Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Genet Med ; 23(6): 1158-1162, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33531666

RESUMEN

PURPOSE: The endoplasmic reticulum membrane complex (EMC) is a highly conserved, multifunctional 10-protein complex related to membrane protein biology. In seven families, we identified 13 individuals with highly overlapping phenotypes who harbor a single identical homozygous frameshift variant in EMC10. METHODS: Using exome, genome, and Sanger sequencing, a recurrent frameshift EMC10 variant was identified in affected individuals in an international cohort of consanguineous families. Multiple families were independently identified and connected via Matchmaker Exchange and internal databases. We assessed the effect of the frameshift variant on EMC10 RNA and protein expression and evaluated EMC10 expression in normal human brain tissue using immunohistochemistry. RESULTS: A homozygous variant EMC10 c.287delG (Refseq NM_206538.3, p.Gly96Alafs*9) segregated with affected individuals in each family, who exhibited a phenotypic spectrum of intellectual disability (ID) and global developmental delay (GDD), variable seizures and variable dysmorphic features (elongated face, curly hair, cubitus valgus, and arachnodactyly). The variant arose on two founder haplotypes and results in significantly reduced EMC10 RNA expression and an unstable truncated EMC10 protein. CONCLUSION: We propose that a homozygous loss-of-function variant in EMC10 causes a novel syndromic neurodevelopmental phenotype. Remarkably, the recurrent variant is likely the result of a hypermutable site and arose on distinct founder haplotypes.


Asunto(s)
Discapacidades del Desarrollo , Discapacidad Intelectual , Niño , Discapacidades del Desarrollo/genética , Mutación del Sistema de Lectura , Homocigoto , Humanos , Discapacidad Intelectual/genética , Proteínas de la Membrana/genética , Linaje , Fenotipo , Convulsiones/genética
2.
Nat Neurosci ; 24(2): 176-185, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33432195

RESUMEN

We characterize the landscape of somatic mutations-mutations occurring after fertilization-in the human brain using ultra-deep (~250×) whole-genome sequencing of prefrontal cortex from 59 donors with autism spectrum disorder (ASD) and 15 control donors. We observe a mean of 26 somatic single-nucleotide variants per brain present in ≥4% of cells, with enrichment of mutations in coding and putative regulatory regions. Our analysis reveals that the first cell division after fertilization produces ~3.4 mutations, followed by 2-3 mutations in subsequent generations. This suggests that a typical individual possesses ~80 somatic single-nucleotide variants present in ≥2% of cells-comparable to the number of de novo germline mutations per generation-with about half of individuals having at least one potentially function-altering somatic mutation somewhere in the cortex. ASD brains show an excess of somatic mutations in neural enhancer sequences compared with controls, suggesting that mosaic enhancer mutations may contribute to ASD risk.


Asunto(s)
Trastorno del Espectro Autista/patología , Corteza Prefrontal/patología , División Celular/genética , Cromatina/genética , Desarrollo Embrionario/genética , Epigénesis Genética , Exones , Femenino , Redes Reguladoras de Genes/genética , Predisposición Genética a la Enfermedad , Genoma Humano/genética , Mutación de Línea Germinal/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Polimorfismo de Nucleótido Simple , Embarazo , Secuenciación Completa del Genoma
3.
Neuron ; 109(20): 3239-3251.e7, 2021 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-34478631

RESUMEN

Human accelerated regions (HARs) are the fastest-evolving regions of the human genome, and many are hypothesized to function as regulatory elements that drive human-specific gene regulatory programs. We interrogate the in vitro enhancer activity and in vivo epigenetic landscape of more than 3,100 HARs during human neurodevelopment, demonstrating that many HARs appear to act as neurodevelopmental enhancers and that sequence divergence at HARs has largely augmented their neuronal enhancer activity. Furthermore, we demonstrate PPP1R17 to be a putative HAR-regulated gene that has undergone remarkable rewiring of its cell type and developmental expression patterns between non-primates and primates and between non-human primates and humans. Finally, we show that PPP1R17 slows neural progenitor cell cycle progression, paralleling the cell cycle length increase seen predominantly in primate and especially human neurodevelopment. Our findings establish HARs as key components in rewiring human-specific neurodevelopmental gene regulatory programs and provide an integrated resource to study enhancer activity of specific HARs.


Asunto(s)
Encéfalo/embriología , Regulación del Desarrollo de la Expresión Génica/genética , Redes Reguladoras de Genes/genética , Animales , Evolución Biológica , Epigenómica , Evolución Molecular , Hurones , Humanos , Macaca , Ratones , Pan troglodytes
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA