Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Mol Ther ; 31(7): 2028-2041, 2023 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-37056049

RESUMEN

In this study, we investigate a gene augmentation therapy candidate for the treatment of retinitis pigmentosa (RP) due to cyclic nucleotide-gated channel beta 1 (CNGB1) mutations. We use an adeno-associated virus serotype 5 with transgene under control of a novel short human rhodopsin promoter. The promoter/capsid combination drives efficient expression of a reporter gene (AAV5-RHO-eGFP) exclusively in rod photoreceptors in primate, dog, and mouse following subretinal delivery. The therapeutic vector (AAV5-RHO-CNGB1) delivered to the subretinal space of CNGB1 mutant dogs restores rod-mediated retinal function (electroretinographic responses and vision) for at least 12 months post treatment. Immunohistochemistry shows human CNGB1 is expressed in rod photoreceptors in the treated regions as well as restoration of expression and trafficking of the endogenous alpha subunit of the rod CNG channel required for normal channel formation. The treatment reverses abnormal accumulation of the second messenger, cyclic guanosine monophosphate, which occurs in rod photoreceptors of CNGB1 mutant dogs, confirming formation of a functional CNG channel. In vivo imaging shows long-term preservation of retinal structure. In conclusion, this study establishes the long-term efficacy of subretinal delivery of AAV5-RHO-CNGB1 to rescue the disease phenotype in a canine model of CNGB1-RP, confirming its suitability for future clinical development.


Asunto(s)
Parvovirinae , Retinitis Pigmentosa , Humanos , Animales , Perros , Ratones , Canales Catiónicos Regulados por Nucleótidos Cíclicos/genética , Canales Catiónicos Regulados por Nucleótidos Cíclicos/metabolismo , Retinitis Pigmentosa/genética , Retinitis Pigmentosa/terapia , Retinitis Pigmentosa/metabolismo , Retina/metabolismo , Electrorretinografía , Rodopsina/metabolismo
2.
Adv Exp Med Biol ; 1074: 641-647, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29721998

RESUMEN

Transplantation of potentially therapeutic cells into the subretinal space is a promising prospective therapy for the treatment of retinal degenerative diseases including age-related macular degeneration (AMD). In rodent models with photoreceptor degeneration, subretinal transplantation of cell suspensions has repeatedly been demonstrated to rescue behaviorally measured vision, maintain electrophysiological responses from the retina and the brain, and slow the degeneration of rod and cone photoreceptors for extended periods. These studies have led to the initiation of a number of FDA-approved clinical trials for application of cell-based therapy for AMD and other retinal degenerative diseases. However, translation from rodent models directly into human clinical trials skips an important intermediary preclinical step that is needed to address critical issues for intraocular cell transplantation. These include determination of the most appropriate and least problematic surgical approach, the application of treatment in an eye with similar size and structure including the presence of a macula, and a thorough understanding of the immunological considerations regarding graft survival and the consequences of grafted cell rejection. This chapter will review these and related issues and will document current efforts to address these concerns.


Asunto(s)
Modelos Animales , Primates , Degeneración Retiniana/terapia , Roedores , Trasplante de Células Madre/métodos , Animales , Tamaño Corporal , Células Madre Embrionarias/inmunología , Células Madre Embrionarias/trasplante , Rechazo de Injerto/inmunología , Terapia de Inmunosupresión , Degeneración Macular/terapia , Especificidad de la Especie , Inmunología del Trasplante
3.
Retina ; 37(11): 2162-2166, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28098738

RESUMEN

PURPOSE: To develop a novel surgical approach to provide consistent delivery of cell suspension into the subretinal space without cell leakage into the vitreous. METHODS: Cell viability was assessed following mock injections to determine the optimal size cannula for delivery of the cells. A pars plana without vitrectomy approach was used to create a subretinal bleb with balanced salt solution using a 41-gauge cannula. GFP-labeled retinal pigment epithelium cells were injected through transretinal (n = 8) and transscleral (n = 16) injection approaches. Optical coherence tomography, fundus photography and autofluorescence, and histological analysis were used to evaluate surgical success. RESULTS: The 30-gauge cannula yielded the highest recovery of cells with highest viability. The transretinal approach consistently resulted in transplanted cells in the vitreous, with some cells coming to rest on the inner limiting membrane. Conversely, the transscleral approach resulted in transplantation of cells into the subretinal space in 100% of cases. Histological analysis confirmed these results. CONCLUSION: We have developed a novel surgical approach that resulted in encapsulation of transplanted cells into the subretinal space with a 100% success rate. This approach will provide a useful tool for further cell transplantation study and may provide an approach for clinical application of delivering cells to the subretinal space.


Asunto(s)
Trasplante de Células/métodos , Degeneración Macular/cirugía , Epitelio Pigmentado de la Retina/trasplante , Trasplante de Células Madre/métodos , Tomografía de Coherencia Óptica/métodos , Animales , Supervivencia Celular , Modelos Animales de Enfermedad , Angiografía con Fluoresceína , Fondo de Ojo , Inyecciones , Macaca mulatta , Degeneración Macular/diagnóstico , Retina , Epitelio Pigmentado de la Retina/citología , Resultado del Tratamiento , Vitrectomía
4.
G3 (Bethesda) ; 13(10)2023 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-37522525

RESUMEN

Nonhuman primates (NHPs) are vital translational research models due to their high genetic, physiological, and anatomical homology with humans. The "golden" rhesus macaque (Macaca mulatta) phenotype is a naturally occurring, inherited trait with a visually distinct pigmentation pattern resulting in light blonde colored fur. Retinal imaging also reveals consistent hypopigmentation and occasional foveal hypoplasia. Here, we describe the use of genome-wide association in 2 distinct NHP populations to identify candidate variants in genes linked to the golden phenotype. Two missense variants were identified in the Tyrosinase-related protein 1 gene (Asp343Gly and Leu415Pro) that segregate with the phenotype. An additional and distinct association was also found with a Tyrosinase variant (His256Gln), indicating the light-colored fur phenotype can result from multiple genetic mechanisms. The implicated genes are related through their contribution to the melanogenesis pathway. Variants in these 2 genes are known to cause pigmentation phenotypes in other species and to be associated with oculocutaneous albinism in humans. The novel associations presented in this study will permit further investigations into the role these proteins and variants play in the melanogenesis pathway and model the effects of genetic hypopigmentation and altered melanogenesis in a naturally occurring nonhuman primate model.


Asunto(s)
Hipopigmentación , Monofenol Monooxigenasa , Animales , Estudio de Asociación del Genoma Completo , Macaca mulatta/genética , Macaca mulatta/metabolismo , Glicoproteínas de Membrana/genética , Monofenol Monooxigenasa/genética , Monofenol Monooxigenasa/metabolismo , Oxidorreductasas/genética , Fenotipo
5.
PLoS One ; 15(1): e0227676, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31935257

RESUMEN

Zika virus infection during pregnancy is associated with miscarriage and with a broad spectrum of fetal and neonatal developmental abnormalities collectively known as congenital Zika syndrome (CZS). Symptomology of CZS includes malformations of the brain and skull, neurodevelopmental delay, seizures, joint contractures, hearing loss and visual impairment. Previous studies of Zika virus in pregnant rhesus macaques (Macaca mulatta) have described injury to the developing fetus and pregnancy loss, but neonatal outcomes following fetal Zika virus exposure have yet to be characterized in nonhuman primates. Herein we describe the presentation of rhesus macaque neonates with a spectrum of clinical outcomes, including one infant with CZS-like symptoms including cardiomyopathy, motor delay and seizure activity following maternal infection with Zika virus during the first trimester of pregnancy. Further characterization of this neonatal nonhuman primate model of gestational Zika virus infection will provide opportunities to evaluate the efficacy of pre- and postnatal therapeutics for gestational Zika virus infection and CZS.


Asunto(s)
Modelos Animales de Enfermedad , Infección por el Virus Zika/veterinaria , Virus Zika/patogenicidad , Animales , Cardiomiopatías/virología , Femenino , Feto/virología , Macaca mulatta , Microcefalia/virología , Embarazo , Complicaciones Infecciosas del Embarazo/veterinaria , Complicaciones Infecciosas del Embarazo/virología , Primer Trimestre del Embarazo , Convulsiones/virología , Infección por el Virus Zika/virología
6.
Hum Gene Ther ; 30(3): 257-272, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30062914

RESUMEN

Retinal gene therapy is leading the neurological gene therapy field, with 32 ongoing clinical trials of recombinant adeno-associated virus (rAAV)-based therapies. Importantly, over 50% of those trials are using restricted promoters from human genes. Promoters that restrict expression have demonstrated increased efficacy and can limit the therapeutic to the target cells thereby reducing unwanted off-target effects. Retinal ganglion cells are a critical target in ocular gene therapy; they are involved in common diseases such as glaucoma, rare diseases such as Leber's hereditary optic neuropathy, and in revolutionary optogenetic treatments. Here, we used computational biology and mined the human genome for the best genes from which to develop a novel minimal promoter element(s) designed for expression in restricted cell types (MiniPromoter) to improve the safety and efficacy of retinal ganglion cell gene therapy. Gene selection included the use of the first available droplet-based single-cell RNA sequencing (Drop-seq) dataset, and promoter design was bioinformatically driven and informed by a wide range of genomics datasets. We tested seven promoter designs from four genes in rAAV for specificity and quantified expression strength in retinal ganglion cells in mouse, and then the single best in nonhuman primate retina. Thus, we developed a new human-DNA MiniPromoter, Ple345 (NEFL), which in combination with intravitreal delivery in rAAV9 showed specific and robust expression in the retinal ganglion cells of the nonhuman-primate rhesus macaque retina. In mouse, we also developed MiniPromoters expressing in retinal ganglion cells, the hippocampus of the brain, a pan neuronal pattern in the brain, and peripheral nerves. As single-cell transcriptomics such as Drop-seq become available for other cell types, many new opportunities for additional novel restricted MiniPromoters will present.


Asunto(s)
Expresión Génica , Proteínas de Neurofilamentos/genética , Regiones Promotoras Genéticas , Retina/metabolismo , Células Ganglionares de la Retina/metabolismo , Transgenes , Animales , Biología Computacional/métodos , Dependovirus/genética , Elementos de Facilitación Genéticos , Femenino , Técnica del Anticuerpo Fluorescente , Técnicas de Transferencia de Gen , Ingeniería Genética/métodos , Terapia Genética/métodos , Vectores Genéticos/administración & dosificación , Vectores Genéticos/genética , Macaca mulatta , Ratones , Especificidad de Órganos/genética , Retina/citología
7.
Invest Ophthalmol Vis Sci ; 59(3): 1374-1383, 2018 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-29625461

RESUMEN

Purpose: To characterize the intraocular immune response following transplantation of iPS-derived allogeneic RPE cells into the subretinal space of non-immune-suppressed rhesus macaques. Methods: GFP-labeled allogeneic iPS-derived RPE cells were transplanted into the subretinal space of one eye (n = 6), and into the contralateral eye 1 day to 4 weeks later, using a two-stage transretinal and transscleral approach. Retinas were examined pre- and post-surgery by color fundus photography, fundus autofluorescence, and optical coherence tomography (OCT) imaging. Animals were euthanized between 2 hours and 7 weeks following transplantation. T-cell (CD3), B-cell (CD20), and microglial (Iba1) responses were assessed immunohistochemically. Results: Cells were delivered into the subretinal space in all eyes without leakage into the vitreous. Transplanted RPE cells were clearly visible at 4 days after surgery but were no longer detectable by 3 weeks. In localized areas within the bleb containing transplanted cells, T- and B-cell infiltrates and microglia were observed in the subretinal space and underlying choroid. A T-cell response predominated at 4 days, but converted to a B-cell response at 3 weeks. By 7 weeks, few infiltrates or microglia remained. Host RPE and choroid were disrupted in the immediate vicinity of the graft, with fibrosis in the subretinal space. Conclusions: Engraftment of allogeneic RPE cells failed following transplantation into the subretinal space of rhesus macaques, likely due to rejection by the immune system. These data underscore the need for autologous cell sources and/or confirmation of adequate immune suppression to ensure survival of transplanted RPE cells.


Asunto(s)
Células Madre Pluripotentes Inducidas/trasplante , Retina/cirugía , Epitelio Pigmentado de la Retina/trasplante , Trasplante de Células Madre/métodos , Animales , Modelos Animales de Enfermedad , Femenino , Macaca mulatta , Epitelio Pigmentado Ocular , Trasplante Autólogo
8.
Invest Ophthalmol Vis Sci ; 57(3): 1361-9, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27002296

RESUMEN

PURPOSE: We quantified fundus autofluorescence (FAF) in the nonhuman primate retina as a function of age and diets lacking lutein and zeaxanthin (L/Z) and omega-3 fatty acids. METHODS: Quantitative FAF was measured in a cross-sectional study of rhesus macaques fed a standard diet across the lifespan, and in aged rhesus macaques fed lifelong diets lacking L/Z and providing either adequate or deficient levels of omega-3 fatty acids. Macular FAF images were segmented into multiple regions of interest, and mean gray values for each region were calculated using ImageJ. The resulting FAF values were compared across ages within the standard diet animals, and among diet groups and regions. RESULTS: Fundus autofluorescence increased with age in the standard diet animals, and was highest in the perifovea. Monkeys fed L/Z-free diets with either adequate or deficient omega-3 fatty acids had significantly higher FAF overall than age-matched standard diet monkeys. Examined by region, those with adequate omega-3 fatty acids had higher FAF in the fovea and superior regions, while monkeys fed the diet lacking L/Z and omega-3 fatty acids had higher FAF in all regions. CONCLUSIONS: Diets devoid of L/Z resulted in increased retinal autofluorescence, with the highest values in animals also lacking omega-3 fatty acids. The increase was equivalent to a 12- to 20-year acceleration in lipofuscin accumulation compared to animals fed a standard diet. Together these data add support for the role of these nutrients as important factors in lipofuscin accumulation, retinal aging, and progression of macular disease.


Asunto(s)
Envejecimiento/metabolismo , Suplementos Dietéticos , Ácidos Grasos Omega-3/metabolismo , Angiografía con Fluoresceína/métodos , Fóvea Central/patología , Luteína/deficiencia , Enfermedades de la Retina/diagnóstico , Zeaxantinas/deficiencia , Animales , Estudios Transversales , Modelos Animales de Enfermedad , Fondo de Ojo , Macaca mulatta , Enfermedades de la Retina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA