Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Am Chem Soc ; 144(27): 12102-12115, 2022 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-35759794

RESUMEN

Colloidal lead-halide perovskite nanocrystals (LHP NCs) have emerged over the past decade as leading candidates for efficient next-generation optoelectronic devices, but their properties and performance critically depend on how they are purified. While antisolvents are widely used for purification, a detailed understanding of how the polarity of the antisolvent influences the surface chemistry and composition of the NCs is missing in the field. Here, we fill this knowledge gap by studying the surface chemistry of purified CsPbBrxI3-x NCs as the model system, which in itself is considered a promising candidate for pure-red light-emitting diodes and top-cells for tandem photovoltaics. Interestingly, we find that as the polarity of the antisolvent increases (from methyl acetate to acetone to butanol), there is a blueshift in the photoluminescence (PL) peak of the NCs along with a decrease in PL quantum yield (PLQY). Through transmission electron microscopy and X-ray photoemission spectroscopy measurements, we find that these changes in PL properties arise from antisolvent-induced iodide removal, which leads to a change in halide composition and, thus, the bandgap. Using detailed nuclear magnetic resonance (NMR) and Fourier-transform infrared spectroscopy (FTIR) measurements along with density functional theory calculations, we propose that more polar antisolvents favor the detachment of the oleic acid and oleylamine ligands, which undergo amide condensation reactions, leading to the removal of iodide anions from the NC surface bound to these ligands. This work shows that careful selection of low-polarity antisolvents is a critical part of designing the synthesis of NCs to achieve high PLQYs with minimal defect-mediated phase segregation.

2.
J Appl Crystallogr ; 57(Pt 2): 509-528, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38596722

RESUMEN

INSIGHT is a Python-based software tool for processing and reducing 2D grazing-incidence wide- and small-angle X-ray scattering (GIWAXS/GISAXS) data. It offers the geometric transformation of the 2D GIWAXS/GISAXS detector image to reciprocal space, including vectorized and parallelized pixel-wise intensity correction calculations. An explicit focus on efficient data management and batch processing enables full control of large time-resolved synchrotron and laboratory data sets for a detailed analysis of kinetic GIWAXS/GISAXS studies of thin films. It processes data acquired with arbitrarily rotated detectors and performs vertical, horizontal, azimuthal and radial cuts in reciprocal space. It further allows crystallographic indexing and GIWAXS pattern simulation, and provides various plotting and export functionalities. Customized scripting offers a one-step solution to reduce, process, analyze and export findings of large in situ and operando data sets.

3.
Rev Sci Instrum ; 95(4)2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38656556

RESUMEN

Multimodal in situ experiments during slot-die coating of thin films pioneer the way to kinetic studies on thin-film formation. They establish a powerful tool to understand and optimize the formation and properties of thin-film devices, e.g., solar cells, sensors, or LED films. Thin-film research benefits from time-resolved grazing-incidence wide- and small-angle x-ray scattering (GIWAXS/GISAXS) with a sub-second resolution to reveal the evolution of crystal structure, texture, and morphology during the deposition process. Simultaneously investigating optical properties by in situ photoluminescence measurements complements in-depth kinetic studies focusing on a comprehensive understanding of the triangular interdependency of processing, structure, and function for a roll-to-roll compatible, scalable thin-film deposition process. Here, we introduce a modular slot-die coater specially designed for in situ GIWAXS/GISAXS measurements and applicable to various ink systems. With a design for quick assembly, the slot-die coater permits the reproducible and comparable fabrication of thin films in the lab and at the synchrotron using the very same hardware components, as demonstrated in this work by experiments performed at Deutsches Elektronen-Synchrotron (DESY). Simultaneous to GIWAXS/GISAXS, photoluminescence measurements probe optoelectronic properties in situ during thin-film formation. An environmental chamber allows to control the atmosphere inside the coater. Modular construction and lightweight design make the coater mobile, easy to transport, quickly extendable, and adaptable to new beamline environments.

4.
Adv Mater ; 36(7): e2310237, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38009650

RESUMEN

The experimental replicability of highly efficient perovskite solar cells (PSCs) is a persistent challenge faced by laboratories worldwide. Although trace impurities in raw materials can impact the experimental reproducibility of high-performance PSCs, the in situ study of how trace impurities affect perovskite film growth is never investigated. Here, light is shed on the impact of inevitable water contamination in lead iodide (PbI2 ) on the replicability of device performance, mainly depending on the synthesis methods of PbI2 . Through synchrotron-based structure characterization, it is uncovered that even slight additions of water to PbI2 accelerate the crystallization process in the perovskite layer during annealing. However, this accelerated crystallization also results in an imbalance of charge-carrier mobilities, leading to a degradation in device performance and reduced longevity of the solar cells. It is also found that anhydrous PbI2 promotes a homogenous nucleation process and improves perovskite film growth. Finally, the PSCs achieve a remarkable certified power conversion efficiency of 24.3%. This breakthrough demonstrates the significance of understanding and precisely managing the water content in PbI2 to ensure the experimental replicability of high-efficiency PSCs.

5.
ACS Appl Mater Interfaces ; 15(25): 30342-30349, 2023 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-37326620

RESUMEN

Perovskite solar cells (PSCs) have achieved competitive power conversion efficiencies compared with established solar cell technologies. However, their operational stability under different external stimuli is limited, and the underlying mechanisms are not fully understood. In particular, an understanding of degradation mechanisms from a morphology perspective during device operation is missing. Herein, we investigate the operational stability of PSCs with CsI bulk modification and a CsI-modified buried interface under AM 1.5G illumination and 75 ± 5% relative humidity, respectively, and concomitantly probe the morphology evolution with grazing-incidence small-angle X-ray scattering. We find that volume expansion within perovskite grains, induced by water incorporation, initiates the degradation of PSCs under light and humidity and leads to the degradation of device performance, in particular, the fill factor and short-circuit current. However, PSCs with modified buried interface degrade faster, which is ascribed to grain fragmentation and increased grain boundaries. In addition, we reveal a slight lattice expansion and PL redshifts in both PSCs after exposure to light and humidity. Our detailed insights from a buried microstructure perspective on the degradation mechanisms under light and humidity are essential for extending the operational stability of PSCs.

6.
ACS Appl Mater Interfaces ; 14(49): 54623-54634, 2022 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-36446022

RESUMEN

Additive and antisolvent engineering strategies are outstandingly efficient in enhancing perovskite quality, photovoltaic performance, and stability of perovskite solar cells (PSCs). In this work, an effective approach is applied by coupling the antisolvent mixture and multi-functional additive procedures, which is recognized as antisolvent additive engineering (AAE). The graphene quantum dots functionalized with amide (AGQDs), which consists of carbonyl, amine, and long hydrophobic alkyl chain functional groups, are added to the antisolvent mixture of toluene (T) and hexane (H) as an efficient additive to form the CH3NH3PbI3 (MAPI):AGQDs graded heterojunction structure. A broad range of analytical techniques, including scanning electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, space charge limited current, UV-visible spectroscopy, external quantum efficiency, and time-of-flight secondary ion mass spectrometry, are used to investigate the effect of AAE treatment with AGQDs on the quality of perovskite film and performance of the PSCs. Importantly, not only a uniform and dense perovskite film with hydrophobic property is obtained but also defects on the perovskite surface are significantly passivated by the interaction between AGQDs and uncoordinated Pb2+. As a result, an enhanced power conversion efficiency (PCE) of 19.10% is achieved for the champion PSCs treated with AGQD additive, compared to the PCE of 16.00% for untreated reference PSCs. In addition, the high-efficiency PSCs based on AGQDs show high stability and maintain 89% of their initial PCE after 960 h in ambient conditions.

7.
ACS Appl Mater Interfaces ; 14(2): 2958-2967, 2022 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-34989234

RESUMEN

Crystal orientations are closely related to the behavior of photogenerated charge carriers and are vital for controlling the optoelectronic properties of perovskite solar cells. Herein, we propose a facile approach to reveal the effect of lattice plane orientation distribution on the charge carrier kinetics via constructing CsBr-doped mixed cation perovskite phases. With grazing-incidence wide-angle X-ray scattering measurements, we investigate the crystallographic properties of mixed perovskite films at the microscopic scale and reveal the effect of the extrinsic CsBr doping on the stacking behavior of the lattice planes. Combined with transient photocurrent, transient photovoltage, and space-charge-limited current measurements, the transport dynamics and recombination of the photogenerated charge carriers are characterized. It is demonstrated that CsBr compositional engineering can significantly affect the perovskite crystal structure in terms of the orientation distribution of crystal planes and passivation of trap-state densities, as well as simultaneously facilitate the photogenerated charge carrier transport across the absorber and its interfaces. This strategy provides unique insight into the underlying relationship between the stacking pattern of crystal planes, photogenerated charge carrier transport, and optoelectronic properties of solar cells.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA