Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 207
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Gut ; 70(12): 2283-2296, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-33514598

RESUMEN

BACKGROUND: Inhibitory control (IC) is critical to keep long-term goals in everyday life. Bidirectional relationships between IC deficits and obesity are behind unhealthy eating and physical exercise habits. METHODS: We studied gut microbiome composition and functionality, and plasma and faecal metabolomics in association with cognitive tests evaluating inhibitory control (Stroop test) and brain structure in a discovery (n=156), both cross-sectionally and longitudinally, and in an independent replication cohort (n=970). Faecal microbiota transplantation (FMT) in mice evaluated the impact on reversal learning and medial prefrontal cortex (mPFC) transcriptomics. RESULTS: An interplay among IC, brain structure (in humans) and mPFC transcriptomics (in mice), plasma/faecal metabolomics and the gut metagenome was found. Obesity-dependent alterations in one-carbon metabolism, tryptophan and histidine pathways were associated with IC in the two independent cohorts. Bacterial functions linked to one-carbon metabolism (thyX,dut, exodeoxyribonuclease V), and the anterior cingulate cortex volume were associated with IC, cross-sectionally and longitudinally. FMT from individuals with obesity led to alterations in mice reversal learning. In an independent FMT experiment, human donor's bacterial functions related to IC deficits were associated with mPFC expression of one-carbon metabolism-related genes of recipient's mice. CONCLUSION: These results highlight the importance of targeting obesity-related impulsive behaviour through the induction of gut microbiota shifts.


Asunto(s)
Aminoácidos Aromáticos/metabolismo , Carbono/metabolismo , Trasplante de Microbiota Fecal , Microbioma Gastrointestinal/fisiología , Inhibición Psicológica , Obesidad/complicaciones , Adulto , Anciano , Animales , Estudios Transversales , Hígado Graso/microbiología , Femenino , Humanos , Masculino , Ratones , Persona de Mediana Edad , Fenotipo , Transcriptoma
2.
Int J Obes (Lond) ; 45(2): 415-426, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33040077

RESUMEN

BACKGROUND AND OBJECTIVES: The importance of hydrogen sulfide is increasingly recognized in the pathophysiology of obesity and type 2 diabetes in animal models. Very few studies have evaluated circulating sulfides in humans, with discrepant results. Here, we aimed to investigate serum sulfide levels according to obesity. SUBJECTS AND METHODS: Serum sulfide levels were analyzed, using a selective fluorescent probe, in two independent cohorts [cross-sectionally in discovery (n = 139) and validation (n = 71) cohorts, and longitudinally in 82 participants from discovery cohort]. In the validation cohort, blood gene expression of enzymes contributing to H2S generation and consumption were also measured. RESULTS: In the discovery cohort, serum sulfide concentration was significantly increased in subjects with morbid obesity at baseline and follow-up, and positively correlated with BMI and fat mass, but negatively with total cholesterol, haemoglobin, serum ferritin, iron and bilirubin after adjusting by age, gender and fat mass. Fat mass (ß = 0.51, t = 3.67, p < 0.0001) contributed independently to age-, gender-, insulin sensitivity- and BMI-adjusted serum sulfide concentration variance. Importantly, receiver operating characteristic analysis demonstrated the relevance of fat mass predicting serum sulfide levels, which was replicated in the validation cohort. In addition, serum sulfide concentration was decreased in morbidly obese subjects with impaired compared to those with normal fasting glucose. Longitudinally, weight gain resulted in increased serum sulfide concentration, whereas weight loss had opposite effects, being the percent change in serum sulfide positively correlated with the percent change in BMI and waist circumference, but negatively with bilirubin. Whole blood CBS, CTH, MPST, SQOR, TST and MPO gene expression was not associated to obesity or serum sulfide concentration. CONCLUSIONS: Altogether these data indicated that serum sulfide concentrations were increased in subjects with morbid obesity in proportion to fat mass and inversely associated with circulating markers of haem degradation.


Asunto(s)
Tejido Adiposo/fisiología , Obesidad Mórbida , Sulfuros/sangre , Adulto , Estudios Transversales , Diabetes Mellitus Tipo 2 , Femenino , Humanos , Resistencia a la Insulina , Masculino , Persona de Mediana Edad , Obesidad Mórbida/sangre , Obesidad Mórbida/epidemiología , Obesidad Mórbida/fisiopatología , Adulto Joven
3.
Pharmacol Res ; 166: 105486, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33556481

RESUMEN

Chronic systemic low-level inflammation in metabolic disease is known to affect adipose tissue biology. Lysozyme (LYZ) is a major innate immune protein but its role in adipose tissue has not been investigated. Here, we aimed to investigate LYZ in human and rodents fat depots, and its possible role in obesity-associated adipose tissue dysfunction. LYZ mRNA and protein were identified to be highly expressed in adipose tissue from subjects with obesity and linked to systemic chronic-low grade inflammation, adipose tissue inflammation and metabolic disturbances, including hyperglycemia, dyslipidemia and decreased markers of adipose tissue adipogenesis. These findings were confirmed in experimental models after a high-fat diet in mice and rats and also in ob/ob mice. Importantly, specific inguinal and perigonadal white adipose tissue lysozyme (Lyz2) gene knockdown in high-fat diet-fed mice resulted in improved adipose tissue inflammation in parallel to reduced lysozyme activity. Of note, Lyz2 gene knockdown restored adipogenesis and reduced weight gain in this model. In conclusion, altogether these observations point to lysozyme as a new actor in obesity-associated adipose tissue dysfunction. The therapeutic targeting of lysozyme production might contribute to improve adipose tissue metabolic homeostasis.


Asunto(s)
Adipogénesis , Dieta Alta en Grasa/efectos adversos , Inflamación/genética , Muramidasa/genética , Tejido Adiposo/metabolismo , Animales , Técnicas de Silenciamiento del Gen , Masculino , Ratones , Ratones Endogámicos C57BL , Obesidad/etiología , Obesidad/genética , Ratas Wistar
4.
Int J Mol Sci ; 22(23)2021 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-34884763

RESUMEN

The adipokine Neuregulin 4 (Nrg4) protects against obesity-induced insulin resistance. Here, we analyze how the downregulation of Nrg4 influences insulin action and the underlying mechanisms in adipocytes. Validated shRNA lentiviral vectors were used to generate scramble (Scr) and Nrg4 knockdown (KD) 3T3-L1 adipocytes. Adipogenesis was unaffected in Nrg4 KD adipocytes, but there was a complete impairment of the insulin-induced 2-deoxyglucose uptake, which was likely the result of reduced insulin receptor and Glut4 protein. Downregulation of Nrg4 enhanced the expression of proinflammatory cytokines. Anti-inflammatory agents recovered the insulin receptor, but not Glut4, content. Proteins enriched in Glut4 storage vesicles such as the insulin-responsive aminopeptidase (IRAP) and Syntaxin-6 as well as TBC1D4, a protein involved in the intracellular retention of Glut4 vesicles, also decreased by Nrg4 KD. Insulin failed to reduce autophagy in Nrg4 KD adipocytes, observed by a minor effect on mTOR phosphorylation, at the time that proteins involved in autophagy such as LC3-II, Rab11, and Clathrin were markedly upregulated. The lysosomal activity inhibitor bafilomycin A1 restored Glut4, IRAP, Syntaxin-6, and TBC1D4 content to those found in control adipocytes. Our study reveals that Nrg4 preserves the insulin responsiveness by preventing inflammation and, in turn, benefits the insulin regulation of autophagy.


Asunto(s)
Autofagia/fisiología , Transportador de Glucosa de Tipo 4/metabolismo , Resistencia a la Insulina/fisiología , Neurregulinas/metabolismo , Receptor de Insulina/biosíntesis , Células 3T3 , Adipocitos/metabolismo , Animales , Línea Celular , Cistinil Aminopeptidasa/biosíntesis , Citocinas/biosíntesis , Desoxiglucosa/metabolismo , Regulación hacia Abajo , Proteínas Activadoras de GTPasa/biosíntesis , Inflamación/patología , Insulina/metabolismo , Ratones , Neurregulinas/biosíntesis , Neurregulinas/genética , Proteínas Qa-SNARE/biosíntesis , Interferencia de ARN , ARN Interferente Pequeño/genética
5.
FASEB J ; 33(8): 9656-9671, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31145872

RESUMEN

During adipogenesis, preadipocytes' cytoskeleton reorganizes in parallel with lipid accumulation. Failure to do so may impact the ability of adipose tissue (AT) to shift between lipid storage and mobilization. Here, we identify cytoskeletal transgelin 2 (TAGLN2) as a protein expressed in AT and associated with obesity and inflammation, being normalized upon weight loss. TAGLN2 was primarily found in the adipose stromovascular cell fraction, but inflammation, TGF-ß, and estradiol also prompted increased expression in human adipocytes. Tagln2 knockdown revealed a key functional role, being required for proliferation and differentiation of fat cells, whereas transgenic mice overexpressing Tagln2 using the adipocyte protein 2 promoter disclosed remarkable sex-dependent variations, in which females displayed "healthy" obesity and hypertrophied adipocytes but preserved insulin sensitivity, and males exhibited physiologic changes suggestive of defective AT expandability, including increased number of small adipocytes, activation of immune cells, mitochondrial dysfunction, and impaired metabolism together with decreased insulin sensitivity. The metabolic relevance and sexual dimorphism of TAGLN2 was also outlined by genetic variants that may modulate its expression and are associated with obesity and the risk of ischemic heart disease in men. Collectively, current findings highlight the contribution of cytoskeletal TAGLN2 to the obese phenotype in a gender-dependent manner.-Ortega, F. J., Moreno-Navarrete, J. M., Mercader, J. M., Gómez-Serrano, M., García-Santos, E., Latorre, J., Lluch, A., Sabater, M., Caballano-Infantes, E., Guzmán, R., Macías-González, M., Buxo, M., Gironés, J., Vilallonga, R., Naon, D., Botas, P., Delgado, E., Corella, D., Burcelin, R., Frühbeck, G., Ricart, W., Simó, R., Castrillon-Rodríguez, I., Tinahones, F. J., Bosch, F., Vidal-Puig, A., Malagón, M. M., Peral, B., Zorzano, A., Fernández-Real, J. M. Cytoskeletal transgelin 2 contributes to gender-dependent adipose tissue expandability and immune function.


Asunto(s)
Tejido Adiposo/inmunología , Tejido Adiposo/metabolismo , Dieta Alta en Grasa/efectos adversos , Proteínas de Microfilamentos/metabolismo , Proteínas Musculares/metabolismo , Obesidad/inmunología , Obesidad/metabolismo , Animales , Western Blotting , Citoesqueleto/metabolismo , Femenino , Humanos , Inmunohistoquímica , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteínas de Microfilamentos/genética , Proteínas Musculares/genética , Obesidad/etiología , Factores Sexuales , Células THP-1
6.
Int J Obes (Lond) ; 43(8): 1611-1619, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30206337

RESUMEN

BACKGROUND/OBJECTIVES: Recent studies indicate a possible role of TSH/TSHR signalling axis on adipogenesis and adipose tissue physiology. Here, we aimed to investigate the relationship between adipose tissue TSHB and adipose tissue physiology-related gene expression. SUBJECTS/METHODS: Subcutaneous and visceral adipose tissue TSHB gene expression was analysed in two independent cohorts [Cohort1 (N = 96) and Cohort2 (N = 45)] and after bariatric surgery-induced weight loss [Cohort3 (N = 22)]. Adipose tissue TSH protein expression was also analysed in a subgroup of participants from Cohort 1 (N = 16). The effects of recombinant TSH on human subcutaneous preadipocytes and adipocytes were investigated. RESULTS: In cohort 1, both visceral and subcutaneous adipose tissue TSHB gene expression was positively correlated with the expression of mitochondrial function (PPARGC1A, ISCA2, CISD1, SIRT1, NFE2L2, NRF1) and fatty acid mobilization (CAV1, ENGL1), but not with adipogenic-related genes. Of note, adipose tissue TSH protein levels were also associated with some of these markers of mitochondrial function and fatty acid mobilization. These associations were replicated in cohort 2. Bariatric surgery-induced weight loss resulted in increased subcutaneous adipose tissue TSHB in parallel to increased PPARGC1A. In human subcutaneous adipocytes, rh-TSH administration led to increased mitochondrial respiratory capacity in parallel to increased mitochondrial function- and adipogenic-related gene expression, but no significant effects were observed during differentiation of human preadipocytes. CONCLUSION: These data point to a possible role of adipose tissue TSH in the maintenance of adipocyte mitochondrial function.


Asunto(s)
Adipocitos/metabolismo , Tejido Adiposo/metabolismo , Mitocondrias/metabolismo , Tirotropina de Subunidad beta/genética , Tirotropina de Subunidad beta/metabolismo , Adipogénesis , Adulto , Biomarcadores/metabolismo , Células Cultivadas , Senescencia Celular , Estudios de Cohortes , Ácidos Grasos/metabolismo , Femenino , Expresión Génica , Humanos , Inflamación/metabolismo , Grasa Intraabdominal/metabolismo , Masculino , Persona de Mediana Edad , Obesidad/genética , Obesidad/metabolismo , Grasa Subcutánea/metabolismo , Tirotropina Alfa/metabolismo
7.
Cell Physiol Biochem ; 51(3): 1051-1068, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30476912

RESUMEN

BACKGROUND/AIMS: Obesity is characterized by the immune activation that eventually dampens insulin sensitivity and changes metabolism. This study explores the impact of different inflammatory/ anti-inflammatory paradigms on the expression of toll-like receptors (TLR) found in adipocyte cultures, adipose tissue, and blood. METHODS: We evaluated by real time PCR the impact of acute surgery stress in vivo (adipose tissue) and macrophages (MCM) in vitro (adipocytes). Weight loss was chosen as an anti-inflammatory model, so TLR were analyzed in fat samples collected before and after bariatric surgery-induced weight loss. Associations with inflammatory and metabolic parameters were analyzed in non-obese and obese subjects, in parallel with gene expression measures taken in blood and isolated adipocytes/ stromal-vascular cells (SVC). Treatments with an agonist of TLR3 were conducted in human adipocyte cultures under normal conditions and upon conditions that simulated the chronic low-grade inflammatory state of obesity. RESULTS: Surgery stress raised TLR1 and TLR8 in subcutaneous (SAT), and TLR2 in SAT and visceral (VAT) adipose tissue, while decreasing VAT TLR3 and TLR4. MCM led to increased TLR2 and diminished TLR3, TLR4, and TLR5 expressions in human adipocytes. The anti-inflammatory impact of weight loss was concomitant with decreased TLR1, TLR3, and TLR8 in SAT. Cross-sectional associations confirmed increased V/ SAT TLR1 and TLR8, and decreased TLR3 in obese patients, as compared with non-obese subjects. As expected, TLR were predominant in SVC and adipocyte precursor cells, even though expression of all of them but TLR8 (very low levels) was also found in ex vivo isolated and in vitro differentiated adipocytes. Among SVC, CD14+ macrophages showed increased TLR1, TLR2, and TLR7, but decreased TLR3 mRNA. The opposite patterns shown for TLR2 and TLR3 in V/ SAT, SVC, and inflamed adipocytes were observed in blood as well, being TLR3 more likely linked to lymphocyte instead of neutrophil counts. On the other hand, decreased TLR3 in adipocytes challenged with MCM dampened lipogenesis and the inflammatory response to Poly(I:C). CONCLUSION: Functional variations in the expression of TLR found in blood and hypertrophied fat depots, namely decreased TLR3 in lymphocytes and inflamed adipocytes, are linked to metabolic inflammation.


Asunto(s)
Adipocitos/patología , Tejido Adiposo/patología , Inflamación/genética , Obesidad/genética , Receptor Toll-Like 3/análisis , Receptor Toll-Like 3/genética , Transcriptoma , Adipocitos/metabolismo , Tejido Adiposo/metabolismo , Adulto , Cirugía Bariátrica , Estudios Transversales , Femenino , Humanos , Inflamación/sangre , Inflamación/patología , Masculino , Persona de Mediana Edad , Obesidad/sangre , Obesidad/patología , Obesidad/cirugía , Receptor Toll-Like 3/sangre
8.
Cell Physiol Biochem ; 51(1): 142-153, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30448824

RESUMEN

BACKGROUND/AIMS: Thyroid hormones have been recently linked to senescence and longevity. Given the recent description of TSHB mRNA in human adipose tissue (AT), we aimed to investigate the relationship between local AT TSH and adipose tissue senescence. METHODS: TSHB mRNA (measured by real-time PCR) and markers of adipose tissue senescence [BAX, DBC1, TP53, TNF (real-time PCR), telomere length (Telo TAGGG Telomere Length Assay) and lipidomics (liquid chromatography mass spectrometry)] were analysed in subcutaneous (SAT) and visceral (VAT) AT from euthyroid subjects. The chronic effects of TSH were also investigated in AT from hypothyroid rats and after recombinant human TSH (rhTSH) administration in human adipocytes. RESULTS: Both VAT and SAT TSHB gene expression negatively correlated with markers of AT cellular senescence (BAX, DBC1, TP53, TNF gene expression and specific glucosylceramides) and positively associated with telomere length. Supporting these observations, both rhTSH administration in human adipocytes and increased TSH in hypothyroid rats resulted in decreased markers of cellular senescence (Bax and Tp53 mRNA) in both gonadal and subcutaneous white adipose tissue. CONCLUSION: These data point to a possible role of TSH in AT cellular senescence.


Asunto(s)
Senescencia Celular , Hipotiroidismo/patología , Grasa Intraabdominal/metabolismo , Grasa Subcutánea/metabolismo , Tirotropina de Subunidad beta/metabolismo , Adulto , Animales , Biomarcadores/metabolismo , Glucemia/análisis , Senescencia Celular/efectos de los fármacos , Senescencia Celular/genética , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Hipotiroidismo/veterinaria , Grasa Intraabdominal/citología , Grasa Intraabdominal/efectos de los fármacos , Masculino , Persona de Mediana Edad , Ratas , Ratas Sprague-Dawley , Grasa Subcutánea/citología , Grasa Subcutánea/efectos de los fármacos , Homeostasis del Telómero , Tirotropina/genética , Tirotropina/metabolismo , Tirotropina/farmacología , Tirotropina de Subunidad beta/genética , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Proteína X Asociada a bcl-2/genética , Proteína X Asociada a bcl-2/metabolismo
9.
FASEB J ; 31(10): 4482-4491, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28646016

RESUMEN

Subclinical hypothyroidism is known to be associated with increased serum cholesterol. Since thyroid-stimulating hormone (TSH) exerts an inductor effect on cholesterol biosynthesis, we aimed to investigate the relationship between TSH mRNA and cholesterol metabolism in human adipose tissue (AT). Cross-sectionally, AT TSH-ß (TSHB) mRNA was evaluated in 4 independent cohorts in association with serum total and LDL cholesterol, and AT lipidomics. Longitudinally, the effects of statins and of diet and exercise on AT TSHB mRNA were also examined. The bidirectional relationship between cholesterol and TSHB were studied in isolated human adipocytes. TSHB mRNA was consistently detected in AT from euthyroid subjects, and positively associated with serum total- and LDL-cholesterol, and with AT-specific cholesterol metabolism-associated lipids [arachidonoyl cholesteryl ester, C8-dihydroceramide, N-stearoyl-d-sphingosine, and GlcCer(18:0, 24:1)]. Reduction of cholesterol with statins and with diet and exercise interventions led to decreased TSHB mRNA in human AT, whereas excess cholesterol up-regulated TSHB mRNA in human adipocytes. In addition, recombinant human TSH α/ß administration resulted in increased HMGCR mRNA levels in human adipocytes. In mice, subcutaneous AT Tshb expression levels correlated directly with circulating cholesterol levels. In summary, current results provide novel evidence of TSHB as a paracrine factor that is modulated in parallel with cholesterol metabolism in human AT.-Moreno-Navarrete, J. M., Moreno, M., Ortega, F., Xifra, G., Hong, S., Asara, J. M., Serrano, J. C. E., Jové, M., Pissios, P., Blüher, M., Ricart, W., Portero-Otin, M., Fernández-Real, J. M. TSHB mRNA is linked to cholesterol metabolism in adipose tissue.


Asunto(s)
Adipocitos/metabolismo , Tejido Adiposo/metabolismo , Metabolismo de los Lípidos/fisiología , Lípidos/sangre , Tirotropina de Subunidad beta/genética , Tirotropina/metabolismo , Animales , Colesterol/metabolismo , Humanos , Hipotiroidismo/metabolismo , Ratones
10.
Diabetologia ; 60(5): 915-926, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28243792

RESUMEN

AIMS/HYPOTHESIS: Iron excess in adipose tissue is known to promote adipose tissue dysfunction. Here, we aimed to investigate the possible role of haem oxygenase 1 (HMOX1) in iron excess-induced adipose tissue dysfunction. METHODS: Cross-sectionally, HMOX1 gene expression in subcutaneous and visceral adipose tissue was analysed in two independent cohorts (n = 234 and 40) in relation to obesity. We also evaluated the impact of weight loss (n = 21), weight gain (in rats, n = 20) on HMOX1 mRNA; HMOX1 mRNA levels during human adipocyte differentiation; the effects of inflammation and iron on adipocyte HMOX1; and the effects of HMOX1-induced activity on adipocyte mitochondrial respiratory function, glucose uptake and adipogenesis. RESULTS: Adipose tissue HMOX1 was increased in obese participants (p = 0.01) and positively associated with obesity-related metabolic disturbances, and markers of iron accumulation, inflammation and oxidative stress (p < 0.01). HMOX1 was negatively correlated with mRNAs related to mitochondrial biogenesis, the insulin signalling pathway and adipogenesis (p < 0.01). These associations were replicated in an independent cohort. Bariatric surgery-induced weight loss led to reduced HMOX1 (0.024 ± 0.010 vs 0.010 ± 0.004 RU, p < 0.0001), whereas in rats, high-fat diet-induced weight gain resulted in increased Hmox1 mRNA levels (0.22 ± 0.15 vs 0.54 ± 0.22 RU, p = 0.005). These changes were in parallel with changes in BMI and adipose tissue markers of iron excess, adipogenesis and inflammation. In human adipocytes, iron excess and inflammation led to increased HMOX1 mRNA levels. HMOX1 induction (by haem arginate [hemin] administration), resulted in a significant reduction of mitochondrial respiratory capacity (including basal respiration and spare respiratory capacity), glucose uptake and adipogenesis in parallel with increased expression of inflammatory- and iron excess-related genes. CONCLUSIONS/INTERPRETATION: HMOX1 is an important marker of iron excess-induced adipose tissue dysfunction and metabolic disturbances in human obesity.


Asunto(s)
Adipocitos/metabolismo , Tejido Adiposo/metabolismo , Glucosa/metabolismo , Hemo-Oxigenasa 1/metabolismo , Hierro/metabolismo , Adulto , Animales , Cirugía Bariátrica , Hemo-Oxigenasa 1/genética , Humanos , Masculino , Persona de Mediana Edad , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas , Ratas Wistar , Aumento de Peso/fisiología , Pérdida de Peso/fisiología
11.
Arterioscler Thromb Vasc Biol ; 36(1): 174-80, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26586658

RESUMEN

OBJECTIVE: Body iron status has been linked to atherosclerosis in adults. The purposes of our study were to determine (1) the association between circulating ferritin levels and carotid intima-media thickness (cIMT) in a cohort of apparently healthy children and (2) the association between cIMT and parental ferritin levels. APPROACH AND RESULTS: Circulating ferritin levels (microparticle enzyme immunoassay), metabolic parameters, and cIMT (ultrasonography) were analyzed cross-sectionally in a cohort of 692 healthy white children with a mean age of 8 ± 2 years (52% girls and 48% boys). In consecutive 123 children from the cross-sectional sample, the same serum assessments were also performed at baseline in their parents, and the cIMT was repeated after 3 years of follow-up in the children at a mean age of 11 ± 2 years (53% girls and 47% boys). Weak but significant positive associations were evident between children's circulating ferritin levels and cIMT (r=0.123; P=0.001) and with the change in cIMT 3 years later a tendency was also observed (r=0.185; P=0.048). In multiple regression analyses, circulating ferritin levels contributed independently to cIMT variance (ß=0.090; P=0.026; R(2)=10%) and cIMT change variance (ß=0.216; P=0.019; R(2)= 3.4%) after controlling for body mass index, high-sensitivity C-reactive protein, age, sex, and low-density lipoprotein-cholesterol levels. This association was, however, remarkably significant (ß=0.509; P=0.001; R(2)= 20.4%) in children whose fathers had ferritin levels above the median value (122.5 ng/mL).The latter association remained significant after correction for multiple testing. Maternal's ferritin levels showed no interaction in this association. CONCLUSIONS: These results suggest a paternal-specific effect on cIMT partially reflected by father's ferritin levels.


Asunto(s)
Enfermedades de las Arterias Carótidas/etiología , Grosor Intima-Media Carotídeo , Padre , Ferritinas/sangre , Adolescente , Factores de Edad , Biomarcadores/sangre , Enfermedades de las Arterias Carótidas/sangre , Enfermedades de las Arterias Carótidas/diagnóstico por imagen , Enfermedades de las Arterias Carótidas/genética , Niño , Estudios Transversales , Femenino , Humanos , Masculino , Valor Predictivo de las Pruebas , Factores de Riesgo , Factores Sexuales , Factores de Tiempo , Regulación hacia Arriba
12.
Diabetologia ; 59(4): 822-32, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26831303

RESUMEN

AIMS/HYPOTHESIS: We aimed to investigate the potential mechanisms involved in the compromised adipogenesis of visceral (VAT) vs subcutaneous adipose tissue (SAT) using comparative metabolomics. Based on the differentially identified metabolites, we focused on the relationship between the active form of vitamin B6 (pyridoxal 5-phosphate [PLP]), known to be generated through pyridoxal kinase (PDXK), and adipogenesis. METHODS: Non-targeted metabolomics analyses were performed in paired VAT and SAT (n = 14, discovery cohort). PDXK gene expression was evaluated in two validation cohorts of paired SAT and VAT samples in relation to obesity status and insulin sensitivity, and mechanistically after weight loss in vivo and in 3T3-L1 cells in vitro. RESULTS: Comparative metabolomics showed that PLP was significantly decreased in VAT vs SAT. Concordantly, PDXK mRNA levels were significantly decreased in VAT vs SAT, specifically in adipocytes. The decrease was specially marked in obese individuals. PDXK mRNA levels showed a strong association with adipogenic, lipid-droplet-related and lipogenic genes. At a functional level, systemic insulin sensitivity positively associated with PDXK expression, and surgically-induced weight loss (improving insulin sensitivity) led to increased SAT PDXK mRNA levels in parallel with adipogenic genes. In human pre-adipocytes, PDXK mRNA levels increased during adipocyte differentiation and after administration of peroxisome proliferator-activated receptor-γ agonists, and decreased under inflammatory stimuli. Mechanistic studies in 3T3-L1 cells showed that PLP administration resulted in increased adipogenic mRNA markers during early adipogenesis, whereas the PLP antagonist 4-deoxypyridoxine exerted opposite effects. CONCLUSIONS/INTERPRETATION: Overall, these results support the notion that in situ production of PLP is required for physiological adipogenesis.


Asunto(s)
Tejido Adiposo/metabolismo , Metabolómica/métodos , Piridoxal Quinasa/metabolismo , Células 3T3-L1 , Adipocitos/metabolismo , Adipogénesis/genética , Adipogénesis/fisiología , Adulto , Animales , Femenino , Humanos , Resistencia a la Insulina , Grasa Intraabdominal/metabolismo , Masculino , Ratones , Persona de Mediana Edad , Obesidad/metabolismo , Grasa Subcutánea/metabolismo , Vitamina B 6/metabolismo
13.
Clin Endocrinol (Oxf) ; 84(5): 756-63, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26406918

RESUMEN

OBJECTIVE: Rodent models have found that osteocalcin crosses the blood-brain barrier and regulates behaviour. No data are available on osteocalcin's effects on brain microstructure and cognitive performance in humans. We evaluated the association between serum osteocalcin concentrations and (i) brain microstructural changes on magnetic resonance imaging (MRI) and (ii) neuropsychological performance. DESIGN, PATIENTS AND MEASUREMENTS: We studied 24 consecutive obese subjects (13 women; age, 49·8 ± 8·1 years; body mass index [BMI], 43·9 ± 4·54 kg/m(2) ) and 20 healthy volunteers (10 women; age, 48·8 ± 9·5 years; BMI, 24·3 ± 3·54 kg/m(2) ) in a cross-sectional study within the multicentre FLORINASH Project. FLAIR signal intensity and DTI-metrics (primary (λ1 ), secondary (λ2 ) and tertiary (λ3 ) eigenvalues; fractional anisotropy (FA); and mean diffusivity) in the caudate, hypothalamus, thalamus and putamen, and in subcortical white matter were assessed. Cognitive performance evaluated by neuropsychological test battery. RESULTS: Lower osteocalcin concentrations were associated with BMI, higher λ1, λ2 and λ3 values at the caudate and lower FLAIR signal intensity at the caudate and putamen. Obese patients with lower osteocalcin concentrations had higher FA at putamen and thalamus. Lower osteocalcin concentrations were associated with higher Iowa Gambling Task (IGT) scores. FLAIR signal intensity at the caudate <601·832 yielded 85·7% sensitivity, 64·3% specificity, 70·6% negative predictive value and 81·8% positive predictive value for IGT score. Lower osteocalcin was an independent predictor of worse cognitive performance on multivariate analysis (F = 3·551, P = 0·01343; R(2) = 0·103). Bayesian information criterion demonstrated that osteocalcin had the predominant role in predicting IGT score. CONCLUSIONS: Lower serum osteocalcin concentrations are associated with brain microstructural changes and worse cognitive performance.


Asunto(s)
Encéfalo/fisiopatología , Cognición/fisiología , Obesidad/sangre , Osteocalcina/sangre , Adulto , Anisotropía , Teorema de Bayes , Índice de Masa Corporal , Encéfalo/patología , Estudios Transversales , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Análisis Multivariante , Pruebas Neuropsicológicas , Obesidad/fisiopatología , Obesidad/psicología , Valor Predictivo de las Pruebas
14.
FASEB J ; 29(4): 1529-39, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25550467

RESUMEN

To gain insight into the regulation of intracellular iron homeostasis in adipose tissue, we investigated the role of iron regulatory protein 1/cytosolic aconitase 1 (ACO1). ACO1 gene expression and activity increased in parallel to expression of adipogenic genes during differentiation of both murine 3T3-L1 cells and human preadipocytes. Lentiviral knockdown (KD) of Aco1 in 3T3-L1 preadipocytes led to diminished cytosolic aconitase activity and isocitrate dehydrogenase 1 (NADP(+)), soluble (Idh1) mRNA levels, decreased intracellular NADPH:NADP ratio, and impaired adipogenesis during adipocyte differentiation. In addition, Aco1 KD in fully differentiated 3T3-L1 adipocytes decreased lipogenic, Idh1, Adipoq, and Glut4 gene expression. A bidirectional cross-talk was found between intracellular iron levels and ACO1 gene expression and protein activity. Although iron in excess, known to increase reactive oxygen species production, and iron depletion both resulted in decreased ACO1 mRNA levels and activity, Aco1 KD led to reduced gene expression of transferrin receptor (Tfrc) and transferrin, disrupting intracellular iron uptake. In agreement with these findings, in 2 human independent cohorts (n = 85 and n = 38), ACO1 gene expression was positively associated with adipogenic markers in subcutaneous and visceral adipose tissue. ACO1 gene expression was also positively associated with the gene expression of TFRC while negatively linked to ferroportin (solute carrier family 40 (iron-regulated transporter), member 1) mRNA levels. Altogether, these results suggest that ACO1 activity is required for the normal adipogenic capacity of adipose tissue by connecting iron, energy metabolism, and adipogenesis.


Asunto(s)
Adipogénesis/fisiología , Tejido Adiposo/metabolismo , Proteína 1 Reguladora de Hierro/metabolismo , Hierro/metabolismo , Células 3T3-L1 , Adipocitos/citología , Adipocitos/metabolismo , Adipogénesis/genética , Adiponectina/genética , Adulto , Anciano , Animales , Células Cultivadas , Citosol/metabolismo , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patología , Expresión Génica , Técnicas de Silenciamiento del Gen , Transportador de Glucosa de Tipo 4/genética , Humanos , Proteína 1 Reguladora de Hierro/antagonistas & inhibidores , Proteína 1 Reguladora de Hierro/genética , Isocitrato Deshidrogenasa/genética , Ratones , Persona de Mediana Edad , NADP/metabolismo , Obesidad/genética , Obesidad/metabolismo , Obesidad/patología , ARN Mensajero/genética , ARN Mensajero/metabolismo
15.
Diabetologia ; 58(10): 2424-34, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26201685

RESUMEN

AIMS/HYPOTHESIS: Lipopolysaccharide (LPS) binding protein (LBP) is a novel 65 kDa adipokine, linked to adipose tissue (AT) inflammation, obesity and insulin resistance, that inhibits adipocyte differentiation. Here, we investigated the molecular mechanisms behind these detrimental effects on adipogenesis through whole-genome transcriptomics and in vitro experiments. METHODS: Permanent and transient knockdown (KD) and co-culture experiments were performed in 3T3-L1 and 3T3-F442A cell lines during adipocyte differentiation. Microarray gene expression was performed using Genechip Affymetrix technology and validated by real-time PCR. RESULTS: LBP KD of 3T3-L1 cells led to a potentiated adipocyte differentiation with a dose-response relationship; genes involved in mitochondrial biogenesis, fatty acid metabolism and peroxisome proliferator-activated receptor γ (PPAR-γ) action were dramatically upregulated in parallel to increased insulin signalling. Cells with LBP KD became refractory to proinflammatory cytokines and other inflammatory stimuli (LPS and palmitate). This phenotype, mediated through disrupted nuclear factor κB (NFκB) signalling, was reversed by a soluble factor present in a co-culture with native cells and by exogenous LBP. Double-silencing of LBP and toll-like receptor 4 (TLR4) again rendered these cells insensitive to co-culture, LBP and inflammatory factors. CONCLUSIONS/INTERPRETATION: In summary, LBP is a proinflammatory soluble adipokine that acts as a brake for adipogenesis, strengthening the negative effects of palmitate and LPS on adipocyte differentiation.


Asunto(s)
Proteínas de Fase Aguda/metabolismo , Adipocitos/metabolismo , Adipogénesis/genética , Proteínas Portadoras/metabolismo , Inflamación/metabolismo , Glicoproteínas de Membrana/metabolismo , Células 3T3-L1 , Proteínas de Fase Aguda/genética , Adipocitos/efectos de los fármacos , Adipogénesis/efectos de los fármacos , Animales , Proteínas Portadoras/genética , Expresión Génica , Técnicas de Silenciamiento del Gen , Inflamación/genética , Lipopolisacáridos/farmacología , Glicoproteínas de Membrana/genética , Ratones , FN-kappa B/metabolismo , Ácido Palmítico/farmacología , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética
16.
Am J Physiol Endocrinol Metab ; 308(7): E554-61, 2015 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-25648830

RESUMEN

Genetic deletion of Dbc1 in mice reduced adipose tissue senescence and inflammation while promoting an expansion of this tissue. Here, we aimed to investigate DBC1 mRNA and protein levels in human adipose tissue from subjects with a wide spectrum of fat mass (cohort 1; n = 105) and insulin resistance (cohort 2; n = 47); we also investigated the effects of DBC1 knockdown on 3T3-L1 adipocyte differentiation. DBC1 mRNA was relatively abundant in both visceral (VAT) and subcutaneous adipose tissue (SAT) (mainly in the adipocyte fraction), being decreased in adipose tissue from obese compared with lean subjects. In both VAT and SAT, DBC1 mRNA levels were negatively associated with BMI and positively associated with age and the expression of PPARγ, GLUT4, IRS1, lipogenic (FASN, ACACA), lipid droplet-associated genes (PLIN1, FSP27, ADRP, and TIP47), and lipolytic (ABDH5, AKAP, and PRKACA) genes but negatively associated with ADIPOQ in VAT. DBC1 mRNA and protein levels were increased in the early stages of adipocyte differentiation of human and 3T3-L1 adipocytes. Dbc1 knockdown (KD) with lentivirus led to enhanced adipocyte differentiation, increasing intracellular lipid accumulation and adipogenic gene expression. In conclusion, although DBC1 gene expression was reduced in adipose tissue from obese subjects, it was negatively associated with ADIPOQ gene expression in VAT, suggesting that DBC1 might promote visceral adipose tissue dysfunction. In vitro data supported the antiadipogenic effects of DBC1.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/fisiología , Adipocitos/fisiología , Adipogénesis/genética , Diferenciación Celular/genética , Células 3T3-L1 , Adulto , Anciano , Animales , Células Cultivadas , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Perfilación de la Expresión Génica , Humanos , Grasa Intraabdominal/fisiología , Ratones , Persona de Mediana Edad , Obesidad/genética , Obesidad/metabolismo
17.
Clin Endocrinol (Oxf) ; 83(2): 180-6, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25510350

RESUMEN

OBJECTIVE: Whether nonalcoholic fatty liver disease (NAFLD) can predict atherosclerosis in obese patients remains unclear. The aim of our study was to investigate the usefulness of NAFLD and other cardiometabolic parameters in predicting subclinical atherosclerosis in obese patients. DESIGN, PATIENTS AND MEASUREMENTS: We studied 314 consecutive obese subjects (223 women; mean age, 45·04 ± 9·34 years; body mass index 44·3 ± 5 kg/m(2) ) and 47 healthy lean individuals. Hepatic steatosis and atherosclerosis [carotid intima-media thickness (cIMT) >0·8 mm and/or presence of plaques] were evaluated ultrasonographically. Liver biopsies were obtained in 51 patients. RESULTS: In obese patients, mean c-IMT was greater in those with NAFLD (P < 0·001). Hepatic steatosis and age were independent predictors of atherosclerosis: the NAFLD-associated OR for atherosclerosis was 5·96 (95%CI, 1·60-22·25; P = 0·008) in men and 8·26 (95%CI, 4·02-16·99; P < 0·001) in women, and the age-associated OR for atherosclerosis was 1·14 (95%CI, 1·07-1·22; P < 0·001) in men and 1·12 (95%CI, 1·08-1·17; P < 0·001) in women. The sensitivity, specificity and positive and negative predictive values of steatosis for atherosclerosis were 78·70%, 70·50%, 74·00% and 75·60% (AUC = 0·840) in men ≥43·5 years and 86·90%, 52·50%, 68·80% and 76·80% (AUC = 0·761) in women ≥47·5 years, respectively. Agreement between ultrasound-diagnosed steatosis and histology was good (ICC = 0·79). Combined NAFLD and age was the strongest predictor of atherosclerosis in obesity. CONCLUSIONS: Nonalcoholic fatty liver disease and age may be independent risk factors for carotid atherosclerosis in obese individuals. Obese men and women with steatosis aged over 43·5 and 47·5 years, respectively, should be screened for carotid atherosclerosis. However, further evidence is necessary before suggesting an intervention based on current findings.


Asunto(s)
Aterosclerosis/complicaciones , Enfermedad del Hígado Graso no Alcohólico/complicaciones , Obesidad Mórbida/complicaciones , Adulto , Factores de Edad , Antropometría , Aterosclerosis/diagnóstico por imagen , Aterosclerosis/epidemiología , Biopsia , Índice de Masa Corporal , Grosor Intima-Media Carotídeo , Hígado Graso/fisiopatología , Femenino , Humanos , Hígado/patología , Masculino , Persona de Mediana Edad , Análisis Multivariante , Enfermedad del Hígado Graso no Alcohólico/diagnóstico , Enfermedad del Hígado Graso no Alcohólico/epidemiología , Obesidad , Obesidad Mórbida/diagnóstico , Obesidad Mórbida/epidemiología , Prevalencia , Riesgo , Sensibilidad y Especificidad
18.
FASEB J ; 28(3): 1071-81, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24265485

RESUMEN

Despite their differential effects on human metabolic pathophysiology, the differences in omental and subcutaneous lipidomes are largely unknown. To explore this field, liquid chromatography coupled with mass spectrometry was used for lipidome analyses of adipose tissue samples (visceral and subcutaneous) selected from a group of obese subjects (n=38). Transcriptomics and in vitro studies in adipocytes were used to confirm the pathways affected by location. The analyses revealed the existence of obesity-related specific lipidome signatures in each of these locations, attributed to selective enrichment of specific triglycerides, glycerophospholipids, and sphingolipids, because these were not observed in adipose tissues from nonobese individuals. The changes were compatible with subcutaneous enrichment in pathways involved in adipogenesis, triacylglyceride synthesis, and lipid droplet formation, as well as increased α-oxidation. Marked differences between omental and subcutaneous depots in obese individuals were seen in the association of lipid species with metabolic traits (body mass index and insulin sensitivity). Targeted studies also revealed increased cholesterol (Δ56%) and cholesterol epoxide (Δ34%) concentrations in omental adipose tissue. In view of the effects of cholesterol epoxide, which induced enhanced expression of adipocyte differentiation and α-oxidation genes in human omental adipocytes, a novel role for cholesterol epoxide as a signaling molecule for differentiation is proposed. In summary, in obesity, adipose tissue exhibits a location-specific differential lipid profile that may contribute to explaining part of its distinct pathogenic role.


Asunto(s)
Metabolismo de los Lípidos , Epiplón/metabolismo , Grasa Subcutánea/metabolismo , Adipocitos/citología , Adipocitos/metabolismo , Secuencia de Bases , Diferenciación Celular/efectos de los fármacos , Colesterol/análogos & derivados , Colesterol/farmacología , Cartilla de ADN , Femenino , Expresión Génica , Humanos , Masculino , Oxidación-Reducción , Reacción en Cadena en Tiempo Real de la Polimerasa , Transcriptoma
19.
Pituitary ; 18(1): 135-41, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24728972

RESUMEN

PURPOSE: Increased cardiovascular (CV) risk persists in Cushing's syndrome (CS), despite remission of hypercortisolism. The aim of this study was to evaluate prevalence of coronary artery disease in CS patients and its correlation with classical CV risk factors and inflammatory markers. METHODS: Cardiac multidetector computed tomography (MDCT) was performed in 41 patients (7 men, 31 of pituitary origin, 29 cured, mean age: 48.6 ± 13 years), using 64-slice Toshiba Aquilion systems. Coronary atherosclerotic plaques were detected and coronary calcifications quantified by the Agatston score (AS). Clinical and biochemical parameters were correlated with the AS to identify possible surrogate markers of coronary disease. Normal values for clinical and biochemical parameters were obtained from a gender- and age-matched normal reference population (n = 82). RESULTS: CS patients with calcifications (AS > 0) (N = 13, 32%) had higher levels of sTNF-R1, homocysteine, triglycerides, blood pressure and body mass index than patients without calcifications (AS = 0) and those of normal reference population. Both groups of CS patients (AS > 0 and AS = 0) had elevated trunk fat mass and IL-6 compared to reference values. Patients with AS > 0 had less adiponectin and higher insulin, HOMA and fibrinogen than those found in normal reference population. sTNF-R1 correlated positively with AS and remained significant after adjusting for confounding factors. The same result was observed when we considered only cured CS patients. CONCLUSION: In our cohort of CS patients sTNF-R1 was a predictor of coronary calcifications. Since MDCT is an expensive technique not readily available in daily clinical practice, increased sTNF-R1 could be a marker of CV risk even in cured CS.


Asunto(s)
Calcinosis/metabolismo , Vasos Coronarios/patología , Síndrome de Cushing/metabolismo , Receptores del Factor de Necrosis Tumoral/metabolismo , Adulto , Aterosclerosis/metabolismo , Presión Sanguínea/fisiología , Calcinosis/sangre , Estudios de Casos y Controles , Síndrome de Cushing/tratamiento farmacológico , Síndrome de Cushing/cirugía , Síndrome de Cushing/terapia , Femenino , Homocisteína/sangre , Humanos , Masculino , Persona de Mediana Edad , Triglicéridos/sangre
20.
Diabetologia ; 57(9): 1957-67, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24973963

RESUMEN

AIMS/HYPOTHESIS: Adipose tissue from obese and insulin-resistant individuals showed altered expression of several iron-related genes in a recent study, suggesting that iron might have an important role in adipogenesis. To investigate this possible role, we aimed to characterise the effects of iron on adipocyte differentiation. METHODS: Intracellular iron deficiency was achieved using two independent approaches: deferoxamine administration (20 and 100 µmol/l) and transferrin knockdown (TF KD). The effects of added FeSO4, holo-transferrin and palmitate were studied during human and 3T3-L1 adipocyte differentiation. Finally, the relationship between iron-related and mitochondrial-related genes was investigated in human adipose tissue. RESULTS: Most adipose tissue iron-related genes were predominantly expressed in adipocytes compared with stromal vascular cells. Of note, transferrin gene and protein expression increased significantly during adipocyte differentiation. Both deferoxamine and TF KD severely blunted adipocyte differentiation in parallel with increased inflammatory mRNAs. These effects were reversed in a dose-dependent manner after iron supplementation. Palmitate administration also led to a state of functional intracellular iron deficiency, with decreased Tf gene expression and iron uptake during adipocyte differentiation, which was reversed with transferrin co-treatment. On the other hand, iron in excess impaired differentiation, but this antiadipogenic effect was less pronounced than under iron chelation. Of interest, expression of several genes involved in mitochondrial biogenesis occurred in parallel with expression of iron-related genes both during adipogenesis and in human adipose tissue. CONCLUSIONS/INTERPRETATION: Precise and fine-tuned iron availability is essential to achieve optimal adipocyte differentiation, possibly modulating adipocyte mitochondrial biogenesis.


Asunto(s)
Adipocitos/citología , Tejido Adiposo/metabolismo , Recambio Mitocondrial/fisiología , Células 3T3-L1 , Adipocitos/metabolismo , Adipogénesis/genética , Adipogénesis/fisiología , Animales , Diferenciación Celular/genética , Diferenciación Celular/fisiología , Células Cultivadas , Humanos , Ratones , Recambio Mitocondrial/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA