Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 153
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
PLoS Genet ; 19(10): e1010987, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37792890

RESUMEN

Coupling cell wall expansion with cell growth is a universal challenge faced by walled organisms. Mutations in Schizosaccharomyces pombe css1, which encodes a PM inositol phosphosphingolipid phospholipase C, prevent cell wall expansion but not synthesis of cell wall material. To probe how Css1 modulates cell wall formation we used classical and chemical genetics coupled with quantitative mass spectrometry. We found that elevated levels of the sphingolipid biosynthetic pathway's final product, mannosylinositol phosphorylceramide (MIPC), specifically correlated with the css1-3 phenotype. We also found that an apparent indicator of sphingolipids and a sterol biosensor accumulated at the cytosolic face of the PM at cell tips and the division site of css1-3 cells and, in accord, the PM in css1-3 was less dynamic than in wildtype cells. Interestingly, disrupting the protein glycosylation machinery recapitulated the css1-3 phenotype and led us to investigate Ghs2, a glycosylated PM protein predicted to modify cell wall material. Disrupting Ghs2 function led to aberrant cell wall material accumulation suggesting Ghs2 is dysfunctional in css1-3. We conclude that preventing an excess of MIPC in the S. pombe PM is critical to the function of key PM-localized proteins necessary for coupling growth with cell wall formation.


Asunto(s)
Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Esfingolípidos/genética , Esfingolípidos/metabolismo , Schizosaccharomyces/metabolismo , Saccharomyces cerevisiae/genética , Membrana Celular/genética , Membrana Celular/metabolismo , Pared Celular/genética , Pared Celular/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo
2.
J Cell Sci ; 136(21)2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37815455

RESUMEN

Phosphatidylinositol (PI)-4-phosphate (PI4P) is a lipid found at the plasma membrane (PM) and Golgi in cells from yeast to humans. PI4P is generated from PI by PI4-kinases and can be converted into PI-4,5-bisphosphate [PI(4,5)P2]. Schizosaccharomyces pombe have two essential PI4-kinases - Stt4 and Pik1. Stt4 localizes to the PM, and its loss from the PM results in a decrease of PM PI4P and PI(4,5)P2. As a result, cells divide non-medially due to disrupted cytokinetic ring-PM anchoring. However, the localization and function of S. pombe Pik1 has not been thoroughly examined. Here, we found that Pik1 localizes exclusively to the trans-Golgi and is required for Golgi PI4P production. We determined that Ncs1 regulates Pik1, but unlike in other organisms, it is not required for Pik1 Golgi localization. When Pik1 function was disrupted, PM PI4P but not PI(4,5)P2 levels were reduced, a major difference compared with Stt4. We conclude that Stt4 is the chief enzyme responsible for producing the PI4P that generates PI(4,5)P2. Also, that cells with disrupted Pik1 do not divide asymmetrically highlights the specific importance of PM PI(4,5)P2 for cytokinetic ring-PM anchoring.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Schizosaccharomyces , Humanos , Schizosaccharomyces/metabolismo , Citocinesis , Saccharomyces cerevisiae/metabolismo , Membrana Celular/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Fosfotransferasas/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo
3.
Brief Bioinform ; 25(1)2023 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-38189542

RESUMEN

Non-coding RNAs (ncRNAs) are a class of RNA molecules that do not have the potential to encode proteins. Meanwhile, they can occupy a significant portion of the human genome and participate in gene expression regulation through various mechanisms. Gestational diabetes mellitus (GDM) is a pathologic condition of carbohydrate intolerance that begins or is first detected during pregnancy, making it one of the most common pregnancy complications. Although the exact pathogenesis of GDM remains unclear, several recent studies have shown that ncRNAs play a crucial regulatory role in GDM. Herein, we present a comprehensive review on the multiple mechanisms of ncRNAs in GDM along with their potential role as biomarkers. In addition, we investigate the contribution of deep learning-based models in discovering disease-specific ncRNA biomarkers and elucidate the underlying mechanisms of ncRNA. This might assist community-wide efforts to obtain insights into the regulatory mechanisms of ncRNAs in disease and guide a novel approach for early diagnosis and treatment of disease.


Asunto(s)
Errores Innatos del Metabolismo de los Carbohidratos , Diabetes Gestacional , Síndromes de Malabsorción , Humanos , Femenino , Embarazo , Diabetes Gestacional/genética , Genoma Humano , ARN no Traducido/genética , Biomarcadores
4.
Methods ; 228: 48-54, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38789016

RESUMEN

With the rapid advancements in molecular biology and genomics, a multitude of connections between RNA and diseases has been unveiled, making the efficient and accurate extraction of RNA-disease (RD) relationships from extensive biomedical literature crucial for advancing research in this field. This study introduces RDscan, a novel text mining method developed based on the pre-training and fine-tuning strategy, aimed at automatically extracting RD-related information from a vast corpus of literature using pre-trained biomedical large language models (LLM). Initially, we constructed a dedicated RD corpus by manually curating from literature, comprising 2,082 positive and 2,000 negative sentences, alongside an independent test dataset (comprising 500 positive and 500 negative sentences) for training and evaluating RDscan. Subsequently, by fine-tuning the Bioformer and BioBERT pre-trained models, RDscan demonstrated exceptional performance in text classification and named entity recognition (NER) tasks. In 5-fold cross-validation, RDscan significantly outperformed traditional machine learning methods (Support Vector Machine, Logistic Regression and Random Forest). In addition, we have developed an accessible webserver that assists users in extracting RD relationships from text. In summary, RDscan represents the first text mining tool specifically designed for RD relationship extraction, and is poised to emerge as an invaluable tool for researchers dedicated to exploring the intricate interactions between RNA and diseases. Webserver of RDscan is free available at https://cellknowledge.com.cn/RDscan/.


Asunto(s)
Minería de Datos , ARN , Minería de Datos/métodos , ARN/genética , Humanos , Aprendizaje Automático , Enfermedad/genética , Máquina de Vectores de Soporte , Programas Informáticos
5.
BMC Biol ; 22(1): 152, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38978014

RESUMEN

BACKGROUND: Metabolite-associated cell communications play critical roles in maintaining human biological function. However, most existing tools and resources focus only on ligand-receptor interaction pairs where both partners are proteinaceous, neglecting other non-protein molecules. To address this gap, we introduce the MRCLinkdb database and algorithm, which aggregates and organizes data related to non-protein L-R interactions in cell-cell communication, providing a valuable resource for predicting intercellular communication based on metabolite-related ligand-receptor interactions. RESULTS: Here, we manually curated the metabolite-ligand-receptor (ML-R) interactions from the literature and known databases, ultimately collecting over 790 human and 670 mouse ML-R interactions. Additionally, we compiled information on over 1900 enzymes and 260 transporter entries associated with these metabolites. We developed Metabolite-Receptor based Cell Link Database (MRCLinkdb) to store these ML-R interactions data. Meanwhile, the platform also offers extensive information for presenting ML-R interactions, including fundamental metabolite information and the overall expression landscape of metabolite-associated gene sets (such as receptor, enzymes, and transporter proteins) based on single-cell transcriptomics sequencing (covering 35 human and 26 mouse tissues, 52 human and 44 mouse cell types) and bulk RNA-seq/microarray data (encompassing 62 human and 39 mouse tissues). Furthermore, MRCLinkdb introduces a web server dedicated to the analysis of intercellular communication based on ML-R interactions. MRCLinkdb is freely available at https://www.cellknowledge.com.cn/mrclinkdb/ . CONCLUSIONS: In addition to supplementing ligand-receptor databases, MRCLinkdb may provide new perspectives for decoding the intercellular communication and advancing related prediction tools based on ML-R interactions.


Asunto(s)
Comunicación Celular , Humanos , Ligandos , Animales , Ratones , Bases de Datos Factuales
6.
Angew Chem Int Ed Engl ; 63(17): e202319529, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38443734

RESUMEN

Limited triple-phase boundaries arising from the accumulation of solid discharge product(s) in solid-state cathodes (SSCs) pose a challenge to high-property solid-state lithium-oxygen batteries (SSLOBs). Light-assisted SSLOBs have been gradually explored as an ingenious system; however, the fundamental mechanisms of the SSCs interface behavior remain unclear. Here, we discovered that light assistance can enhance the fast inner-sphere charge transfer in SSCs and regulate the discharge products with spherical particles generated via the surface growth model. Moreover, the high photoelectron excitation and transportation capabilities of SSCs can retard cathodic catalytic decay by avoiding structural degradation of the cathode with a reduced charge voltage. The light-induced SSLOBs exhibited excellent stability (170 cycles) with a low discharge-charge polarization overpotential (0.27 V). Furthermore, transparent SSLOBs with exceptional flexibility, mechanical stability, and multiform shapes were fabricated for theory-to-practical applications in sunlight-induced batteries. Our study opens new opportunities for the introduction of solar energy into energy storage systems.

7.
J Cell Sci ; 134(16)2021 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-34402513

RESUMEN

The F-BAR protein Imp2 is an important contributor to cytokinesis in the fission yeast Schizosaccharomyces pombe. Because cell cycle-regulated phosphorylation of the central intrinsically disordered region (IDR) of the Imp2 paralog Cdc15 controls Cdc15 oligomerization state, localization and ability to bind protein partners, we investigated whether Imp2 is similarly phosphoregulated. We found that Imp2 is endogenously phosphorylated on 28 sites within its IDR, with the bulk of phosphorylation being constitutive. In vitro, the casein kinase 1 (CK1) isoforms Hhp1 and Hhp2 can phosphorylate 17 sites, and Cdk1 (also known as Cdc2) can phosphorylate the remaining 11 sites. Mutations that prevent Cdk1 phosphorylation result in precocious Imp2 recruitment to the cell division site, and mutations designed to mimic these phosphorylation events delay Imp2 accumulation at the contractile ring (CR). Mutations that eliminate CK1 phosphorylation sites allow CR sliding, and phosphomimetic substitutions at these sites reduce Imp2 protein levels and slow CR constriction. Thus, like Cdc15, the Imp2 IDR is phosphorylated at many sites by multiple kinases. In contrast to Cdc15, for which phosphorylation plays a major cell cycle regulatory role, Imp2 phosphorylation is primarily constitutive, with milder effects on localization and function. This article has an associated First Person interview with the first author of the paper.


Asunto(s)
Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Citocinesis/genética , Proteínas del Citoesqueleto/metabolismo , Proteínas de Unión al GTP/metabolismo , Fosforilación , Proteínas Quinasas/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo
8.
BMC Med ; 21(1): 300, 2023 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-37559142

RESUMEN

BACKGROUND: Patients with human epidermal growth factor receptor 2 (HER2)-positive advanced breast cancer and primary resistance to trastuzumab have a poor clinical outcome and lack good evidence to inform clinical decision. This study investigated the efficacy and safety of pyrotinib plus capecitabine in this population. METHODS: This phase 2 trial was conducted at 16 sites in China. Patients received oral pyrotinib 400 mg once daily and capecitabine 1000 mg/m2 twice a day on days 1-14 of each 21-day cycle until disease progression or intolerable toxicity. The primary endpoint was investigator-assessed progression-free survival (PFS). RESULTS: Between June 2019 and September 2021, 100 patients were enrolled with a median age of 51 years (range, 24-69). All patients had been treated with trastuzumab and 21 (21.0%) patients had prior use of pertuzumab. As of August 31, 2022, the median follow-up duration was 20.1 months (range, 1.3-38.2). The median PFS was 11.8 months (95% confidence interval [CI], 8.4-15.1), which crossed the pre-specified efficacy boundary of 8.0 months. The objective response rate was 70.0% (70/100), with a median duration of response of 13.8 months (95% CI, 10.2-19.3). The disease control rate was 87.0% (87/100). The median overall survival was not reached. The most common grade ≥ 3 treatment-emergent adverse event was diarrhea (24 [24.0%]). No treatment-related deaths occurred. CONCLUSIONS: Pyrotinib plus capecitabine can be considered to be a treatment option in HER2-positive advanced breast cancer patients who have shown primary resistance to trastuzumab. Even in the era of modern anti-HER2 treatments, this clinical setting warrants more investigations to meet unmet needs. TRIAL REGISTRATION: ClinicalTrials.gov, NCT04001621. Retrospectively registered on June 28, 2019.


Asunto(s)
Neoplasias de la Mama , Capecitabina , Adulto , Anciano , Femenino , Humanos , Persona de Mediana Edad , Adulto Joven , Acrilamidas , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Neoplasias de la Mama/etiología , Capecitabina/uso terapéutico , Receptor ErbB-2/genética , Trastuzumab
9.
Nutr Cancer ; 73(9): 1581-1589, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-32757804

RESUMEN

INTRODUCTION: Ginseng is associated to the reduction of the risk of liver-cancer and some time is used as adjuvant therapy to treat liver-cancer, but its outcome remains uncertain. Hence, the present study aimed to determine the association between Ginseng consumption and liver-cancer. METHODS: By a systematic-literature search up to Decamber-2019, 9-studies included 13,766 subjects, 9235 Ginseng consumer. Odds ratio (OR) with 95% confidence intervals (CIs) was determined comparing Ginseng consumption and liver-cancer relationship using the dichotomous method with a fixed-effect or random-effect models. RESULTS: Subjects consuming Ginseng had a significantly lower risk of developing liver-cancer than those not consuming Ginseng (OR, 0.46; 95% CI, 0.40-0.52, p < 0.001). Also, there was a significant relationship between Ginseng consumption as adjuvant-therapy and disease control rate (OR, 4.47; 95% CI, 2.41-8.28, p < 0.001), Karnofsky Performance Scale (OR, 4.31; 95% CI, 1.80-10.36, p = 0.001), response to chemotherapy rate (OR, 1.79; 95% CI, 1.05-3.02, p = 0.03) and decline of leukocyte count (OR, 0.17; 95% CI, 0.07-0.42, p < 0.001). However, there was no significant effect, but relatively favoring Ginseng consumption, between Ginseng consumption as adjuvant-therapy and one year survival rate (OR, 1.48; 95% CI, 0.78-2.81, p = 0.23), two year survival rate (OR, 1.69; 95% CI, 0.87-3.25, p = 0.12) gastrointestinal dysfunction (OR, 0.55; 95% CI, 0.17-1.79, p = 0.32), and the hepatic dysfunction (OR, 1.15; 95% CI, 0.59-2.22, p = 0.68). CONCLUSIONS: Ginseng may have an independent relationship with reducing liver-cancer incidence when administrated to healthy subjects as a supplement and with reducing cancer-chemotherapy related outcomes risk when administrated with chemotherapy as adjuvant therapy.


Asunto(s)
Neoplasias Hepáticas , Panax , Humanos , Neoplasias Hepáticas/tratamiento farmacológico
10.
Environ Res ; 200: 111416, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34090892

RESUMEN

It is generally accepted that the sand mining industry causes severe destruction in river basin environments. In this study, six sediment cores were collected, and sequential extraction was applied in conjunction with the diffusive gradients in the thin films (DGT) technique to explore the effect of sand mining on the remobilization of Cu and Zn in the sediments. The results showed that Cu and Zn were mainly bound in the residual fraction in the sediments. CDGT-Cu/Zn in the sediments presented obvious increasing trends at the bottom (-9 to -12 cm) at the four sites that experienced sand mining and a decreasing trend at the sites with no sand mining disturbance. Cu and Zn also tended to be transported from the sediments to the overlying water at the four sand mining sites. A correlation analysis found that F1 and F3 correlated well with CDGT-Cu/Zn, indicating that the water/exchangeable fraction and oxidized fraction were the main fractions that led to increases in DGT-labile Cu and Zn in the sediments. Further analysis found that the introduction of oxygen (O2) was the main reason for the simultaneous release of sulfur (S), Cu and Zn in the sediments, as indicated by the "dark area" of AgI gel appearing at the same position as the "hot spot area" of Chelex gel. Two main sand mining effects on the release of Cu and Zn were hypothesized: (1) intense sand disturbance leads to the transfer of the water/exchangeable fraction (F1) to the DGT-labile fraction and (2) O2 introduction promotes the reaction of stable sulfide (F3), thus transferring it to the DGT-labile fraction. The above results indicated that the sand mining industry should be paid much attention in the Jialing River, as it can obviously cause labile Cu and Zn release into the water.


Asunto(s)
Metales Pesados , Contaminantes Químicos del Agua , Cobre/análisis , Monitoreo del Ambiente , Sedimentos Geológicos , Metales Pesados/análisis , Minería , Ríos , Arena , Contaminantes Químicos del Agua/análisis , Zinc/análisis
11.
Plant Biotechnol J ; 18(7): 1562-1572, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-31883436

RESUMEN

For a flowering plant, the transition from vegetative stage to reproductive growth is probably the most critical developmental switch. In the model plant Arabidopsis thaliana, the product of BBX7, group II member of BBX family, acts to delay floral transition. In this study, a presumed chrysanthemum homolog of a second group gene AtBBX8, designated CmBBX8, had been isolated and characterized. The transcription of CmBBX8 followed a diurnal rhythm as the chrysanthemum floral transition regulator. Overexpression of CmBBX8 accelerated flowering, while its (artificial microRNAs) amiR-enabled knockdown delayed flowering in plants grown under both long- and short-day conditions. Global expression analysis revealed that genes associated with photoperiod were down-regulated in amiR-CmBBX8 lines compared with the wild type, which were verified to be up-regulated in overexpressing lines (OX-CmBBX8) by RT-PCR. A number of in vitro assays were used to show that CmBBX8 targets CmFTL1. Furthermore, the function of CmFTL1 as a floral inducer under long-day conditions was confirmed by the behaviour of engineered summer-flowering chrysanthemum plants. The conclusion is that the BBX8-FT regulatory module is an important determinant of reproductive development in summer-flowering chrysanthemum.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Chrysanthemum , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Chrysanthemum/genética , Chrysanthemum/metabolismo , Flores/genética , Flores/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Fotoperiodo
12.
Photochem Photobiol Sci ; 19(6): 854-857, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33856679

RESUMEN

Photopharmacology offers facile solutions for spatiotemporal control over ligand activity and receptor function. The meta-diamide insecticide acts on insect GABA receptors (GABARs) as an antagonist that causes firing of a neuron. We present here photochromic GABAR ligands azobenzene-meta-diamides (ABMDAs) by incorporating photoswitchable azobenzene with meta-diamides. ABMDAs showed good isomerization efficiency and fatigue resistance. Among them, ABMDA7 shows a 1.5-fold insecticidal activity difference towards mosquito larvae (Aedes albopictus) before and after UV illumination. We translated this light-dependent activity difference to the optical modulation of the membrane potential of American cockroach (Periptaneta americana) DUM neurons. This light-responsive meta-diamide-based GABAR ligand allows for optical regulation of insecticidal activity and DUM neurons.

13.
Nanotechnology ; 30(12): 125703, 2019 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-30625419

RESUMEN

NiS nanoparticles modified black TiO2 hollow nanotubes (NBTNs) are successfully synthesized via surface hydrogenation and the facile solvothermal method. The unique structure with intensified surface and interface characteristics endow NBTNs with more catalytic sites, and increase charge carrier separation efficiency with an extended charge lifetime, overwhelmingly promoting its photocatalytic performance. The resultant NBTNs possess a relatively high surface area and pore size of ∼89 m2 g-1 and ∼9.8 nm, respectively. The resultant NBTNs exhibit an excellent solar-driven photocatalytic hydrogen rate (3.17 mmol h-1 g-1), which is almost as high as that of Pt as cocatalyst, in which the apparent quantum yield of 5.4% (420 nm) is recorded for the NBTNs sample. Moreover, the turnover number can be up to 116 000 within 48 h and the turnover frequency is 2400 for NiS. This novel strategy could provide a better understanding of cocatalyst photocatalytic mechanisms, and a scheme simultaneously regulating the morphology and structure of photocatalysts for promoting H2 generation.

14.
BMC Genomics ; 17: 673, 2016 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-27552984

RESUMEN

BACKGROUND: Chrysanthemum is a leading cut flower species. Most conventional cultivars flower during the fall, but the Chrysanthemum morifolium 'Yuuka' flowers during the summer, thereby filling a gap in the market. To date, investigations of flowering time determination have largely focused on fall-flowering types. Little is known about molecular basis of flowering time in the summer-flowering chrysanthemum. Here, the genome-wide transcriptome of 'Yuuka' was acquired using RNA-Seq technology, with a view to shedding light on the molecular basis of the shift to reproductive growth as induced by variation in the photoperiod. RESULTS: Two sequencing libraries were prepared from the apical meristem and leaves of plants exposed to short days, three from plants exposed to long days and one from plants sampled before any photoperiod treatment was imposed. From the ~316 million clean reads obtained, 115,300 Unigenes were assembled. In total 70,860 annotated sequences were identified by reference to various databases. A number of transcription factors and genes involved in flowering pathways were found to be differentially transcribed. Under short days, genes acting in the photoperiod and gibberellin pathways might accelerate flowering, while under long days, the trehalose-6-phosphate and sugar signaling pathways might be promoted, while the phytochrome B pathway might block flowering. The differential transcription of eight of the differentially transcribed genes was successfully validated using quantitative real time PCR. CONCLUSIONS: A transcriptome analysis of the summer-flowering cultivar 'Yuuka' has been described, along with a global analysis of floral transition under various daylengths. The large number of differentially transcribed genes identified confirmed the complexity of the regulatory machinery underlying floral transition.


Asunto(s)
Chrysanthemum/genética , Flores/genética , Perfilación de la Expresión Génica/métodos , Proteínas de Plantas/genética , Análisis de Secuencia de ARN/métodos , Chrysanthemum/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas , Redes Reguladoras de Genes , Genoma de Planta , Estudio de Asociación del Genoma Completo , Anotación de Secuencia Molecular , Fotoperiodo
15.
BMC Plant Biol ; 16: 98, 2016 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-27098270

RESUMEN

BACKGROUND: Chrysanthemum, a leading ornamental species, does not tolerate salinity stress, although some of its related species do. The current level of understanding regarding the mechanisms underlying salinity tolerance in this botanical group is still limited. RESULTS: A comparison of the physiological responses to salinity stress was made between Chrysanthemum morifolium 'Jinba' and its more tolerant relatives Crossostephium chinense, Artemisia japonica and Chrysanthemum crassum. The stress induced a higher accumulation of Na(+) and more reduction of K(+) in C. morifolium than in C. chinense, C. crassum and A. japonica, which also showed higher K(+)/Na(+) ratio. Homologs of an Na(+)/H(+) antiporter (SOS1) were isolated from each species. The gene carried by the tolerant plants were more strongly induced by salt stress than those carried by the non-tolerant ones. When expressed heterologously, they also conferred a greater degree of tolerance to a yeast mutant lacking Na(+)-pumping ATPase and plasma membrane Na(+)/H(+) antiporter activity. The data suggested that the products of AjSOS1, CrcSOS1 and CcSOS1 functioned more effectively as Na (+) excluders than those of CmSOS1. Over expression of four SOS1s improves the salinity tolerance of transgenic plants and the overexpressing plants of SOS1s from salt tolerant plants were more tolerant than that from salt sensitive plants. In addition, the importance of certain AjSOS1 residues for effective ion transport activity and salinity tolerance was established by site-directed mutagenesis and heterologous expression in yeast. CONCLUSIONS: AjSOS1, CrcSOS1 and CcSOS1 have potential as transgenes for enhancing salinity tolerance. Some of the mutations identified here may offer opportunities to better understand the mechanistic basis of salinity tolerance in the chrysanthemum complex.


Asunto(s)
Artemisia/metabolismo , Chrysanthemum/metabolismo , Proteínas de Plantas/metabolismo , Intercambiadores de Sodio-Hidrógeno/metabolismo , Sodio/metabolismo , Secuencia de Aminoácidos , Artemisia/efectos de los fármacos , Artemisia/genética , Chrysanthemum/efectos de los fármacos , Chrysanthemum/genética , Perfilación de la Expresión Génica/métodos , Regulación de la Expresión Génica de las Plantas , Prueba de Complementación Genética , Mutación , Filogenia , Proteínas de Plantas/clasificación , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , Potasio/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Saccharomyces cerevisiae/metabolismo , Salinidad , Tolerancia a la Sal/genética , Plantas Tolerantes a la Sal/genética , Plantas Tolerantes a la Sal/metabolismo , Homología de Secuencia de Aminoácido , Cloruro de Sodio/farmacología , Intercambiadores de Sodio-Hidrógeno/clasificación , Intercambiadores de Sodio-Hidrógeno/genética , Especificidad de la Especie
16.
Yeast ; 33(9): 507-17, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27168121

RESUMEN

The fission yeast model system Schizosaccharomyces pombe is used to study fundamental biological processes. To continue to fill gaps in the Sz. pombe gene deletion collection, we constructed a set of 90 haploid gene deletion strains covering many previously uncharacterized genes. To begin to understand the function of these genes, we exposed this collection of strains to a battery of stress conditions. Using this information in combination with microscopy, proteomics and mini-chromosome loss assays, we identified genes involved in cell wall integrity, cytokinesis, chromosome segregation and DNA metabolism. This subset of non-essential gene deletions will add to the toolkits available for the study of biological processes in Sz. pombe. Copyright © 2016 John Wiley & Sons, Ltd.


Asunto(s)
División Celular/fisiología , Pared Celular/fisiología , Regulación Fúngica de la Expresión Génica/fisiología , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/citología , Schizosaccharomyces/fisiología , Cromosomas Fúngicos/fisiología , Eliminación de Gen , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genética
17.
J Epidemiol ; 25(4): 312-20, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25797599

RESUMEN

BACKGROUND: The aim of this study is to evaluate the awareness status, attitudes, and care-seeking behaviors concerning tuberculosis (TB) and associated factors among the public in Inner Mongolia, China. METHODS: A five-stage sampling was conducted, in which counties as the primary survey units and towns, villages, and households as sub-survey units were selected progressively. A standardized questionnaire was used to collect TB information. Complex survey analysis methods, including the procedures of survey frequency and survey logistic regression, were applied for analysis of TB knowledge and associated factors. The sample was weighted by survey design, non-respondent, and post-stratification adjustment. RESULTS: Among 10 581 respondents, awareness that TB is an infectious disease was 86.7%. Knowing that a cough lasting ≥3 weeks is suggestive of TB was 26.9%. Knowledge about TB dispensaries in county administrative areas was reported by 68.3% of respondents, and knowledge about the free TB detection/treatment policy was reported by 57.5% of respondents. About 52.5% of participants would stigmatize TB patients. Compared with the majority Han ethnic group, Mongolians and other minorities were 1.52-2.18 times more likely to know about TB curability, TB symptoms, the free detection/treatment policy, and TB dispensaries' locations, but were less likely to know about the TB transmission mode (odds ratio, 0.74; 95% confidence interval, 0.65-0.84). The main sources of TB information were TV (65.6%) and other persons (47.2%). In the past year, 19.7% of TB knowledge was from acquaintances, and 16.1% was from TB institutes. CONCLUSIONS: Improvement in knowledge about TB risk (symptoms and transmission), the free treatment policy, and facilities is necessary and should be provided through effective multimedia for different target populations.


Asunto(s)
Conocimientos, Actitudes y Práctica en Salud , Aceptación de la Atención de Salud/psicología , Tuberculosis , Adolescente , Adulto , Anciano , Niño , China , Femenino , Política de Salud , Humanos , Masculino , Persona de Mediana Edad , Medición de Riesgo , Factores Socioeconómicos , Tuberculosis/psicología , Tuberculosis/terapia , Adulto Joven
18.
Mol Cell Proteomics ; 12(5): 1074-86, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23297348

RESUMEN

The conserved family of Cdc14 phosphatases targets cyclin-dependent kinase substrates in yeast, mediating late mitotic signaling events. To discover substrates and regulators of the Schizosaccharomyces pombe Cdc14 phosphatase Clp1, TAP-tagged Clp1, and a substrate trapping mutant (Clp1-C286S) were purified from asynchronous and mitotic (prometaphase and anaphase) cells and binding partners were identified by 2D-LC-MS/MS. Over 100 Clp1-interacting proteins were consistently identified, over 70 of these were enriched in Clp1-C286S-TAP (potential substrates) and we and others detected Cdk1 phosphorylation sites in over half (44/73) of these potential substrates. According to GO annotations, Clp1-interacting proteins are involved in many essential cellular processes including mitosis, cytokinesis, ribosome biogenesis, transcription, and trafficking among others. We confirmed association and dephosphorylation of multiple candidate substrates, including a key scaffolding component of the septation initiation network called Cdc11, an essential kinase of the conserved morphogenesis-related NDR kinase network named Shk1, and multiple Mlu1-binding factor transcriptional regulators. In addition, we identified Sal3, a nuclear ß-importin, as the sole karyopherin required for Clp1 nucleoplasmic shuttling, a key mode of Cdc14 phosphatase regulation. Finally, a handful of proteins were more abundant in wild type Clp1-TAP versus Clp1-C286S-TAP, suggesting that they may directly regulate Clp1 signaling or serve as scaffolding platforms to localize Clp1 activity.


Asunto(s)
Proteínas de Ciclo Celular/fisiología , Proteínas Tirosina Fosfatasas/fisiología , Proteínas de Schizosaccharomyces pombe/fisiología , Schizosaccharomyces/enzimología , Transporte Activo de Núcleo Celular , Proteína Quinasa CDC2/metabolismo , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Núcleo Celular/enzimología , Carioferinas/metabolismo , Mapeo Peptídico , Fosforilación , Mapeo de Interacción de Proteínas , Mapas de Interacción de Proteínas , Procesamiento Proteico-Postraduccional , Proteínas Tirosina Fosfatasas/química , Proteómica , Proteínas de Schizosaccharomyces pombe/química , Proteínas de Schizosaccharomyces pombe/metabolismo
19.
Int J Mol Sci ; 16(1): 2052-65, 2015 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-25607731

RESUMEN

The AP2/ERF family of plant transcription factors (TFs) regulate a variety of developmental and physiological processes. Here, we report the isolation of six AP2/ERF TF family genes from Chrysanthemum nankingense. On the basis of sequence similarity, one of these belonged to the Ethylene Responsive Factor (ERF) subfamily and the other five to the Dehydration Responsive Element Binding protein (DREB) subfamily. A transient expression experiment showed that all six AP2/ERF proteins localized to the nucleus. A yeast-one hybrid assay demonstrated that CnDREB1-1, 1-2 and 1-3 all function as transactivators, while CnERF1, CnDREB3-1 and 3-2 have no transcriptional activation ability. The transcription response of the six TFs in response to wounding, salinity and low temperature stress and treatment with abscisic acid (ABA), salicylic acid (SA) and jasmonic acid (JA) showed that CnERF1 was up-regulated by wounding and low temperature stress but suppressed by salinity stress. The transcription of CnDREB1-1, 1-2 and 1-3 was down-regulated by ABA and JA to varying degrees. CnDREB3-1 and 3-2 was moderately increased or decreased by wounding and SA treatment, suppressed by salinity stress and JA treatment, and enhanced by low temperature stress and ABA treatment.


Asunto(s)
Chrysanthemum/genética , Genes de Plantas , Proteínas de Plantas/genética , Factores de Transcripción/genética , Secuencia de Aminoácidos , Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Datos de Secuencia Molecular , Cebollas/citología , Péptidos/química , Péptidos/metabolismo , Epidermis de la Planta/citología , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Transporte de Proteínas , ARN Mensajero/genética , ARN Mensajero/metabolismo , Estrés Fisiológico/genética , Fracciones Subcelulares/metabolismo , Factores de Transcripción/química , Factores de Transcripción/metabolismo , Activación Transcripcional/genética
20.
Asian-Australas J Anim Sci ; 28(10): 1433-41, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26194220

RESUMEN

This study examined changes of rumen fermentation, ruminal bacteria biodiversity and abundance caused by nitrate addition with Ion Torrent sequencing and real-time polymerase chain reaction. Three rumen-fistulated steers were fed diets supplemented with 0%, 1%, and 2% nitrate (dry matter %) in succession. Nitrate supplementation linearly increased total volatile fatty acids and acetate concentration obviously (p = 0.02; p = 0.02; p<0.01), butyrate and isovalerate concentration numerically (p = 0.07). The alpha (p>0.05) and beta biodiversity of ruminal bacteria were not affected by nitrate. Nitrate increased typical efficient cellulolytic bacteria species (Ruminococcus flavefaciens, Ruminococcus ablus, and Fibrobacter succinogenes) (p<0.01; p = 0.06; p = 0.02). Ruminobactr, Sphaerochaeta, CF231, and BF311 genus were increased by 1% nitrate. Campylobacter fetus, Selenomonas ruminantium, and Mannheimia succiniciproducens were core nitrate reducing bacteria in steers and their abundance increased linearly along with nitrate addition level (p<0.01; p = 0.02; p = 0.04). Potential nitrate reducers in the rumen, Campylobacter genus and Cyanobacteria phyla were significantly increased by nitrate (p<0.01; p = 0.01). To the best of our knowledge, this was the first detailed view of changes in ruminal microbiota by nitrate. This finding would provide useful information on nitrate utilization and nitrate reducer exploration in the rumen.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA