Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Int J Mol Sci ; 24(8)2023 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-37108618

RESUMEN

The interaction between light and optical materials is central to science, as these materials possess remarkable physical, chemical, and photonical characteristics [...].

2.
J Nanobiotechnology ; 20(1): 22, 2022 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-34991619

RESUMEN

BACKGROUND: Quantum dots (QDs) have been used as fluorophores in various imaging fields owing to their strong fluorescent intensity, high quantum yield (QY), and narrow emission bandwidth. However, the application of QDs to bio-imaging is limited because the QY of QDs decreases substantially during the surface modification step for bio-application. RESULTS: In this study, we fabricated alloy-typed core/shell CdSeZnS/ZnS quantum dots (alloy QDs) that showed higher quantum yield and stability during the surface modification for hydrophilization compared with conventional CdSe/CdS/ZnS multilayer quantum dots (MQDs). The structure of the alloy QDs was confirmed using time-of-flight medium-energy ion scattering spectroscopy. The alloy QDs exhibited strong fluorescence and a high QY of 98.0%. After hydrophilic surface modification, the alloy QDs exhibited a QY of 84.7%, which is 1.5 times higher than that of MQDs. The QY was 77.8% after the alloy QDs were conjugated with folic acid (FA). Alloy QDs and MQDs, after conjugation with FA, were successfully used for targeting human KB cells. The alloy QDs exhibited a stronger fluorescence signal than MQD; these signals were retained in the popliteal lymph node area for 24 h. CONCLUSION: The alloy QDs maintained a higher QY in hydrophilization for biological applications than MQDs. And also, alloy QDs showed the potential as nanoprobes for highly sensitive bioimaging analysis.


Asunto(s)
Aleaciones , Compuestos de Cadmio/química , Sistemas de Liberación de Medicamentos/métodos , Puntos Cuánticos , Sulfuros/química , Compuestos de Zinc/química , Aleaciones/química , Aleaciones/farmacocinética , Animales , Línea Celular Tumoral , Ácido Fólico , Células HeLa , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Microscopía Electrónica de Transmisión , Imagen Óptica , Puntos Cuánticos/química , Puntos Cuánticos/metabolismo , Compuestos de Selenio/química , Propiedades de Superficie
3.
Int J Mol Sci ; 23(18)2022 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-36142888

RESUMEN

Quantum dots (QDs) have outstanding optical properties such as strong fluorescence, excellent photostability, broad absorption spectra, and narrow emission bands, which make them useful for bioimaging. However, cadmium (Cd)-based QDs, which have been widely studied, have potential toxicity problems. Cd-free QDs have also been studied, but their weak photoluminescence (PL) intensity makes their practical use in bioimaging challenging. In this study, Cd-free QD nanoprobes for bioimaging were fabricated by densely embedding multiple indium phosphide/zinc sulfide (InP/ZnS) QDs onto silica templates and coating them with a silica shell. The fabricated silica-coated InP/ZnS QD-embedded silica nanoparticles (SiO2@InP QDs@SiO2 NPs) exhibited hydrophilic properties because of the surface silica shell. The quantum yield (QY), maximum emission peak wavelength, and full-width half-maximum (FWHM) of the final fabricated SiO2@InP QDs@SiO2 NPs were 6.61%, 527.01 nm, and 44.62 nm, respectively. Moreover, the brightness of the particles could be easily controlled by adjusting the amount of InP/ZnS QDs in the SiO2@InP QDs@SiO2 NPs. When SiO2@InP QDs@SiO2 NPs were administered to tumor syngeneic mice, the fluorescence signal was prominently detected in the tumor because of the preferential distribution of the SiO2@InP QDs@SiO2 NPs, demonstrating their applicability in bioimaging with NPs. Thus, SiO2@InP QDs@SiO2 NPs have the potential to successfully replace Cd-based QDs as highly bright and biocompatible fluorescent nanoprobes.


Asunto(s)
Nanopartículas , Neoplasias , Puntos Cuánticos , Animales , Cadmio , Indio , Ratones , Fosfinas , Dióxido de Silicio , Sulfuros , Compuestos de Zinc
4.
J Nanobiotechnology ; 19(1): 73, 2021 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-33712008

RESUMEN

BACKGROUND: Blood prostate-specific antigen (PSA) levels are widely used as diagnostic biomarkers for prostate cancer. Lateral-flow immunoassay (LFIA)-based PSA detection can overcome the limitations associated with other methods. LFIAbased PSA detection in clinical samples enables prognosis and early diagnosis owing to the use of high-performance signal reporters. RESULTS: Here, a semiquantitative LFIA platform for PSA detection in blood was developed using Au-Ag nanoparticles (NPs) assembled on silica NPs (SiO2@Au-Ag NPs) that served as signal reporters. Synthesized SiO2@Au-Ag NPs exhibited a high absorbance at a wide wavelength range (400-800 nm), with a high scattering on nitrocellulose membrane test strips. In LFIA, the color intensity of the test line on the test strip differed depending on the PSA concentration (0.30-10.00 ng/mL), and bands for the test line on the test strip could be used as a standard. When clinical samples were assessed using this LFIA, a visual test line with particular color intensity observed on the test strip enabled the early diagnosis and prognosis of patients with prostate cancer based on PSA detection. In addition, the relative standard deviation of reproducibility was 1.41%, indicating high reproducibility, and the signal reporter showed good stability for 10 days. CONCLUSION: These characteristics of the signal reporter demonstrated the reliability of the LFIA platform for PSA detection, suggesting potential applications in clinical sample analysis.


Asunto(s)
Oro/química , Nanopartículas del Metal/química , Antígeno Prostático Específico/sangre , Antígeno Prostático Específico/aislamiento & purificación , Neoplasias de la Próstata/diagnóstico , Dióxido de Silicio/química , Plata/química , Técnicas Biosensibles/métodos , Colorimetría , Humanos , Inmunoensayo/métodos , Límite de Detección , Masculino , Reproducibilidad de los Resultados
5.
Adv Exp Med Biol ; 1309: 23-40, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33782867

RESUMEN

It is almost impossible to fabricate size-controlled nanomaterials without full understanding about nanoscience, because nanomaterials sometimes suddenly grow up and precipitated, meanwhile other nanomaterials are disappeared during fabrication process. With this reason, it is necessary to understand the principle theories about nanoscience for fabrication of "well-defined" nanoparticles. This chapter explains basic theories about nanomaterials. And based on the theory, methods for controlling the size of nanoparticles and preventing the aggregation after fabrication are described.


Asunto(s)
Nanopartículas , Nanoestructuras
6.
Adv Exp Med Biol ; 1309: 41-65, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33782868

RESUMEN

Silica consists of one silicon atom and two oxygen atoms (SiO2) and is commonly used in various aspects of daily life. For example, it has been used as glass, insulator, and so on. Nowadays, silica is used as core reagents for fabricating and encapsulating nanoparticles (NPs). In this chapter, the usage of silica in nanotechnology is described. Synthesis and surface modification of silica nanoparticles (SiNPs), including via the Stöber method, reverse microemulsion method, and modified sol-gel method, are illustrated. Then, various NPs with silica encapsulation are explained. At last, the biological applications of those mentioned NPs are described.


Asunto(s)
Nanopartículas , Dióxido de Silicio , Nanotecnología
7.
Adv Exp Med Biol ; 1309: 67-96, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33782869

RESUMEN

From molecular probes, also known as fluorophores (typically emitting a longer wavelength than the absorbing wavelength), to inorganic nanoparticles, various light-emitting materials have been actively studied and developed for various applications in life science owing to their superior imaging and sensing ability. Especially after the breakthrough development of quantum dots (QDs), studies have pursued the development of the optical properties and biological applications of luminescent inorganic nanoparticles such as upconversion nanoparticles (UCNPs), metal nanoclusters, carbon dots, and so on. In this review, we first provide a brief explanation about the theoretical background and traditional concepts of molecular fluorophores. Then, currently developed luminescent nanoparticles are described as sensing and imaging platforms from general aspects to technical views.


Asunto(s)
Nanopartículas , Nanoestructuras , Puntos Cuánticos , Colorantes Fluorescentes , Sondas Moleculares
8.
Adv Exp Med Biol ; 1309: 97-132, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33782870

RESUMEN

In this review, we focus on sensing techniques and biological applications of various luminescent nanoparticles including quantum dot (QD), up-conversion nanoparticles (UCNPs) following the previous chapter. Fluorescent phenomena can be regulated or shifted by interaction between biological targets and luminescence probes depending on their distance, which is so-called FÓ§rster resonance energy transfer (FRET). QD-based FRET technique, which has been widely applied as a bioanalytical tool, is described. We discuss time-resolved fluorescence (TRF) imaging and flow cytometry technique, using photoluminescent nanoparticles with unique properties for effectively improving selectivity and sensitivity. Based on these techniques, bioanalytical and biomedical application, bioimaging with QD, UCNPs, and Euripium-activated luminescent nanoprobes are covered. Combination of optical property of these luminescent nanoparticles with special functions such as drug delivery, photothermal therapy (PTT), and photodynamic therapy (PDT) is also described.


Asunto(s)
Nanopartículas , Fotoquimioterapia , Puntos Cuánticos , Transferencia Resonante de Energía de Fluorescencia , Luminiscencia
9.
Adv Exp Med Biol ; 1309: 133-159, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33782871

RESUMEN

This review presents the main characteristics of metal nanoparticles (NPs), especially consisting of noble metal such as Au and Ag, and brief information on their synthesis methods. The physical and chemical properties of the metal NPs are described, with a particular focus on the optically variable properties (surface plasmon resonance based properties) and surface-enhanced Raman scattering of plasmonic materials. In addition, this chapter covers ways to achieve advances by utilizing their properties in the biological studies and medical fields (such as imaging, diagnostics, and therapeutics). These descriptions will help researchers new to nanomaterials for biomedical diagnosis to understand easily the related knowledge and also will help researchers involved in the biomedical field to learn about the latest research trends.


Asunto(s)
Nanopartículas del Metal , Nanoestructuras , Oro , Espectrometría Raman , Resonancia por Plasmón de Superficie
10.
Adv Exp Med Biol ; 1309: 277-287, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33782877

RESUMEN

Not only is fabrication important for research in materials science, but also materials characterization and analysis. Special microscopes capable of ultra-high magnification are more essential for observing and analyzing nanoparticles than for macro-size particles. Recently, electron microscopy (EM) and scanning probe microscopy (SPM) are commonly used for observing and analyzing nanoparticles. In this chapter, the basic principles of various techniques in optical and electron microscopy are described and classified. In particular, techniques such as transmission electron microscopy (TEM) and scanning electron microscopy (SEM) are explained.


Asunto(s)
Nanopartículas , Nanoestructuras , Microscopía de Fuerza Atómica , Microscopía Electrónica de Rastreo , Microscopía de Sonda de Barrido
11.
Adv Exp Med Biol ; 1309: 161-190, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33782872

RESUMEN

Following the previous chapter, recent synthetic methods of metal-based nanoparticles and their applications based on plasmonic resonance properties are described in this chapter. This differs from the previous chapter, which described the general uses of metal-based nanoparticles, in that various recent advanced applications of metal-based nanoparticles are described in this chapter.


Asunto(s)
Nanopartículas del Metal , Resonancia por Plasmón de Superficie
12.
Adv Exp Med Biol ; 1309: 257-276, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33782876

RESUMEN

The use of carbon-based nanomaterials (CNs) with outstanding properties has been rising in many scientific and industrial application fields. These CNs represent a tunable alternative for applications with biomolecules, which allow interactions in either covalent or noncovalent way. Diverse carbon-derived nanomaterial family exhibits unique features and has been widely exploited in various biomedical applications, including biosensing, diagnosis, cancer therapy, drug delivery, and tissue engineering. In this chapter, we aim to present an overview of CNs with a particular interest in intrinsic structural, electronic, and chemical properties. In particular, the detailed properties and features of CNs and its derivatives, including carbon nanotube (CNT), graphene, graphene oxide (GO), and reduced GO (rGO) are summarized. The interesting biomedical applications are also reviewed in order to offer an overview of the possible fields for scientific and industrial applications of CNs.


Asunto(s)
Nanoestructuras , Nanotubos de Carbono , Sistemas de Liberación de Medicamentos , Ingeniería de Tejidos
13.
Adv Exp Med Biol ; 1309: 1-22, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33782866

RESUMEN

Nano is a fine metric unit which means "one billionth." Nanotechnology is attracting attention as a technological basis to lead the fourth industry. By utilizing synergistic properties obtained from controlling the structure or arrangement of materials at the nanoscale, nanotechnology has evolved rapidly over the past half century and is active in a variety of fields such as materials, pharmaceuticals, and biology. This chapter briefly describes the concept and features of nanotechnology, as well as the preparation, analysis, characterization, and application of nanomaterials. Also, the prospects for nanotechnology along with the nanotoxicity are described.


Asunto(s)
Nanoestructuras , Nanotecnología
14.
Adv Exp Med Biol ; 1309: 191-215, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33782873

RESUMEN

Magnetic nanoparticles have been used in various fields such as data storage, biomedicine, or bioimaging with their unique magnetic property. With their low toxicity, the importance of magnetic nanoparticles keeps increasing especially in biological field. In this chapter, content suitable for scientific inquirers or undergraduates to acquire basic knowledge about nanotechnology is introduced and then recent research trends in nanotechnology are covered.


Asunto(s)
Nanopartículas de Magnetita , Nanopartículas , Sistemas de Liberación de Medicamentos , Magnetismo , Nanopartículas/toxicidad , Nanotecnología , Fenómenos Físicos
15.
Adv Exp Med Biol ; 1309: 235-255, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33782875

RESUMEN

Nanobiotechnology is known as the application of nanoscaled techniques in biology which bridges natural science to living organism for improving the quality of life of humans. Nanotechnology was first issued in 1959 and has been rapidly developed, supplying numerous benefits to basic scientific academy and to clinical application including human healthcare, specifically in cancer therapy. This chapter discusses recent advances and potentials of nanotechnology in pharmaceutics, therapeutics, biosensing, bioimaging, and gene delivery that demonstrate the multifunctionality of nanotechnology.


Asunto(s)
Técnicas Biosensibles , Nanoestructuras , Sistemas de Liberación de Medicamentos , Técnicas de Transferencia de Gen , Humanos , Nanomedicina , Nanotecnología , Calidad de Vida
16.
Adv Exp Med Biol ; 1309: 289-292, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33782878

RESUMEN

Nanotechnology is a rapidly growing area of development by numerous research groups across the world with its potential applications gaining recognition since the 1950s across various fields. During the last decade of the twentieth century, researchers have actively engaged in the synthesis of nanoparticles and investigation of their physicochemical properties. Advancing the research momentum forward at the beginning of the twenty-first century, rapid development of nanoscience allowed to demonstrate unprecedented advantages of the nanomaterials and its applications in a wide range of fields. The interdisciplinary nature of nanoscience and its expansion has led to establishment of new laboratories and research centers, with increasing needs on training and educating young scientists in advanced laboratory protocols. In addition, pedagogical demands in nanotechnology and nanomaterials have resulted an emergence of new dedicated curriculums at universities which has sped up the development of nanoscience and its contribution to the body of knowledge in natural science.


Asunto(s)
Nanopartículas , Nanoestructuras , Humanos , Nanotecnología , Investigadores , Universidades
17.
Sensors (Basel) ; 21(12)2021 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-34203603

RESUMEN

Prostate-specific antigen (PSA) is the best-known biomarker for early diagnosis of prostate cancer. For prostate cancer in particular, the threshold level of PSA <4.0 ng/mL in clinical samples is an important indicator. Quick and easy visual detection of the PSA level greatly helps in early detection and treatment of prostate cancer and reducing mortality. In this study, we developed optimized silica-coated silver-assembled silica nanoparticles (SiO2@Ag@SiO2 NPs) that were applied to a visual lateral flow immunoassay (LFIA) platform for PSA detection. During synthesis, the ratio of silica NPs to silver nitrate changed, and as the synthesized NPs exhibited distinct UV spectra and colors, most optimized SiO2@Ag@SiO2 NPs showed the potential for early prostate cancer diagnosis. The PSA detection limit of our LFIA platform was 1.1 ng/mL. By applying each SiO2@Ag@SiO2 NP to the visual LFIA platform, optimized SiO2@Ag@SiO2 NPs were selected in the test strip, and clinical samples from prostate cancer patients were successfully detected as the boundaries of non-specific binding were clearly seen and the level of PSA was <4 ng/mL, thus providing an avenue for quick prostate cancer diagnosis and early treatment.


Asunto(s)
Nanopartículas del Metal , Nanopartículas , Neoplasias de la Próstata , Humanos , Inmunoensayo , Masculino , Antígeno Prostático Específico , Dióxido de Silicio
18.
Int J Mol Sci ; 22(22)2021 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-34830119

RESUMEN

The energy conversion efficiency (ECE) (η), current density (Jsc), open-circuit voltage (Voc), and fill factor (ff) of perovskite solar cells were studied by using the transmittance of a nanopatterned mesoporous TiO2 (mp-TiO2) thin-film layer. To improve the ECE of perovskite solar cells, a mp-TiO2 thin-film layer was prepared to be used as an electron transport layer (ETL) via the nanoimprinting method for nanopatterning, which was controlled by the aspect ratio. The nanopatterned mp-TiO2 thin-film layer had a uniform and well-designed structure, and the diameter of nanopatterning was 280 nm. The aspect ratio was controlled at the depths of 75, 97, 127, and 167 nm, and the perovskite solar cell was fabricated with different depths. The ECE of the perovskite solar cells with the nanopatterned mp-TiO2 thin-film layer was 14.50%, 15.30%, 15.83%, or 14.24%, which is higher than that of a non-nanopatterned mp-TiO2 thin-film layer (14.07%). The enhancement of ECE was attributed to the transmittance of the nanopatterned mp-TiO2 thin-film layer that is due to the improvement of the electron generation. As a result, better electron generation affected the electron density, and Jsc increased the Voc, and ff of perovskite solar cells.


Asunto(s)
Compuestos de Calcio/química , Óxidos/química , Energía Solar , Titanio/química
19.
Int J Mol Sci ; 21(14)2020 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-32708351

RESUMEN

Metallic alloy nanoparticles are synthesized by combining two or more different metals. Bimetallic or trimetallic nanoparticles are considered more effective than monometallic nanoparticles because of their synergistic characteristics. In this review, we outline the structure, synthesis method, properties, and biological applications of metallic alloy nanoparticles based on their plasmonic, catalytic, and magnetic characteristics.


Asunto(s)
Aleaciones/química , Aleaciones/síntesis química , Sistemas de Liberación de Medicamentos/métodos , Nanopartículas/química , Aleaciones/uso terapéutico , Catálisis , Diagnóstico por Imagen/métodos , Campos Magnéticos , Nanopartículas del Metal/química , Nanopartículas del Metal/uso terapéutico , Nanopartículas/uso terapéutico
20.
Int J Mol Sci ; 21(11)2020 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-32516981

RESUMEN

Histamine intoxication associated with seafood consumption represents a global health problem. The consumption of high concentrations of histamine can cause illnesses ranging from light symptoms, such as a prickling sensation, to death. In this study, gold-silver alloy-embedded silica (SiO2@Au@Ag) nanoparticles were created to detect histamine using surface-enhanced Raman scattering (SERS). The optimal histamine SERS signal was measured following incubation with 125 µg/mL of SiO2@Au@Ag for 2 h, with a material-to-histamine solution volume ratio of 1:5 and a phosphate-buffered saline-Tween 20 (PBS-T) solvent at pH 7. The SERS intensity of the histamine increased proportionally with the increase in histamine concentration in the range 0.1-0.8 mM, with a limit of detection of 3.698 ppm. Our findings demonstrate the applicability of SERS using nanomaterials for histamine detection. In addition, this study demonstrates that nanoalloys could have a broad application in the future.


Asunto(s)
Aleaciones/química , Técnicas Biosensibles , Histamina/análisis , Nanopartículas del Metal/química , Dióxido de Silicio/química , Plata/química , Espectrometría Raman , Concentración de Iones de Hidrógeno , Nanopartículas del Metal/ultraestructura , Sensibilidad y Especificidad , Solventes
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA