Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nano Lett ; 23(9): 3872-3878, 2023 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-37116109

RESUMEN

Several technologies, including photodetection, imaging, and data communication, could greatly benefit from the availability of fast and controllable conversion of terahertz (THz) light to visible light. Here, we demonstrate that the exceptional properties and dynamics of electronic heat in graphene allow for a THz-to-visible conversion, which is switchable at a sub-nanosecond time scale. We show a tunable on/off ratio of more than 30 for the emitted visible light, achieved through electrical gating using a gate voltage on the order of 1 V. We also demonstrate that a grating-graphene metamaterial leads to an increase in THz-induced emitted power in the visible range by 2 orders of magnitude. The experimental results are in agreement with a thermodynamic model that describes blackbody radiation from the electron system heated through intraband Drude absorption of THz light. These results provide a promising route toward novel functionalities of optoelectronic technologies in the THz regime.

2.
Rev Sci Instrum ; 94(3): 034903, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-37012811

RESUMEN

Diffusion is one of the most ubiquitous transport phenomena in nature. Experimentally, it can be tracked by following point spreading in space and time. Here, we introduce a spatiotemporal pump-probe microscopy technique that exploits the residual spatial temperature profile obtained through the transient reflectivity when probe pulses arrive before pump pulses. This corresponds to an effective pump-probe time delay of 13 ns, determined by the repetition rate of our laser system (76 MHz). This pre-time-zero technique enables probing the diffusion of long-lived excitations created by previous pump pulses with nanometer accuracy and is particularly powerful for following in-plane heat diffusion in thin films. The particular advantage of this technique is that it enables quantifying thermal transport without requiring any material input parameters or strong heating. We demonstrate the direct determination of the thermal diffusivities of films with a thickness of around 15 nm, consisting of the layered materials MoSe2 (0.18 cm2/s), WSe2 (0.20 cm2/s), MoS2 (0.35 cm2/s), and WS2 (0.59 cm2/s). This technique paves the way for observing nanoscale thermal transport phenomena and tracking diffusion of a broad range of species.

3.
Light Sci Appl ; 11(1): 315, 2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-36316317

RESUMEN

Achieving efficient, high-power harmonic generation in the terahertz spectral domain has technological applications, for example, in sixth generation (6G) communication networks. Massless Dirac fermions possess extremely large terahertz nonlinear susceptibilities and harmonic conversion efficiencies. However, the observed maximum generated harmonic power is limited, because of saturation effects at increasing incident powers, as shown recently for graphene. Here, we demonstrate room-temperature terahertz harmonic generation in a Bi2Se3 topological insulator and topological-insulator-grating metamaterial structures with surface-selective terahertz field enhancement. We obtain a third-harmonic power approaching the milliwatt range for an incident power of 75 mW-an improvement by two orders of magnitude compared to a benchmarked graphene sample. We establish a framework in which this exceptional performance is the result of thermodynamic harmonic generation by the massless topological surface states, benefiting from ultrafast dissipation of electronic heat via surface-bulk Coulomb interactions. These results are an important step towards on-chip terahertz (opto)electronic applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA