RESUMEN
Pseudomonas aeruginosa is a significant cause of global morbidity and mortality. Although it is often regarded as an extracellular pathogen toward human cells, numerous investigations report its ability to survive and replicate within host cells, and additional studies demonstrate specific mechanisms enabling it to adopt an intracellular lifestyle. This ability of P. aeruginosa remains less well-investigated than that of other intracellular bacteria, although it is currently gaining attention. If intracellular bacteria are not killed after entering host cells, they may instead receive protection from immune recognition and experience reduced exposure to antibiotic therapy, among additional potential advantages shared with other facultative intracellular pathogens. For this review, we compiled studies that observe intracellular P. aeruginosa across strains, cell types, and experimental systems in vitro, as well as contextualize these findings with the few studies that report similar observations in vivo. We also seek to address key findings that drove the perception that P. aeruginosa remains extracellular in order to reconcile what is currently understood about intracellular pathogenesis and highlight open questions regarding its contribution to disease.
Asunto(s)
Infecciones por Pseudomonas , Pseudomonas aeruginosa , Pseudomonas aeruginosa/genética , Humanos , Infecciones por Pseudomonas/microbiología , Animales , Interacciones Huésped-PatógenoRESUMEN
The peptidoglycan of Staphylococcus aureus is a critical cell envelope constituent and virulence factor that subverts host immune defenses and provides protection against environmental stressors. Peptidoglycan chains of the S. aureus cell wall are processed to characteristically short lengths by the glucosaminidase SagB. It is well established that peptidoglycan is an important pathogen-associated molecular pattern (PAMP) that is recognized by the host innate immune system and promotes production of proinflammatory cytokines, including interleukin-1ß (IL-1ß). However, how bacterial processing of peptidoglycan drives IL-1ß production is comparatively unexplored. Here, we tested the involvement of staphylococcal glucosaminidases in shaping innate immune responses and identified SagB as a mediator of IL-1ß production. A ΔsagB mutant fails to promote IL-1ß production by macrophages and dendritic cells, and processing of peptidoglycan by SagB is essential for this response. SagB-dependent IL-1ß production by macrophages is independent of canonical pattern recognition receptor engagement and NLRP3 inflammasome-mediated caspase activity. Instead, treatment of macrophages with heat-killed cells from a ΔsagB mutant leads to reduced caspase-independent cleavage of pro-IL-1ß, resulting in accumulation of the pro form in the macrophage cytosol. Furthermore, SagB is required for virulence in systemic infection and promotes IL-1ß production in a skin and soft tissue infection model. Taken together, our results suggest that the length of S. aureus cell wall glycan chains can drive IL-1ß production by innate immune cells through a previously undescribed mechanism related to IL-1ß maturation.
Asunto(s)
Peptidoglicano , Staphylococcus aureus , Hexosaminidasas , Inflamasomas , Interleucina-1beta , Caspasas , Pared Celular , Proteína con Dominio Pirina 3 de la Familia NLR , Caspasa 1RESUMEN
Fatty acid-derived acyl chains of phospholipids and lipoproteins are central to bacterial membrane fluidity and lipoprotein function. Though it can incorporate exogenous unsaturated fatty acids (UFA), Staphylococcus aureus synthesizes branched chain fatty acids (BCFA), not UFA, to modulate or increase membrane fluidity. However, both endogenous BCFA and exogenous UFA can be attached to bacterial lipoproteins. Furthermore, S. aureus membrane lipid content varies based upon the amount of exogenous lipid in the environment. Thus far, the relevance of acyl chain diversity within the S. aureus cell envelope is limited to the observation that attachment of UFA to lipoproteins enhances cytokine secretion by cell lines in a TLR2-dependent manner. Here, we leveraged a BCFA auxotroph of S. aureus and determined that driving UFA incorporation disrupted infection dynamics and increased cytokine production in the liver during systemic infection of mice. In contrast, infection of TLR2-deficient mice restored inflammatory cytokines and bacterial burden to wildtype levels, linking the shift in acyl chain composition toward UFA to detrimental immune activation in vivo. In in vitro studies, bacterial lipoproteins isolated from UFA-supplemented cultures were resistant to lipase-mediated ester hydrolysis and exhibited heightened TLR2-dependent innate cell activation, whereas lipoproteins with BCFA esters were completely inactivated after lipase treatment. These results suggest that de novo synthesis of BCFA reduces lipoprotein-mediated TLR2 activation and improves lipase-mediated hydrolysis making it an important determinant of innate immunity. Overall, this study highlights the potential relevance of cell envelope acyl chain repertoire in infection dynamics of bacterial pathogens.
Asunto(s)
Ácidos Grasos/inmunología , Ácidos Grasos/metabolismo , Inmunidad Innata/inmunología , Infecciones Estafilocócicas/inmunología , Infecciones Estafilocócicas/metabolismo , Animales , Proteínas Bacterianas/inmunología , Proteínas Bacterianas/metabolismo , Fluidez de la Membrana/fisiología , Ratones , Staphylococcus aureus/inmunología , Staphylococcus aureus/metabolismoRESUMEN
Staphylococcus aureus competes for myriad essential nutrients during host infection. One of these nutrients is the organosulfur compound lipoic acid, a cofactor required for the activity of several metabolic enzyme complexes. In S. aureus, these include the E2 subunits of three α-ketoacid dehydrogenases and two H proteins, GcvH of the glycine cleavage system and its paralog, GcvH-L. We previously determined that the S. aureus amidotransferase LipL is required for lipoylation of the E2 subunits of pyruvate dehydrogenase (PDH) and branched-chain 2-oxoacid dehydrogenase (BCODH) complexes. The results from this study, coupled with those from Bacillus subtilis, suggested that LipL catalyzes lipoyl transfer from H proteins to E2 subunits. However, to date, the range of LipL targets, the extent of LipL-dependent lipoic acid shuttling between lipoyl domain-containing proteins, and the importance of lipoyl relay in pathogenesis remain unknown. Here, we demonstrate that LipL uses both lipoyl-H proteins as the substrates for lipoyl transfer to all E2 subunits. Moreover, LipL facilitates lipoyl relay between E2 subunits and between H proteins, a property that potentially constitutes an adaptive response to nutrient scarcity in the host, as LipL is required for virulence during infection. Together, these observations support a role for LipL in facilitating flexible lipoyl relay between proteins and highlight the complexity of protein lipoylation in S. aureusIMPORTANCE Protein lipoylation is a posttranslational modification that is evolutionarily conserved from bacteria to humans. Lipoic acid modifications are found on five proteins in S. aureus, four of which are components of major metabolic enzymes. In some bacteria, the amidotransferase LipL is critical for the attachment of lipoic acid to these proteins, and yet it is unclear to what extent LipL facilitates the transfer of this cofactor. We find that S. aureus LipL flexibly shuttles lipoic acid among metabolic enzyme subunits, alluding to a dynamic redistribution mechanism within the bacterial cell. This discovery exemplifies a potential means by which bacteria optimize the use of scarce nutrients when resources are limited.