Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Genome Res ; 34(1): 57-69, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38164610

RESUMEN

Chromatin organization in the C. elegans germline is tightly regulated and critical for germ cell differentiation. Although certain germline epigenetic regulatory mechanisms have been identified, how they influence chromatin structure and ultimately gene expression remains unclear, in part because most genomic studies have focused on data collected from intact worms comprising both somatic and germline tissues. We therefore analyzed histone modification and chromatin accessibility data from isolated germ nuclei representing undifferentiated proliferating and meiosis I populations to define chromatin states. We correlated these states with overall transcript abundance, spatiotemporal expression patterns, and the function of small RNA pathways. Because the essential role of the germline is to transmit genetic information and establish gene expression in the early embryo, we compared epigenetic and transcriptomic profiles from undifferentiated germ cells to those of embryos to define the epigenetic changes during this developmental transition. The active histone modification H3K4me3 shows particularly dynamic remodeling as germ cells differentiate into oocytes, which suggests a mechanism for establishing early transcription of essential genes during zygotic genome activation. This analysis highlights the dynamism of the chromatin landscape across developmental transitions and provides a resource for future investigation into epigenetic regulatory mechanisms in germ cells.


Asunto(s)
Caenorhabditis elegans , Cromatina , Histonas , Animales , Cromatina/genética , Cromatina/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Oogénesis/genética , Células Germinativas , Regulación del Desarrollo de la Expresión Génica
2.
Cell ; 150(4): 855-66, 2012 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-22901814

RESUMEN

Understanding the in vivo dynamics of protein localization and their physical interactions is important for many problems in biology. To enable systematic protein function interrogation in a multicellular context, we built a genome-scale transgenic platform for in vivo expression of fluorescent- and affinity-tagged proteins in Caenorhabditis elegans under endogenous cis regulatory control. The platform combines computer-assisted transgene design, massively parallel DNA engineering, and next-generation sequencing to generate a resource of 14,637 genomic DNA transgenes, which covers 73% of the proteome. The multipurpose tag used allows any protein of interest to be localized in vivo or affinity purified using standard tag-based assays. We illustrate the utility of the resource by systematic chromatin immunopurification and automated 4D imaging, which produced detailed DNA binding and cell/tissue distribution maps for key transcription factor proteins.


Asunto(s)
Animales Modificados Genéticamente , Proteínas de Caenorhabditis elegans/análisis , Caenorhabditis elegans/genética , Ingeniería Genética/métodos , Genoma de los Helmintos , Factores de Transcripción/análisis , Animales , Caenorhabditis elegans/química , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Factores de Transcripción/genética
3.
Mol Cell ; 65(6): 1096-1108.e6, 2017 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-28306505

RESUMEN

Protein aggregation is associated with age-related neurodegenerative disorders, such as Alzheimer's and polyglutamine diseases. As a causal relationship between protein aggregation and neurodegeneration remains elusive, understanding the cellular mechanisms regulating protein aggregation will help develop future treatments. To identify such mechanisms, we conducted a forward genetic screen in a C. elegans model of polyglutamine aggregation and identified the protein MOAG-2/LIR-3 as a driver of protein aggregation. In the absence of polyglutamine, MOAG-2/LIR-3 regulates the RNA polymerase III-associated transcription of small non-coding RNAs. This regulation is lost in the presence of polyglutamine, which mislocalizes MOAG-2/LIR-3 from the nucleus to the cytosol. We then show biochemically that MOAG-2/LIR-3 can also catalyze the aggregation of polyglutamine-expanded huntingtin. These results suggest that polyglutamine can induce an aggregation-promoting activity of MOAG-2/LIR-3 in the cytosol. The concept that certain aggregation-prone proteins can convert other endogenous proteins into drivers of aggregation and toxicity adds to the understanding of how cellular homeostasis can be deteriorated in protein misfolding diseases.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/enzimología , Enfermedades Neurodegenerativas/enzimología , Péptidos/metabolismo , Agregado de Proteínas , Agregación Patológica de Proteínas , ARN Polimerasa III/metabolismo , Factores de Transcripción/metabolismo , Transporte Activo de Núcleo Celular , Animales , Animales Modificados Genéticamente , Sitios de Unión , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Núcleo Celular/enzimología , Citosol/enzimología , Modelos Animales de Enfermedad , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/patología , Regiones Promotoras Genéticas , Unión Proteica , Interferencia de ARN , ARN Polimerasa III/genética , ARN Pequeño no Traducido/genética , ARN Pequeño no Traducido/metabolismo , Factores de Transcripción/genética , Transcripción Genética
4.
Cell ; 137(2): 308-20, 2009 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-19379696

RESUMEN

Epigenetic information undergoes extensive reprogramming in the germline between generations. This reprogramming may be essential to establish a developmental ground state in the zygote. We show that mutants in spr-5, the Caenorhabditis elegans ortholog of the H3K4me2 demethylase LSD1/KDM1, exhibit progressive sterility over many generations. This sterility correlates with the misregulation of spermatogenesis-expressed genes and transgenerational accumulation of the histone modification dimethylation of histone H3 on lysine 4 (H3K4me2). This suggests that H3K4me2 can serve as a stable epigenetic memory, and that erasure of H3K4me2 by LSD/KDM1 in the germline prevents the inappropriate transmission of this epigenetic memory from one generation to the next. Thus, our results provide direct mechanistic insights into the processes that are required for epigenetic reprogramming between generations.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/embriología , Caenorhabditis elegans/genética , Epigénesis Genética , Células Germinativas/citología , Células Germinativas/metabolismo , Animales , Caenorhabditis elegans/citología , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Infertilidad , Análisis por Micromatrices , Mutación , Oogénesis , Oxidorreductasas N-Desmetilantes , Espermatogénesis
5.
Nucleic Acids Res ; 49(3): e17, 2021 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-33347581

RESUMEN

Chromatin immunoprecipitation (IP) followed by sequencing (ChIP-seq) is the gold standard to detect transcription-factor (TF) binding sites in the genome. Its success depends on appropriate controls removing systematic biases. The predominantly used controls, i.e. DNA input, correct for uneven sonication, but not for nonspecific interactions of the IP antibody. Another type of controls, 'mock' IP, corrects for both of the issues, but is not widely used because it is considered susceptible to technical noise. The tradeoff between the two control types has not been investigated systematically. Therefore, we generated comparable DNA input and mock IP experiments. Because mock IPs contain only nonspecific interactions, the sites predicted from them using DNA input indicate the spurious-site abundance. This abundance is highly correlated with the 'genomic activity' (e.g. chromatin openness). In particular, compared to cell lines, complex samples such as whole organisms have more spurious sites-probably because they contain multiple cell types, resulting in more expressed genes and more open chromatin. Consequently, DNA input and mock IP controls performed similarly for cell lines, whereas for complex samples, mock IP substantially reduced the number of spurious sites. However, DNA input is still informative; thus, we developed a simple framework integrating both controls, improving binding site detection.


Asunto(s)
Secuenciación de Inmunoprecipitación de Cromatina/métodos , Factores de Transcripción/metabolismo , Anticuerpos , Sitios de Unión , Línea Celular , ADN , Humanos
6.
Nature ; 512(7515): 400-5, 2014 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-25164749

RESUMEN

Discovering the structure and dynamics of transcriptional regulatory events in the genome with cellular and temporal resolution is crucial to understanding the regulatory underpinnings of development and disease. We determined the genomic distribution of binding sites for 92 transcription factors and regulatory proteins across multiple stages of Caenorhabditis elegans development by performing 241 ChIP-seq (chromatin immunoprecipitation followed by sequencing) experiments. Integration of regulatory binding and cellular-resolution expression data produced a spatiotemporally resolved metazoan transcription factor binding map. Using this map, we explore developmental regulatory circuits that encode combinatorial logic at the levels of co-binding and co-expression of transcription factors, characterizing the genomic coverage and clustering of regulatory binding, the binding preferences of, and biological processes regulated by, transcription factors, the global transcription factor co-associations and genomic subdomains that suggest shared patterns of regulation, and identifying key transcription factors and transcription factor co-associations for fate specification of individual lineages and cell types.


Asunto(s)
Caenorhabditis elegans/crecimiento & desarrollo , Caenorhabditis elegans/genética , Regulación del Desarrollo de la Expresión Génica/genética , Genoma de los Helmintos/genética , Análisis Espacio-Temporal , Factores de Transcripción/metabolismo , Animales , Sitios de Unión , Caenorhabditis elegans/citología , Caenorhabditis elegans/embriología , Proteínas de Caenorhabditis elegans/metabolismo , Linaje de la Célula , Inmunoprecipitación de Cromatina , Genómica , Larva/citología , Larva/genética , Larva/crecimiento & desarrollo , Larva/metabolismo , Unión Proteica
7.
Nature ; 512(7515): 453-6, 2014 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-25164757

RESUMEN

Despite the large evolutionary distances between metazoan species, they can show remarkable commonalities in their biology, and this has helped to establish fly and worm as model organisms for human biology. Although studies of individual elements and factors have explored similarities in gene regulation, a large-scale comparative analysis of basic principles of transcriptional regulatory features is lacking. Here we map the genome-wide binding locations of 165 human, 93 worm and 52 fly transcription regulatory factors, generating a total of 1,019 data sets from diverse cell types, developmental stages, or conditions in the three species, of which 498 (48.9%) are presented here for the first time. We find that structural properties of regulatory networks are remarkably conserved and that orthologous regulatory factor families recognize similar binding motifs in vivo and show some similar co-associations. Our results suggest that gene-regulatory properties previously observed for individual factors are general principles of metazoan regulation that are remarkably well-preserved despite extensive functional divergence of individual network connections. The comparative maps of regulatory circuitry provided here will drive an improved understanding of the regulatory underpinnings of model organism biology and how these relate to human biology, development and disease.


Asunto(s)
Caenorhabditis elegans/genética , Drosophila melanogaster/genética , Evolución Molecular , Regulación de la Expresión Génica/genética , Redes Reguladoras de Genes/genética , Factores de Transcripción/metabolismo , Animales , Sitios de Unión , Caenorhabditis elegans/crecimiento & desarrollo , Inmunoprecipitación de Cromatina , Secuencia Conservada/genética , Drosophila melanogaster/crecimiento & desarrollo , Regulación del Desarrollo de la Expresión Génica/genética , Genoma/genética , Humanos , Anotación de Secuencia Molecular , Motivos de Nucleótidos/genética , Especificidad de Órganos/genética , Factores de Transcripción/genética
8.
BMC Genomics ; 20(1): 500, 2019 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-31208332

RESUMEN

BACKGROUND: The wide variety of specialized permissive and repressive mechanisms by which germ cells regulate developmental gene expression are not well understood genome-wide. Isolation of germ cells with high integrity and purity from living animals is necessary to address these open questions, but no straightforward methods are currently available. RESULTS: Here we present an experimental paradigm that permits the isolation of nuclei from C. elegans germ cells at quantities sufficient for genomic analyses. We demonstrate that these nuclei represent a very pure population and are suitable for both transcriptome analysis (RNA-seq) and chromatin immunoprecipitation (ChIP-seq) of histone modifications. From these data, we find unexpected germline- and soma-specific patterns of gene regulation. CONCLUSIONS: This new capacity removes a major barrier in the field to dissect gene expression mechanisms in the germ line of C. elegans. Consequent discoveries using this technology will be relevant to conserved regulatory mechanisms across species.


Asunto(s)
Caenorhabditis elegans/citología , Caenorhabditis elegans/genética , Núcleo Celular/genética , Perfilación de la Expresión Génica , Genómica , Células Germinativas/citología , Código de Histonas , Animales , Cromatina/genética
9.
Genome Res ; 26(10): 1441-1450, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27531719

RESUMEN

We generated detailed RNA-seq data for the nematode Caenorhabditis elegans with high temporal resolution in the embryo as well as representative samples from post-embryonic stages across the life cycle. The data reveal that early and late embryogenesis is accompanied by large numbers of genes changing expression, whereas fewer genes are changing in mid-embryogenesis. This lull in genes changing expression correlates with a period during which histone mRNAs produce almost 40% of the RNA-seq reads. We find evidence for many more splice junctions than are annotated in WormBase, with many of these suggesting alternative splice forms, often with differential usage over the life cycle. We annotated internal promoter usage in operons using SL1 and SL2 data. We also uncovered correlated transcriptional programs that span >80 kb. These data provide detailed annotation of the C. elegans transcriptome.


Asunto(s)
Caenorhabditis elegans/genética , Regulación del Desarrollo de la Expresión Génica , Transcriptoma , Animales , Caenorhabditis elegans/crecimiento & desarrollo , Anotación de Secuencia Molecular
10.
Development ; 143(19): 3540-3548, 2016 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-27510972

RESUMEN

The complex cellular events that occur in response to fertilization are essential for mediating the oocyte-to-embryo transition. Here, we describe a comprehensive small-molecule screen focused on identifying compounds that affect early embryonic events in Caenorhabditis elegans We identify a single novel compound that disrupts early embryogenesis with remarkable stage and species specificity. The compound, named C22, primarily impairs eggshell integrity, leading to osmotic sensitivity and embryonic lethality. The C22-induced phenotype is dependent upon the upregulation of the LET-607/CREBH transcription factor and its candidate target genes, which primarily encode factors involved in diverse aspects of protein trafficking. Together, our data suggest that in the presence of C22, one or more key components of the eggshell are inappropriately processed, leading to permeable, inviable embryos. The remarkable specificity and reversibility of this compound will facilitate further investigation into the role and regulation of protein trafficking in the early embryo, as well as serve as a tool for manipulating the life cycle for other studies such as those involving aging.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/embriología , Caenorhabditis elegans/metabolismo , Animales , Proteínas de Caenorhabditis elegans/genética , Embrión no Mamífero/metabolismo , Desarrollo Embrionario/genética , Desarrollo Embrionario/fisiología , Oocitos/citología , Oocitos/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
12.
PLoS Genet ; 9(6): e1003543, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23754964

RESUMEN

Protein components of the spliceosome are highly conserved in eukaryotes and can influence several steps of the gene expression process. RSR-2, the Caenorhabditis elegans ortholog of the human spliceosomal protein SRm300/SRRM2, is essential for viability, in contrast to the yeast ortholog Cwc21p. We took advantage of mutants and RNA interference (RNAi) to study rsr-2 functions in C. elegans, and through genetic epistasis analysis found that rsr-2 is within the germline sex determination pathway. Intriguingly, transcriptome analyses of rsr-2(RNAi) animals did not reveal appreciable splicing defects but instead a slight global decrease in transcript levels. We further investigated this effect in transcription and observed that RSR-2 colocalizes with DNA in germline nuclei and coprecipitates with chromatin, displaying a ChIP-Seq profile similar to that obtained for the RNA Polymerase II (RNAPII). Consistent with a novel transcription function we demonstrate that the recruitment of RSR-2 to chromatin is splicing-independent and that RSR-2 interacts with RNAPII and affects RNAPII phosphorylation states. Proteomic analyses identified proteins associated with RSR-2 that are involved in different gene expression steps, including RNA metabolism and transcription with PRP-8 and PRP-19 being the strongest interacting partners. PRP-8 is a core component of the spliceosome and PRP-19 is the core component of the PRP19 complex, which interacts with RNAPII and is necessary for full transcriptional activity. Taken together, our study proposes that RSR-2 is a multifunctional protein whose role in transcription influences C. elegans development.


Asunto(s)
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Cromatina/genética , Proteínas de Unión al ADN/genética , Empalmosomas/genética , Transcripción Genética , Animales , Caenorhabditis elegans/crecimiento & desarrollo , Células Germinativas , Humanos , Fosforilación , ARN Polimerasa II , Empalme del ARN/genética , Proteínas de Unión al ARN/genética , Homología de Secuencia de Aminoácido , Empalmosomas/metabolismo
13.
Genome Res ; 21(2): 276-85, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21177971

RESUMEN

We present an integrative machine learning method, incRNA, for whole-genome identification of noncoding RNAs (ncRNAs). It combines a large amount of expression data, RNA secondary-structure stability, and evolutionary conservation at the protein and nucleic-acid level. Using the incRNA model and data from the modENCODE consortium, we are able to separate known C. elegans ncRNAs from coding sequences and other genomic elements with a high level of accuracy (97% AUC on an independent validation set), and find more than 7000 novel ncRNA candidates, among which more than 1000 are located in the intergenic regions of C. elegans genome. Based on the validation set, we estimate that 91% of the approximately 7000 novel ncRNA candidates are true positives. We then analyze 15 novel ncRNA candidates by RT-PCR, detecting the expression for 14. In addition, we characterize the properties of all the novel ncRNA candidates and find that they have distinct expression patterns across developmental stages and tend to use novel RNA structural families. We also find that they are often targeted by specific transcription factors (∼59% of intergenic novel ncRNA candidates). Overall, our study identifies many new potential ncRNAs in C. elegans and provides a method that can be adapted to other organisms.


Asunto(s)
Caenorhabditis elegans/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Análisis de Secuencia por Matrices de Oligonucleótidos , ARN no Traducido/química , ARN no Traducido/genética , Algoritmos , Animales , Sitios de Unión/genética , ADN Intergénico/genética , Perfilación de la Expresión Génica , Anotación de Secuencia Molecular , Conformación de Ácido Nucleico , ARN Polimerasa II/metabolismo , Factores de Transcripción/metabolismo
14.
Genome Res ; 21(2): 245-54, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21177963

RESUMEN

Regulation of gene expression by sequence-specific transcription factors is central to developmental programs and depends on the binding of transcription factors with target sites in the genome. To date, most such analyses in Caenorhabditis elegans have focused on the interactions between a single transcription factor with one or a few select target genes. As part of the modENCODE Consortium, we have used chromatin immunoprecipitation coupled with high-throughput DNA sequencing (ChIP-seq) to determine the genome-wide binding sites of 22 transcription factors (ALR-1, BLMP-1, CEH-14, CEH-30, EGL-27, EGL-5, ELT-3, EOR-1, GEI-11, HLH-1, LIN-11, LIN-13, LIN-15B, LIN-39, MAB-5, MDL-1, MEP-1, PES-1, PHA-4, PQM-1, SKN-1, and UNC-130) at diverse developmental stages. For each factor we determined candidate gene targets, both coding and non-coding. The typical binding sites of almost all factors are within a few hundred nucleotides of the transcript start site. Most factors target a mixture of coding and non-coding target genes, although one factor preferentially binds to non-coding RNA genes. We built a regulatory network among the 22 factors to determine their functional relationships to each other and found that some factors appear to act preferentially as regulators and others as target genes. Examination of the binding targets of three related HOX factors--LIN-39, MAB-5, and EGL-5--indicates that these factors regulate genes involved in cellular migration, neuronal function, and vulval differentiation, consistent with their known roles in these developmental processes. Ultimately, the comprehensive mapping of transcription factor binding sites will identify features of transcriptional networks that regulate C. elegans developmental processes.


Asunto(s)
Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Factores de Transcripción/metabolismo , Animales , Sitios de Unión/genética , Caenorhabditis elegans/citología , Análisis por Conglomerados , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Modelos Teóricos , Datos de Secuencia Molecular , ARN no Traducido/metabolismo , Factores de Transcripción/genética , Sitio de Iniciación de la Transcripción
15.
Genome Res ; 21(2): 325-41, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21177967

RESUMEN

The C. elegans genome has been completely sequenced, and the developmental anatomy of this model organism is described at single-cell resolution. Here we utilize strategies that exploit this precisely defined architecture to link gene expression to cell type. We obtained RNAs from specific cells and from each developmental stage using tissue-specific promoters to mark cells for isolation by FACS or for mRNA extraction by the mRNA-tagging method. We then generated gene expression profiles of more than 30 different cells and developmental stages using tiling arrays. Machine-learning-based analysis detected transcripts corresponding to established gene models and revealed novel transcriptionally active regions (TARs) in noncoding domains that comprise at least 10% of the total C. elegans genome. Our results show that about 75% of transcripts with detectable expression are differentially expressed among developmental stages and across cell types. Examination of known tissue- and cell-specific transcripts validates these data sets and suggests that newly identified TARs may exercise cell-specific functions. Additionally, we used self-organizing maps to define groups of coregulated transcripts and applied regulatory element analysis to identify known transcription factor- and miRNA-binding sites, as well as novel motifs that likely function to control subsets of these genes. By using cell-specific, whole-genome profiling strategies, we have detected a large number of novel transcripts and produced high-resolution gene expression maps that provide a basis for establishing the roles of individual genes in cellular differentiation.


Asunto(s)
Caenorhabditis elegans/genética , Regulación del Desarrollo de la Expresión Génica , Animales , Biología Computacional , Bases de Datos Genéticas , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica/genética , Masculino , Meiosis/genética , Datos de Secuencia Molecular , Oogénesis/genética , Sistemas de Lectura Abierta/genética , Transcripción Genética , Regiones no Traducidas/genética , Inactivación del Cromosoma X/genética
16.
Development ; 138(6): 1069-79, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21343362

RESUMEN

Previous studies demonstrated that a subset of synMuv B mutants ectopically misexpress germline-specific P-granule proteins in their somatic cells, suggesting a failure to properly orchestrate a soma/germline fate decision. Surprisingly, this fate confusion does not affect viability at low to ambient temperatures. Here, we show that, when grown at high temperature, a majority of synMuv B mutants irreversibly arrest at the L1 stage. High temperature arrest (HTA) is accompanied by upregulation of many genes characteristic of germ line, including genes encoding components of the synaptonemal complex and other meiosis proteins. HTA is suppressed by loss of global regulators of germline chromatin, including MES-4, MRG-1, ISW-1 and the MES-2/3/6 complex, revealing that arrest is caused by somatic cells possessing a germline-like chromatin state. Germline genes are preferentially misregulated in the intestine, and necessity and sufficiency tests demonstrate that the intestine is the tissue responsible for HTA. We propose that synMuv B mutants fail to erase or antagonize an inherited germline chromatin state in somatic cells during embryonic and early larval development. As a consequence, somatic cells gain a germline program of gene expression in addition to their somatic program, leading to a mixed fate. Somatic expression of germline genes is enhanced at elevated temperature, leading to developmentally compromised somatic cells and arrest of newly hatched larvae.


Asunto(s)
Proteínas de Caenorhabditis elegans/fisiología , Caenorhabditis elegans/fisiología , Linaje de la Célula/genética , Células Germinativas/fisiología , Intestinos/embriología , Animales , Animales Modificados Genéticamente , Caenorhabditis elegans/embriología , Caenorhabditis elegans/genética , Caenorhabditis elegans/crecimiento & desarrollo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Embrión no Mamífero , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Genes de Helminto , Células Germinativas/crecimiento & desarrollo , Mucosa Intestinal/metabolismo , Intestinos/crecimiento & desarrollo , Larva/genética , Larva/crecimiento & desarrollo , Larva/metabolismo , Larva/fisiología , Estadios del Ciclo de Vida/genética , Análisis por Micromatrices , Sobrevida/fisiología , Temperatura
17.
Proc Natl Acad Sci U S A ; 108(31): 12805-10, 2011 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-21768382

RESUMEN

Regulation of histone methylation levels has long been implicated in multiple cellular processes, many of which involve transcription. Here, however, we report a unique role for the Caenorhabditis elegans histone demethylase SPR-5 in meiotic DNA double-strand break repair (DSBR). SPR-5 shows enzymatic activity toward H3K4me2 both in vitro and in the nematode germline, and spr-5 mutants show several phenotypes indicating a perturbation of DSBR, including increased p53-dependent germ cell apoptosis, increased levels of the DSBR marker RAD-51, and sensitivity toward DSB-inducing treatments. spr-5 mutants show no transcriptional misregulation of known DSBR involved genes. Instead, SPR-5 shows a rapid subcellular relocalization upon DSB-inducing treatment, which suggests that SPR-5 may function directly in DSBR.


Asunto(s)
Proteínas de Caenorhabditis elegans/genética , Reparación del ADN , Meiosis/genética , Oxidorreductasas N-Desmetilantes/genética , Animales , Animales Modificados Genéticamente , Antineoplásicos Fitogénicos/toxicidad , Apoptosis/genética , Western Blotting , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Camptotecina/toxicidad , Roturas del ADN de Doble Cadena/efectos de los fármacos , Roturas del ADN de Doble Cadena/efectos de la radiación , Perfilación de la Expresión Génica , Células Germinativas/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Histonas/metabolismo , Lisina/metabolismo , Metilación , Microscopía Fluorescente , Mutación , Análisis de Secuencia por Matrices de Oligonucleótidos , Oxidorreductasas N-Desmetilantes/metabolismo , Interferencia de ARN , Recombinasa Rad51/genética , Recombinasa Rad51/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
18.
bioRxiv ; 2024 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-38293065

RESUMEN

A catalog of transcription factor (TF) binding sites in the genome is critical for deciphering regulatory relationships. Here we present the culmination of the modERN (model organism Encyclopedia of Regulatory Networks) consortium that systematically assayed TF binding events in vivo in two major model organisms, Drosophila melanogaster (fly) and Caenorhabditis elegans (worm). We describe key features of these datasets, comprising 604 TFs identifying 3.6M sites in the fly and 350 TFs identifying 0.9 M sites in the worm. Applying a machine learning model to these data identifies sets of TFs with a prominent role in promoting target gene expression in specific cell types. TF binding data are available through the ENCODE Data Coordinating Center and at https://epic.gs.washington.edu/modERNresource, which provides access to processed and summary data, as well as widgets to probe cell type-specific TF-target relationships. These data are a rich resource that should fuel investigations into TF function during development.

19.
PLoS Genet ; 6(2): e1000848, 2010 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-20174564

RESUMEN

Transcription factors are key components of regulatory networks that control development, as well as the response to environmental stimuli. We have established an experimental pipeline in Caenorhabditis elegans that permits global identification of the binding sites for transcription factors using chromatin immunoprecipitation and deep sequencing. We describe and validate this strategy, and apply it to the transcription factor PHA-4, which plays critical roles in organ development and other cellular processes. We identified thousands of binding sites for PHA-4 during formation of the embryonic pharynx, and also found a role for this factor during the starvation response. Many binding sites were found to shift dramatically between embryos and starved larvae, from developmentally regulated genes to genes involved in metabolism. These results indicate distinct roles for this regulator in two different biological processes and demonstrate the versatility of transcription factors in mediating diverse biological roles.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/crecimiento & desarrollo , Caenorhabditis elegans/genética , Ambiente , Genoma de los Helmintos/genética , Transactivadores/metabolismo , Animales , Sitios de Unión , Proteínas de Caenorhabditis elegans/genética , Inmunoprecipitación de Cromatina , Embrión no Mamífero/metabolismo , Regulación del Desarrollo de la Expresión Génica , Genes de Helminto/genética , Proteínas Fluorescentes Verdes/metabolismo , Larva/metabolismo , Unión Proteica , ARN Polimerasa II/metabolismo , Proteínas Recombinantes de Fusión/metabolismo , Inanición , Análisis de Supervivencia , Transactivadores/genética , Factores de Transcripción/metabolismo
20.
Nat Genet ; 32 Suppl: 541-6, 2002 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-12454651

RESUMEN

Global changes in gene expression underlie developmental processes such as organogenesis, embryogenesis and aging in Caenorhabditis elegans. Recently developed methods allow gene expression profiles to be determined selectively for individual tissues and cell types. Results from both whole-animal and tissue-specific expression profiling have provided an unprecedented view into genome organization and gene function. Integration of these results with other types of functional genomics data gathered from RNA-mediated interference and yeast two-hybrid analyses will allow rapid identification and exploration of the complex functional gene networks that govern C. elegans development.


Asunto(s)
Caenorhabditis elegans/genética , Perfilación de la Expresión Génica/métodos , Genes de Helminto , Genómica/métodos , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Animales , Proteínas de Caenorhabditis elegans/genética , Regulación del Desarrollo de la Expresión Génica , Silenciador del Gen , Genoma , ARN de Helminto/análisis , ARN Mensajero/análisis , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA