Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Nature ; 593(7859): 429-434, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-34012082

RESUMEN

Gene-editing technologies, which include the CRISPR-Cas nucleases1-3 and CRISPR base editors4,5, have the potential to permanently modify disease-causing genes in patients6. The demonstration of durable editing in target organs of nonhuman primates is a key step before in vivo administration of gene editors to patients in clinical trials. Here we demonstrate that CRISPR base editors that are delivered in vivo using lipid nanoparticles can efficiently and precisely modify disease-related genes in living cynomolgus monkeys (Macaca fascicularis). We observed a near-complete knockdown of PCSK9 in the liver after a single infusion of lipid nanoparticles, with concomitant reductions in blood levels of PCSK9 and low-density lipoprotein cholesterol of approximately 90% and about 60%, respectively; all of these changes remained stable for at least 8 months after a single-dose treatment. In addition to supporting a 'once-and-done' approach to the reduction of low-density lipoprotein cholesterol and the treatment of atherosclerotic cardiovascular disease (the leading cause of death worldwide7), our results provide a proof-of-concept for how CRISPR base editors can be productively applied to make precise single-nucleotide changes in therapeutic target genes in the liver, and potentially in other organs.


Asunto(s)
Sistemas CRISPR-Cas , LDL-Colesterol/sangre , Edición Génica , Modelos Animales , Proproteína Convertasa 9/genética , Adenina/metabolismo , Animales , Células Cultivadas , Femenino , Hepatocitos/metabolismo , Humanos , Hígado/enzimología , Mutación con Pérdida de Función , Macaca fascicularis/sangre , Macaca fascicularis/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Mutagénesis Sitio-Dirigida , Proproteína Convertasa 9/sangre , Proproteína Convertasa 9/metabolismo , Factores de Tiempo
2.
Biochemistry ; 59(13): 1361-1366, 2020 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-32202416

RESUMEN

The modularity of protein domains is well-known, but the existence of independent domains that confer function in RNA is less established. Recently, a family of RNA aptamers termed ykkC was discovered; they bind at least four ligands of very different chemical composition, including guanidine, phosphoribosyl pyrophosphate (PRPP), and guanosine tetraphosphate (ppGpp) (graphical abstract). Structures of these aptamers revealed an architecture characterized by two coaxial helical stacks. The first helix appears to be a generic scaffold, while the second helix forms the most contacts to the ligands. To determine if these two regions within the aptamer are modular units for ligand recognition, we swapped the ligand-binding coaxial stacks of a guanidine aptamer and a PRPP aptamer. This operation, in combination with a single mutation in the scaffold domain, achieved full switching of ligand specificity. This finding suggests that the ligand-binding helix largely dictates the ligand specificity of ykkC RNAs and that the scaffold coaxial stack is generally compatible with various ykkC ligand-binding modules. This work presents an example of RNA domain modularity comparable to that of a ligand-binding protein, showcasing the versatility of RNA as an entity capable of molecular evolution through adaptation of existing motifs.


Asunto(s)
Aptámeros de Nucleótidos/química , Aptámeros de Nucleótidos/metabolismo , Aptámeros de Nucleótidos/genética , Guanosina Tetrafosfato/química , Guanosina Tetrafosfato/metabolismo , Ligandos , Modelos Moleculares , Conformación de Ácido Nucleico , Fosforribosil Pirofosfato/química , Fosforribosil Pirofosfato/metabolismo
3.
RNA ; 23(9): 1338-1343, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28600356

RESUMEN

The guanidine-II riboswitch, also known as mini-ykkC, is a conserved mRNA element with more than 800 examples in bacteria. It consists of two stem-loops capped by identical, conserved tetraloops that are separated by a linker region of variable length and sequence. Like the guanidine-I riboswitch, it controls the expression of guanidine carboxylases and SugE-like genes. The guanidine-II riboswitch specifically binds free guanidinium cations and functions as a translationally controlled on-switch. Here we report the structure of a P2 stem-loop from the Pseudomonas aeruginosa guanidine-II riboswitch aptamer bound to guanidine at 1.57 Å resolution. The hairpins dimerize via the conserved tetraloop, which also contains the binding pocket. Two guanidinium molecules bind near the dimerization interface, one in each tetraloop. The guanidinium cation is engaged in extensive hydrogen bonding to the RNA. Contacts include the Hoogsteen face of a guanine base and three nonbridging phosphate oxygens. Cation-π interactions and ionic interactions also stabilize ligand binding. The guanidine-II riboswitch utilizes the same recognition strategies as the guanidine-I riboswitch while adopting an entirely different and much smaller RNA fold.


Asunto(s)
Guanidinas/química , Ligandos , ARN Mensajero/química , Riboswitch , Emparejamiento Base , Dimerización , Guanidina/química , Enlace de Hidrógeno , Modelos Biológicos , Conformación de Ácido Nucleico , Relación Estructura-Actividad
4.
Nat Commun ; 12(1): 4219, 2021 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-34244505

RESUMEN

Streptococcus pyogenes (Spy) Cas9 has potential as a component of gene therapeutics for incurable diseases. One of its limitations is its large size, which impedes its formulation and delivery in therapeutic applications. Smaller Cas9s are an alternative, but lack robust activity or specificity and frequently recognize longer PAMs. Here, we investigated four uncharacterized, smaller Cas9s and found three employing a "GG" dinucleotide PAM similar to SpyCas9. Protein engineering generated synthetic RNA-guided nucleases (sRGNs) with editing efficiencies and specificities exceeding even SpyCas9 in vitro and in human cell lines on disease-relevant targets. sRGN mRNA lipid nanoparticles displayed manufacturing advantages and high in vivo editing efficiency in the mouse liver. Finally, sRGNs, but not SpyCas9, could be packaged into all-in-one AAV particles with a gRNA and effected robust in vivo editing of non-human primate (NHP) retina photoreceptors. Human gene therapy efforts are expected to benefit from these improved alternatives to existing CRISPR nucleases.


Asunto(s)
Proteína 9 Asociada a CRISPR/genética , Sistemas CRISPR-Cas/genética , Edición Génica/métodos , Staphylococcus/enzimología , Animales , Proteína 9 Asociada a CRISPR/aislamiento & purificación , Línea Celular Tumoral , Dependovirus , Modelos Animales de Enfermedad , Terapia Genética/métodos , Vectores Genéticos/administración & dosificación , Vectores Genéticos/genética , Células HEK293 , Humanos , Macaca fascicularis , Masculino , Ratones , Parvovirinae/genética , Ingeniería de Proteínas , Ribonucleasas , Staphylococcus/genética , Especificidad por Sustrato , Síndromes de Usher/genética , Síndromes de Usher/terapia , ARN Guía de Sistemas CRISPR-Cas
6.
Elife ; 72018 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-29877798

RESUMEN

Two classes of riboswitches related to the ykkC guanidine-I riboswitch bind phosphoribosyl pyrophosphate (PRPP) and guanosine tetraphosphate (ppGpp). Here we report the co-crystal structure of the PRPP aptamer and its ligand. We also report the structure of the G96A point mutant that prefers ppGpp over PRPP with a dramatic 40,000-fold switch in specificity. The ends of the aptamer form a helix that is not present in the guanidine aptamer and is involved in the expression platform. In the mutant, the base of ppGpp replaces G96 in three-dimensional space. This disrupts the S-turn, which is a primary structural feature of the ykkC RNA motif. These dramatic differences in ligand specificity are achieved with minimal mutations. ykkC aptamers are therefore a prime example of an RNA fold with a rugged fitness landscape. The ease with which the ykkC aptamer acquires new specificity represents a striking case of evolvability in RNA.


Asunto(s)
Aptámeros de Nucleótidos/química , Conformación de Ácido Nucleico , ARN Bacteriano/química , Riboswitch , Aptámeros de Nucleótidos/genética , Aptámeros de Nucleótidos/metabolismo , Bacterias/genética , Bacterias/metabolismo , Secuencia de Bases , Cristalografía por Rayos X , Guanosina Tetrafosfato/química , Guanosina Tetrafosfato/metabolismo , Ligandos , Modelos Moleculares , Mutación , Motivos de Nucleótidos , Fosforribosil Pirofosfato/química , Fosforribosil Pirofosfato/metabolismo , Pliegue del ARN , ARN Bacteriano/genética , ARN Bacteriano/metabolismo
8.
Structure ; 25(1): 195-202, 2017 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-28017522

RESUMEN

The guanidine-I riboswitch is a conserved RNA element with approximately 2,000 known examples across four phyla of bacteria. It exists upstream of nitrogen metabolism and multidrug resistance transporter genes and alters expression through the specific recognition of a free guanidinium cation. Here we report the structure of a guanidine riboswitch aptamer from Sulfobacillus acidophilus at 2.7 Å resolution. Helices P1, P1a, P1b, and P2 form a coaxial stack that acts as a scaffold for ligand binding. A previously unidentified P3 helix docks into P1a to form the guanidinium binding pocket, which is completely enclosed. Every functional group of the ligand is recognized through hydrogen bonding to guanine bases and phosphate oxygens. Guanidinium binding is further stabilized through cation-π interactions with guanine bases. This allows the riboswitch to recognize guanidinium while excluding other bacterial metabolites with a guanidino group, including the amino acid arginine.


Asunto(s)
Aptámeros de Nucleótidos/química , Clostridiales/genética , Guanidina/metabolismo , ARN Bacteriano/química , Aptámeros de Nucleótidos/metabolismo , Cristalografía por Rayos X , Enlace de Hidrógeno , Ligandos , Modelos Moleculares , Conformación de Ácido Nucleico , Pliegue del ARN , ARN Bacteriano/metabolismo , Riboswitch
9.
Psychophysiology ; 51(10): 1037-45, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24976355

RESUMEN

Inhibition of return (IOR) operationalizes a behavioral phenomenon characterized by slower responding to cued, relative to uncued, targets. Two independent forms of IOR have been theorized: input-based IOR occurs when the oculomotor system is quiescent, while output-based IOR occurs when the oculomotor system is engaged. EEG studies forbidding eye movements have demonstrated that reductions of target-elicited P1 components are correlated with IOR magnitude, but when eye movements occur, P1 effects bear no relationship to behavior. We expand on this work by adapting the cueing paradigm and recording event-related potentials: IOR is caused by oculomotor responses to central arrows or peripheral onsets and measured by key presses to peripheral targets. Behavioral IOR is observed in both conditions, but P1 reductions are absent in the central arrow condition. By contrast, arrow and peripheral cues enhance Nd, especially over contralateral electrode sites.


Asunto(s)
Atención/fisiología , Encéfalo/fisiología , Potenciales Evocados/fisiología , Movimientos Oculares/fisiología , Percepción Visual/fisiología , Señales (Psicología) , Electroencefalografía , Femenino , Humanos , Masculino , Desempeño Psicomotor/fisiología , Tiempo de Reacción/fisiología , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA