% of neutrophil tractions are in the out-of-plane axis, and this may be a fundamental element of neutrophil traction force generation.


Asunto(s)
Movimiento Celular , Matriz Extracelular/metabolismo , Integrinas/metabolismo , Neutrófilos/fisiología , Adhesión Celular , Matriz Extracelular/química , Humanos , Hidrogel de Polietilenoglicol-Dimetacrilato/farmacología , Neutrófilos/efectos de los fármacos , Neutrófilos/metabolismo
7.
J Immunol ; 190(8): 4136-48, 2013 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-23509360

RESUMEN

The armament of neutrophil-mediated host defense against pathogens includes the extrusion of a lattice of DNA and microbicidal enzymes known as neutrophil extracellular traps (NETs). The receptor/ligand interactions and intracellular signaling mechanisms responsible for elaborating NETs were determined for the response to Candida albicans. Because the host response of extravasated neutrophils to mycotic infections within tissues necessitates contact with extracellular matrix, this study also identified a novel and significant regulatory role for the ubiquitous matrix component fibronectin (Fn) in NET release. We report that recognition of purified fungal pathogen-associated molecular pattern ß-glucan by human neutrophils causes rapid (≤ 30 min) homotypic aggregation and NET release by a mechanism that requires Fn. Alone, immobilized ß-glucan induces reactive oxygen species (ROS) production but not NET release, whereas in the context of Fn, ROS production is suppressed and NETs are extruded. NET release to Fn with ß-glucan is robust, accounting for 17.2 ± 3.4% of total DNA in the cell population. Release is dependent on ß-glucan recognition by complement receptor 3 (CD11b/CD18), but not Dectin-1, or ROS. The process of NET release included filling of intracellular vesicles with nuclear material that was eventually extruded. We identify a role for ERK in homotypic aggregation and NET release. NET formation to C. albicans hyphae was also found to depend on ß-glucan recognition by complement receptor 3, require Fn and ERK but not ROS, and result in hyphal destruction. We report a new regulatory mechanism of NETosis in which the extracellular matrix is a key component of the rapid antifungal response.


Asunto(s)
Candida albicans/inmunología , Matriz Extracelular/inmunología , Neutrófilos/inmunología , Neutrófilos/metabolismo , Candida albicans/citología , Candida albicans/metabolismo , Agregación Celular/inmunología , Matriz Extracelular/metabolismo , Fibronectinas/fisiología , Humanos , Antígeno de Macrófago-1 , Neutrófilos/citología , Especies Reactivas de Oxígeno/inmunología , Especies Reactivas de Oxígeno/metabolismo , Estallido Respiratorio/inmunología , Factores de Tiempo , beta-Glucanos/metabolismo
8.
Shock ; 62(2): 165-172, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38813923

RESUMEN

ABSTRACT: Background: The recruitment of neutrophils to sites of localized injury or infection is initiated by changes on the surface of endothelial cells located in proximity to tissue damage. Inflammatory mediators, such as TNF-α, increase surface expression of adhesive ligands and receptors on the endothelial surface to which neutrophils tether and adhere. Neutrophils then transit through the activated endothelium to reach sites of tissue injury with little lasting vascular injury. However, in cases of sepsis, the interaction of endothelial cells with highly activated neutrophils can cause damage vascular damage. The identification of molecules that are essential for neutrophil diapedesis may reveal targets of therapeutic opportunity for preservation of endothelial function in the presence of critical illness. We tested the hypothesis that inhibition of neutrophil ß1 integrin very late antigen-3 (VLA-3; α3ß1) and/or inhibition of the tetraspanin (TM4) family member CD151 would protect against neutrophil-mediated loss of endothelial function. Methods: Blood was obtained from septic patients or healthy donors. Neutrophils were purified, and aliquots were treated with/without proinflammatory molecules. Confluent human umbilical vascular endothelial cells were activated with TNF-α. Electric cell impedance sensing was used to determine monolayer resistance over time after the addition of neutrophils that were treated with blocking antibodies against VLA-3 and/or CD151 or isotype controls. Groups (depending on relevancy) were analyzed by Mann-Whitney U test, Wilcoxon test, or repeated-measures one-way ANOVA. Results: Neutrophils from septic patients and neutrophils activated ex vivo reduced endothelial monolayer resistance to a greater extent than neutrophils from healthy donors. Antibody blockade of VLA-3 and/or CD151 significantly reduced activation-associated endothelial damage. Similar findings were demonstrated on fibronectin, collagen I, collagen IV, and laminin, suggesting that neutrophil surface VLA-3 and CD151 are responsible for endothelial damage regardless of substrata and are likely to be operative in all bodily tissues. Conclusion: This report identifies VLA-3 and CD151 on the activated human neutrophil, which are responsible for damage to endothelial function. Targeting these molecules in vivo may demonstrate preservation of organ function during critical illness.


Asunto(s)
Integrina alfa3beta1 , Neutrófilos , Sepsis , Tetraspanina 24 , Humanos , Neutrófilos/metabolismo , Tetraspanina 24/metabolismo , Sepsis/metabolismo , Integrina alfa3beta1/metabolismo , Masculino , Femenino , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Persona de Mediana Edad , Células Endoteliales/metabolismo , Endotelio Vascular/metabolismo
9.
bioRxiv ; 2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-38260340

RESUMEN

Understanding morphological variation is an important task in many areas of computational biology. Recent studies have focused on developing computational tools for the task of sub-image selection which aims at identifying structural features that best describe the variation between classes of shapes. A major part in assessing the utility of these approaches is to demonstrate their performance on both simulated and real datasets. However, when creating a model for shape statistics, real data can be difficult to access and the sample sizes for these data are often small due to them being expensive to collect. Meanwhile, the current landscape of generative models for shapes has been mostly limited to approaches that use black-box inference-making it difficult to systematically assess the power and calibration of sub-image models. In this paper, we introduce the α-shape sampler: a probabilistic framework for generating realistic 2D and 3D shapes based on probability distributions which can be learned from real data. We demonstrate our framework using proof-of-concept examples and in two real applications in biology where we generate (i) 2D images of healthy and septic neutrophils and (ii) 3D computed tomography (CT) scans of primate mandibular molars. The α-shape sampler R package is open-source and can be downloaded at https://github.com/lcrawlab/ashapesampler.

10.
J Biol Chem ; 287(5): 3337-48, 2012 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-22158618

RESUMEN

Neutrophils provide an innate immune response to tissues infected with fungal pathogens such as Candida albicans. This response is tightly regulated in part through the interaction of integrins with extracellular matrix ligands that are distributed within infected tissues. The ß(2) integrin, CR3 (CD11b/CD18), is unique among integrins in containing a lectin-like domain that binds the fungal pathogen-associated molecular pattern ß-glucan and serves as the dominant receptor for recognition of fungal pathogens by human granulocytes. ß-Glucan, when isolated in soluble form, has been shown to be a safe and effective immune potentiator when administered therapeutically. Currently a pharmaceutical grade preparation of ß-glucan is in several clinical trials with an anti-cancer indication. CR3 binding of extracellular matrix, carbohydrate, or both ligands simultaneously differentially regulates neutrophil function through a mechanism not clearly understood. Using FRET reporters, we interrogated the effects of soluble ß-glucan on intracellular and extracellular CR3 structure. Although the canonical CR3 ligand fibrinogen induced full activation, ß-glucan alone or in conjunction with fibrinogen stabilized an intermediate conformation with moderate headpiece extension and full cytoplasmic tail separation. A set of phosphopeptides differentially regulated by ß-glucan in a CR3-dependent manner were identified using functional proteomics and found to be enriched for signaling molecules and proteins involved in transcriptional regulation, mRNA processing, and alternative splicing. These data confirm that CR3 is a signaling pattern recognition receptor for ß-glucan and represent the first direct evidence of soluble ß-glucan binding and affecting a signaling-competent intermediate CR3 conformation on living cells.


Asunto(s)
Antígeno de Macrófago-1/metabolismo , Activación Neutrófila/efectos de los fármacos , Neutrófilos/metabolismo , Transducción de Señal/efectos de los fármacos , beta-Glucanos/farmacología , Fibrinógeno/farmacología , Humanos , Estructura Terciaria de Proteína
11.
Wound Repair Regen ; 21(4): 624-633, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23758142

RESUMEN

The role of Toll-like receptor 4 (TLR4) in the regulation of inflammation and fibrosis in sterile wounds was investigated in TLR4 signal-deficient (C3H/HeJ or TLR4(-/-) ) and control mice using the subcutaneously implanted polyvinyl alcohol sponge wound model. Total and differential wound cell counts 1, 3, and 7 days after injury did not differ between C3H/HeJ and C3H/HeOuJ animals. Blood monocytes from both strains expressed CCR2 equally. Day one wounds in C3H/HeJ mice contained fewer Gr-1(high) wound macrophages, CCL3, and CCL5, and more CCL17 than those in controls. The accumulation of CCL2, CX3CL1, tumor necrosis factor-α, interleukin (IL)-6, IL-10, IL-12, and interferon-γ in wound fluids was not TLR4 dependent. Wound macrophages from C3H/HeJ and C3H/HeOuJ mice expressed CCR4 and CCR5, but not CCR1 or CCR3. Wound macrophage recruitment was not altered in CCR5(-/-) mice or in C3H/HeOuJ animals injected with neutralizing anti-CCL3 and anti-CCL5 antibodies. Neutralization of the CCR4 ligand CCL17 in C3H/HeJ mice did not alter wound macrophage populations. There was a twofold increase in collagen content and number of neovessels in 21-day-old wounds in C3H/HeJ vs. C3H/HeOuJ mice. There were no differences between strains in the number of myofibroblasts in the wounds 7 or 21 days postwounding. The increased fibrosis and angiogenesis in wounds from /HeJ mice correlated with higher concentrations of transforming growth factor-ß and fibroblast growth factor 2 in wound fluids from these animals. Wound fluids did not contain detectable lipopolysaccharide and did not induce IκBα degradation in J774.A1 macrophages. Results support a role for endogenous ligands of TLR4 in the regulation of inflammation and repair in sterile wounds.


Asunto(s)
Fibrosis/inmunología , Macrófagos/inmunología , Neovascularización Fisiológica/inmunología , Receptor Toll-Like 4/inmunología , Cicatrización de Heridas/inmunología , Heridas y Lesiones/inmunología , Animales , Quimiocina CCL2/inmunología , Quimiocina CCL3/inmunología , Quimiocina CCL5/inmunología , Quimiocina CX3CL1/inmunología , Progresión de la Enfermedad , Factor 2 de Crecimiento de Fibroblastos/metabolismo , Interferón gamma/inmunología , Interleucina-10/inmunología , Interleucina-12/inmunología , Interleucina-6/inmunología , Ratones , Ratones Endogámicos C3H , Ratones Transgénicos , Miofibroblastos/citología , Alcohol Polivinílico , Transducción de Señal , Factor de Crecimiento Transformador beta1/metabolismo , Factor de Necrosis Tumoral alfa/inmunología
12.
Crit Care ; 17(5): R226, 2013 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-24099563

RESUMEN

INTRODUCTION: Sepsis is characterized by systemic immune activation and neutrophil-mediated endothelial barrier integrity compromise, contributing to end-organ dysfunction. Studies evaluating endothelial barrier dysfunction induced by neutrophils from septic patients are lacking, despite its clinical significance. We hypothesized that septic neutrophils would cause characteristic patterns of endothelial barrier dysfunction, distinct from experimental stimulation of normal neutrophils, and that treatment with the immunomodulatory drug ß-glucan would attenuate this effect. METHODS: Blood was obtained from critically ill septic patients. Patients were either general surgery patients (Primary Sepsis (PS)) or those with sepsis following trauma (Secondary Sepsis (SS)). Those with acute respiratory distress syndrome (ARDS) were identified. Healthy volunteers served as controls. Neutrophils were purified and aliquots were untreated, or treated with fMLP or ß-glucan. Endothelial cells were grown to confluence and activated with tissue necrosis factor (TNF)-α . Electric Cell-substrate Impedance Sensing (ECIS) was used to determine monolayer resistance after neutrophils were added. Groups were analyzed by two-way analysis of variance (ANOVA). RESULTS: Neutrophils from all septic patients, as well as fMLP-normal neutrophils, reduced endothelial barrier integrity to a greater extent than untreated normal neutrophils (normalized resistance of cells from septic patients at 30 mins = 0.90 ± 0.04; at 60 mins = 0.73 ± 0.6 and at 180 mins = 0.56 ± 0.05; p < 0.05 vs normal). Compared to untreated PS neutrophils, fMLP-treated PS neutrophils caused further loss of barrier function at all time points; no additive effect was noted in stimulation of SS neutrophils beyond 30 min. Neutrophils from ARDS patients caused greater loss of barrier integrity than those from non-ARDS patients, despite similarities in age, sex, septic source, and neutrophil count. Neutrophils obtained after resolution of sepsis caused less barrier dysfunction at all time points. ß-glucan treatment of septic patients' neutrophils attenuated barrier compromise, rendering the effect similar to that induced by neutrophils obtained once sepsis had resolved. CONCLUSIONS: Neutrophils from septic patients exert dramatic compromise of endothelial barrier integrity. This pattern is mimicked by experimental activation of healthy neutrophils. The effect of septic neutrophils on the endothelium depends upon the initial inflammatory event, correlates with organ dysfunction and resolution of sepsis, and is ameliorated by ß-glucan.


Asunto(s)
Enfermedad Crítica , Endotelio Vascular/efectos de los fármacos , Endotelio Vascular/fisiología , Neutrófilos/efectos de los fármacos , Neutrófilos/inmunología , Sepsis/tratamiento farmacológico , Sepsis/inmunología , beta-Glucanos/uso terapéutico , Adulto , Técnicas de Cultivo de Célula , Femenino , Humanos , Masculino , Persona de Mediana Edad , Estudios Prospectivos
13.
Sci Rep ; 12(1): 15755, 2022 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-36130991

RESUMEN

COVID-19 has impacted millions of patients across the world. Molecular testing occurring now identifies the presence of the virus at the sampling site: nasopharynx, nares, or oral cavity. RNA sequencing has the potential to establish both the presence of the virus and define the host's response in COVID-19. Single center, prospective study of patients with COVID-19 admitted to the intensive care unit where deep RNA sequencing (> 100 million reads) of peripheral blood with computational biology analysis was done. All patients had positive SARS-CoV-2 PCR. Clinical data was prospectively collected. We enrolled fifteen patients at a single hospital. Patients were critically ill with a mortality of 47% and 67% were on a ventilator. All the patients had the SARS-CoV-2 RNA identified in the blood in addition to RNA from other viruses, bacteria, and archaea. The expression of many immune modulating genes, including PD-L1 and PD-L2, were significantly different in patients who died from COVID-19. Some proteins were influenced by alternative transcription and splicing events, as seen in HLA-C, HLA-E, NRP1 and NRP2. Entropy calculated from alternative RNA splicing and transcription start/end predicted mortality in these patients. Current upper respiratory tract testing for COVID-19 only determines if the virus is present. Deep RNA sequencing with appropriate computational biology may provide important prognostic information and point to therapeutic foci to be precisely targeted in future studies.


Asunto(s)
COVID-19 , Antígeno B7-H1/genética , Prueba de COVID-19 , Antígenos HLA-C/genética , Humanos , Unidades de Cuidados Intensivos , Estudios Prospectivos , ARN Viral/genética , SARS-CoV-2/genética , Análisis de Secuencia de ARN
14.
Blood ; 114(7): 1387-95, 2009 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-19491394

RESUMEN

To reach sites of inflammation, neutrophils execute a series of adhesion and migration events that include transmigration through the vascular endothelium and chemotaxis through the vicinal extracellular matrix until contact is made with the point of injury or infection. These in vivo microenvironments differ in their mechanical properties. Using polyacrylamide gels of physiologically relevant elasticity in the range of 5 to 100 kPa and coated with fibronectin, we tested how neutrophil adhesion, spreading, and migration were affected by substrate stiffness. Neutrophils on the softest gels showed only small changes in spread area, whereas on the stiffest gels they showed a 3-fold increase. During adhesion and migration, the magnitudes of the distortions induced in the gel substrate were independent of substrate stiffness, corresponding to the generation of significantly larger traction stresses on the stiffer gels. Cells migrated more slowly but more persistently on stiffer substrates, which resulted in neutrophils moving greater distances over time despite their slower speeds. The largest tractions were localized to the posterior of migrating neutrophils and were independent of substrate stiffness. Finally, the phosphatidylinositol 3-kinase inhibitor LY294002 obviated the ability to sense substrate stiffness, suggesting that phosphatidylinositol 3-kinase plays a mechanistic role in neutrophil mechanosensing.


Asunto(s)
Movimiento Celular/fisiología , Neutrófilos/citología , Neutrófilos/fisiología , Adhesión Celular/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Cromonas/farmacología , Elasticidad , Inhibidores Enzimáticos/farmacología , Geles , Humanos , Mecanotransducción Celular/efectos de los fármacos , Mecanotransducción Celular/fisiología , Morfolinas/farmacología , Fosfatidilinositol 3-Quinasas/metabolismo , Inhibidores de las Quinasa Fosfoinosítidos-3
15.
Blood ; 113(17): 4078-85, 2009 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-19244161

RESUMEN

Integrin-mediated cell migration is central to many biologic and pathologic processes. During inflammation, tissue injury results from excessive infiltration and sequestration of activated leukocytes. Recombinant human activated protein C (rhAPC) has been shown to protect patients with severe sepsis, although the mechanism underlying this protective effect remains unclear. Here, we show that rhAPC directly binds to beta(1) and beta(3) integrins and inhibits neutrophil migration, both in vitro and in vivo. We found that human APC possesses an Arg-Gly-Asp (RGD) sequence, which is critical for the inhibition. Mutation of this sequence abolished both integrin binding and inhibition of neutrophil migration. In addition, treatment of septic mice with a RGD peptide recapitulated the beneficial effects of rhAPC on survival. Thus, we conclude that leukocyte integrins are novel cellular receptors for rhAPC and the interaction decreases neutrophil recruitment into tissues, providing a potential mechanism by which rhAPC may protect against sepsis.


Asunto(s)
Movimiento Celular/efectos de los fármacos , Integrinas/metabolismo , Neutrófilos/citología , Neutrófilos/metabolismo , Proteína C/farmacología , Animales , Adhesión Celular/efectos de los fármacos , Línea Celular , Supervivencia Celular/efectos de los fármacos , Humanos , Ratones , Ratones Endogámicos C57BL , Neutrófilos/efectos de los fármacos , Proteínas Recombinantes/farmacología
16.
medRxiv ; 2021 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-33469603

RESUMEN

PURPOSE: COVID-19 has impacted millions of patients across the world. Molecular testing occurring now identifies the presence of the virus at the sampling site: nasopharynx, nares, or oral cavity. RNA sequencing has the potential to establish both the presence of the virus and define the host's response in COVID-19. METHODS: Single center, prospective study of patients with COVID-19 admitted to the intensive care unit where deep RNA sequencing (>100 million reads) of peripheral blood with computational biology analysis was done. All patients had positive SARS-CoV-2 PCR. Clinical data was prospectively collected. RESULTS: We enrolled fifteen patients at a single hospital. Patients were critically ill with a mortality of 47% and 67% were on a ventilator. All the patients had the SARS-CoV-2 RNA identified in the blood in addition to RNA from other viruses, bacteria, and archaea. The expression of many immune modulating genes, including PD-L1 and PD-L2, were significantly different in patients who died from COVID-19. Some proteins were influenced by alternative transcription and splicing events, as seen in HLA-C, HLA-E, NRP1 and NRP2. Entropy calculated from alternative RNA splicing and transcription start/end predicted mortality in these patients. CONCLUSIONS: Current upper respiratory tract testing for COVID-19 only determines if the virus is present. Deep RNA sequencing with appropriate computational biology may provide important prognostic information and point to therapeutic foci to be precisely targeted in future studies. TAKE HOME MESSAGE: Deep RNA sequencing provides a novel diagnostic tool for critically ill patients. Among ICU patients with COVID-19, RNA sequencings can identify gene expression, pathogens (including SARS-CoV-2), and can predict mortality. TWEET: Deep RNA sequencing is a novel technology that can assist in the care of critically ill COVID-19 patients & can be applied to other disease.

17.
Am J Pathol ; 174(6): 2129-36, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19389930

RESUMEN

In this study, we investigated the role of interleukin (IL)-1 signaling in wound healing. IL-1 receptor type I (IL-1R) knockout (KO) mice showed reduced fibrosis in both cutaneous and deep tissue wounds, which was accompanied by a reduction in inflammatory cellular infiltration in cutaneous but not in deep tissue wounds. There were no differences in either total collagenolytic activity or in the expression of selected matrix metalloproteinases or tissue inhibitors of metalloproteinases between the wound fluids from wild-type or IL-1R KO mice. However, wound fluids from IL-1R KO mice contained lower levels of IL-6 compared with wild-type controls. In addition, the infusion of IL-6 into wounds in IL-1R KO mice did not increase fibrosis. Skin wounds in IL-1R KO animals had lower levels of collagen and improved restoration of normal skin architecture compared with skin wounds in wild-type mice. However, neither the tensile strength of incisional skin wounds nor the rate of closure of excisional wounds differed between IL-1R KO and wild-type animals. The reduced fibrotic response in wounds from IL-1R KO mice could be reproduced by the administration of an IL-1R antagonist. These findings suggest that pharmacological interference with IL-1 signaling could have therapeutic value in the prevention of hypertrophic scarring and in the treatment of fibrotic diseases.


Asunto(s)
Interleucina-1/metabolismo , Transducción de Señal/fisiología , Cicatrización de Heridas/fisiología , Animales , Citocinas/biosíntesis , Ensayo de Inmunoadsorción Enzimática , Exudados y Transudados/química , Immunoblotting , Inmunohistoquímica , Interleucina-6/metabolismo , Masculino , Ratones , Ratones Noqueados , Receptores de Interleucina-1/deficiencia , Receptores de Interleucina-1/genética , Piel/lesiones , Piel/metabolismo , Piel/patología , Resistencia a la Tracción
18.
Sci Rep ; 10(1): 16599, 2020 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-33024138

RESUMEN

We introduce a novel method to compute three-dimensional (3D) displacements and both in-plane and out-of-plane tractions on nominally planar transparent materials using standard epifluorescence microscopy. Despite the importance of out-of-plane components to fully understanding cell behavior, epifluorescence images are generally not used for 3D traction force microscopy (TFM) experiments due to limitations in spatial resolution and measuring out-of-plane motion. To extend an epifluorescence-based technique to 3D, we employ a topology-based single particle tracking algorithm to reconstruct high spatial-frequency 3D motion fields from densely seeded single-particle layer images. Using an open-source finite element (FE) based solver, we then compute the 3D full-field stress and strain and surface traction fields. We demonstrate this technique by measuring tractions generated by both single human neutrophils and multicellular monolayers of Madin-Darby canine kidney cells, highlighting its acuity in reconstructing both individual and collective cellular tractions. In summary, this represents a new, easily accessible method for calculating fully three-dimensional displacement and 3D surface tractions at high spatial frequency from epifluorescence images. We released and support the complete technique as a free and open-source code package.


Asunto(s)
Células/ultraestructura , Análisis de Elementos Finitos , Imagenología Tridimensional/métodos , Microscopía de Fuerza Atómica/métodos , Imagen Óptica/métodos , Algoritmos , Animales , Humanos
19.
Sci Rep ; 10(1): 2142, 2020 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-32034208

RESUMEN

Neutrophils are innate immune effector cells that traffic from the circulation to extravascular sites of inflammation. ß2 integrins are important mediators of the processes involved in neutrophil recruitment. Although neutrophils express the cytoskeletal protein vinculin, they do not form mature focal adhesions. Here, we characterize the role of vinculin in ß2 integrin-dependent neutrophil adhesion, migration, mechanosensing, and recruitment. We observe that knockout of vinculin attenuates, but does not completely abrogate, neutrophil adhesion, spreading, and crawling under static conditions. However, we also found that vinculin deficiency does not affect these behaviors in the presence of forces from fluid flow. In addition, we identify a role for vinculin in mechanosensing, as vinculin-deficient neutrophils exhibit attenuated spreading on stiff, but not soft, substrates. Consistent with these findings, we observe that in vivo neutrophil recruitment into the inflamed peritoneum of mice remains intact in the absence of vinculin. Together, these data suggest that while vinculin regulates some aspects of neutrophil adhesion and spreading, it may be dispensable for ß2 integrin-dependent neutrophil recruitment in vivo.


Asunto(s)
Adhesión Celular , Infiltración Neutrófila , Neutrófilos/metabolismo , Vinculina/metabolismo , Animales , Antígenos CD18/metabolismo , Células Cultivadas , Mecanotransducción Celular , Ratones , Ratones Endogámicos C57BL , Neutrófilos/fisiología
20.
J Leukoc Biol ; 83(1): 64-70, 2008 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17884993

RESUMEN

The anti-granulocyte receptor-1 (Gr-1) mAb, RB6-8C5, has been used extensively to deplete neutrophils in mice and to investigate the role of these cells in host defense. RB6-8C5 binds to Ly6G, which is present on neutrophils, and to Ly6C, which is expressed on neutrophils, dendritic cells, and subpopulations of lymphocytes and monocytes. It is thus likely that in vivo administration of RB6-8C5 may deplete not only neutrophils but also other Gr-l+ (Ly6C+) cells. This study describes the use of an Ly6G-specific mAb, 1A8, as an alternative means to deplete neutrophils. In vivo administration of RB6-8C5 reduced blood neutrophils and Gr-1+ monocytes, whereas administration of 1A8 reduced blood neutrophils but not Gr-1+ monocytes. Plasma TNF-alpha in endotoxemia was increased 20-fold by RB6-8C5 pretreatment and fourfold by 1A8 pretreatment. In a wound model, pretreatment with either antibody decreased wound neutrophils and macrophages. TNF-alpha staining in brefeldin-treated wound leukocytes was increased by pretreatment with RB6-8C5, but not 1A8. Neutrophil depletion with 1A8 offers advantages over the use of RB6-8C5, as it preserves non-neutrophil Gr-1+ cells depleted by the anti-Gr-1 antibody. The loss of non-neutrophil Gr-1+ populations in RB6-8C5-treated animals is associated with increased TNF-alpha responses, suggesting these cells may function to suppress TNF-alpha production.


Asunto(s)
Anticuerpos Monoclonales/farmacología , Antígenos Ly/inmunología , Neutrófilos/inmunología , Animales , Anticuerpos Monoclonales/administración & dosificación , Modelos Animales de Enfermedad , Endotoxemia/inmunología , Leucocitos/efectos de los fármacos , Leucocitos/inmunología , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Masculino , Ratones , Ratones Endogámicos C57BL , Monocitos/efectos de los fármacos , Monocitos/inmunología , Neutrófilos/efectos de los fármacos , Factor de Necrosis Tumoral alfa/efectos de los fármacos , Factor de Necrosis Tumoral alfa/inmunología , Cicatrización de Heridas/efectos de los fármacos , Cicatrización de Heridas/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA