Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Cell ; 182(4): 886-900.e17, 2020 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-32783918

RESUMEN

Checkpoint immunotherapy unleashes T cell control of tumors, but is undermined by immunosuppressive myeloid cells. TREM2 is a myeloid receptor that transmits intracellular signals that sustain microglial responses during Alzheimer's disease. TREM2 is also expressed by tumor-infiltrating macrophages. Here, we found that Trem2-/- mice are more resistant to growth of various cancers than wild-type mice and are more responsive to anti-PD-1 immunotherapy. Furthermore, treatment with anti-TREM2 mAb curbed tumor growth and fostered regression when combined with anti-PD-1. scRNA-seq revealed that both TREM2 deletion and anti-TREM2 are associated with scant MRC1+ and CX3CR1+ macrophages in the tumor infiltrate, paralleled by expansion of myeloid subsets expressing immunostimulatory molecules that promote improved T cell responses. TREM2 was expressed in tumor macrophages in over 200 human cancer cases and inversely correlated with prolonged survival for two types of cancer. Thus, TREM2 might be targeted to modify tumor myeloid infiltrates and augment checkpoint immunotherapy.


Asunto(s)
Inmunoterapia , Glicoproteínas de Membrana/metabolismo , Neoplasias/terapia , Receptor de Muerte Celular Programada 1/inmunología , Receptores Inmunológicos/metabolismo , Animales , Anticuerpos Monoclonales/uso terapéutico , Receptor 1 de Quimiocinas CX3C/metabolismo , Línea Celular Tumoral , Modelos Animales de Enfermedad , Humanos , Linfocitos Infiltrantes de Tumor/citología , Linfocitos Infiltrantes de Tumor/metabolismo , Glicoproteínas de Membrana/deficiencia , Glicoproteínas de Membrana/genética , Metilcolantreno/toxicidad , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neoplasias/inducido químicamente , Neoplasias/patología , Pronóstico , Receptor de Muerte Celular Programada 1/metabolismo , Receptores Inmunológicos/deficiencia , Receptores Inmunológicos/genética , Microambiente Tumoral
2.
Immunity ; 54(6): 1320-1337.e4, 2021 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-33945787

RESUMEN

Natural killer (NK) cells and type 1 innate lymphoid cells (ILC1s) are heterogenous innate lymphocytes broadly defined in mice as Lin-NK1.1+NKp46+ cells that express the transcription factor T-BET and produce interferon-γ. The ILC1 definition primarily stems from studies on liver and small intestinal populations. However, NK1.1+NKp46+ cells in the salivary glands, uterus, adipose, and other tissues exhibit nonuniform programs that differ from those of liver or intestinal ILC1s or NK cells. Here, we performed single-cell RNA sequencing on murine NK1.1+NKp46+ cells from blood, spleen, various tissues, and solid tumors. We identified gene expression programs of tissue-specific ILC1s, tissue-specific NK cells, and non-tissue-specific populations in blood, spleen, and other tissues largely corresponding to circulating cells. Moreover, we found that circulating NK cell programs were reshaped in tumor-bearing mice. Core programs of circulating and tumor NK cells paralleled conserved human NK cells signatures, advancing our understanding of the human NK-ILC1 spectrum.


Asunto(s)
Inmunidad Innata/inmunología , Células Asesinas Naturales/inmunología , Linfocitos/inmunología , Animales , Línea Celular Tumoral , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Subfamilia B de Receptores Similares a Lectina de Células NK/inmunología , Receptor 1 Gatillante de la Citotoxidad Natural/inmunología , Neoplasias/inmunología , Análisis de la Célula Individual/métodos , Factores de Transcripción/inmunología
3.
FASEB J ; 35(9): e21837, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34383985

RESUMEN

Overwhelming evidence indicates that excessive stimulation of innate immune receptors of the NOD-like receptor (NLR) family causes significant damage to multiple tissues, yet the role of these proteins in bone metabolism is not well known. Here, we studied the interaction between the NLRP3 and NLRC4 inflammasomes in bone homeostasis and disease. We found that loss of NLRP3 or NLRC4 inflammasome attenuated osteoclast differentiation in vitro. At the tissue level, lack of NLRP3, or NLRC4 to a lesser extent, resulted in higher baseline bone mass compared to wild-type (WT) mice, and conferred protection against LPS-induced inflammatory osteolysis. Bone mass accrual in mutant mice correlated with lower serum IL-1ß levels in vivo. Unexpectedly, the phenotype of Nlrp3-deficient mice was reversed upon loss of NLRC4 as bone mass was comparable between WT mice and Nlrp3;Nlrc4 knockout mice. Thus, although bone homeostasis is perturbed to various degrees by the lack of NLRP3 or NLRC4, this tissue appears to function normally upon compound loss of the inflammasomes assembled by these receptors.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/metabolismo , Resorción Ósea/metabolismo , Huesos/metabolismo , Proteínas de Unión al Calcio/metabolismo , Inflamasomas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Animales , Diferenciación Celular/fisiología , Homeostasis/fisiología , Inflamación/metabolismo , Interleucina-1beta/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Osteoclastos/metabolismo , Osteólisis/metabolismo
4.
J Immunol ; 193(2): 950-60, 2014 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-24913980

RESUMEN

Increasing evidence indicates that cancer cell stress induced by chemotherapeutic agents promote antitumor immune responses and contribute to their full clinical efficacy. In this article, we identify the signaling events underlying chemotherapy-induced NKG2D and DNAM-1 ligand expression on multiple myeloma (MM) cells. Our findings indicate that sublethal doses of doxorubicin and melphalan initiate a DNA damage response (DDR) controlling ligand upregulation on MM cell lines and patient-derived malignant plasma cells in Chk1/2-dependent and p53-independent manner. Drug-induced MICA and PVR gene expression are transcriptionally regulated and involve DDR-dependent E2F1 transcription factor activity. We also describe the involvement of changes in the redox state in the control of DDR-dependent upregulation of ligand surface expression and gene transcriptional activity by using the antioxidant agent N-acetyl-L-cysteine. Finally, in accordance with much evidence indicating that DDR and oxidative stress are major determinants of cellular senescence, we found that redox-dependent DDR activation upon chemotherapeutic treatment is critical for MM cell entry in premature senescence and is required for the preferential ligand upregulation on senescent cells, which are preferentially killed by NK cells and trigger potent IFN-γ production. We propose immunogenic senescence as a mechanism that promotes the clearance of drug-treated tumor cells by innate effector lymphocytes, including NK cells.


Asunto(s)
Daño del ADN , Factor de Transcripción E2F1/inmunología , Células Asesinas Naturales/inmunología , Especies Reactivas de Oxígeno/inmunología , Adulto , Anciano , Anciano de 80 o más Años , Antígenos de Diferenciación de Linfocitos T/inmunología , Antígenos de Diferenciación de Linfocitos T/metabolismo , Antineoplásicos/farmacología , Western Blotting , Línea Celular Tumoral , Doxorrubicina/farmacología , Factor de Transcripción E2F1/genética , Factor de Transcripción E2F1/metabolismo , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/genética , Regulación Neoplásica de la Expresión Génica/inmunología , Antígenos de Histocompatibilidad Clase I/genética , Antígenos de Histocompatibilidad Clase I/inmunología , Antígenos de Histocompatibilidad Clase I/metabolismo , Humanos , Células Asesinas Naturales/efectos de los fármacos , Células Asesinas Naturales/metabolismo , Ligandos , Activación de Linfocitos/inmunología , Masculino , Melfalán/farmacología , Mieloma Múltiple/genética , Mieloma Múltiple/inmunología , Mieloma Múltiple/metabolismo , Subfamilia K de Receptores Similares a Lectina de Células NK/inmunología , Subfamilia K de Receptores Similares a Lectina de Células NK/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Receptores Virales/genética , Receptores Virales/inmunología , Receptores Virales/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Regulación hacia Arriba/efectos de los fármacos , Regulación hacia Arriba/inmunología
5.
BMC Cancer ; 15: 17, 2015 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-25609078

RESUMEN

BACKGROUND: DNAX accessory molecule-1 (DNAM-1) is an activating receptor constitutively expressed by macrophages/dendritic cells and by T lymphocytes and Natural Killer (NK) cells, having an important role in anticancer responses; in this regard, combination therapies able to enhance the expression of DNAM-1 ligands on tumor cells are of therapeutic interest. In this study, we investigated the effect of different nitric oxide (NO) donors on the expression of the DNAM-1 ligand Poliovirus Receptor/CD155 (PVR/CD155) in multiple myeloma (MM) cells. METHODS: Six MM cell lines, SKO-007(J3), U266, OPM-2, RPMI-8226, ARK and LP1 were used to investigate the activity of different nitric oxide donors [DETA-NO and the NO-releasing prodrugs NCX4040 (NO-aspirin) and JS-K] on the expression of PVR/CD155, using Flow Cytometry and Real-Time PCR. Western-blot and specific inhibitors were employed to investigate the role of soluble guanylyl cyclase/cGMP and activation of the DNA damage response (DDR). RESULTS: Our results indicate that increased levels of nitric oxide can upregulate PVR/CD155 cell surface and mRNA expression in MM cells; in addition, exposure to nitric oxide donors renders myeloma cells more efficient to activate NK cell degranulation and enhances their ability to trigger NK cell-mediated cytotoxicity. We found that activation of the soluble guanylyl cyclase and increased cGMP concentrations by nitric oxide is not involved in the up-regulation of ligand expression. On the contrary, treatment of MM cells with nitric oxide donors correlated with the activation of a DNA damage response pathway and inhibition of the ATM /ATR/Chk1/2 kinase activities by specific inhibitors significantly abrogates up-regulation. CONCLUSIONS: The present study provides evidence that regulation of the PVR/CD155 DNAM-1 ligand expression by nitric oxide may represent an additional immune-mediated mechanism and supports the anti-myeloma activity of nitric oxide donors.


Asunto(s)
Antígenos de Diferenciación de Linfocitos T/biosíntesis , Mieloma Múltiple/metabolismo , Óxido Nítrico/metabolismo , Receptores Virales/biosíntesis , Antígenos de Diferenciación de Linfocitos T/genética , Aspirina/administración & dosificación , Aspirina/análogos & derivados , Línea Celular Tumoral , Daño del ADN/efectos de los fármacos , Daño del ADN/genética , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Ligandos , Mieloma Múltiple/tratamiento farmacológico , Mieloma Múltiple/genética , Nitrocompuestos/administración & dosificación , Receptores Virales/genética , Triazenos/administración & dosificación
6.
Res Sq ; 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38659818

RESUMEN

Breast cancer is poorly immunogenic, hence able to evade T cell recognition and respond poorly to immune checkpoint blockade. Breast cancer cells can also evade NK cell-mediated immune surveillance, but the mechanism remains enigmatic. Dickkopf-1 (DKK1) is a Wnt/b-catenin inhibitor, whose levels are increased in breast cancer patients and correlate with reduced overall survival. DKK1 is expressed by cancer-associated fibroblasts (CAFs) in orthotopic breast tumors and patient samples, and at higher levels by bone cells. While bone-derived DKK1 contributes to the systemic elevation of DKK1 in tumor-bearing mice, CAFs represent the primary source of DKK1 at the tumor site. Systemic or bone-specific DKK1 targeting reduces primary tumor growth. Intriguingly, specific deletion of CAF-derived DKK1 also limits breast cancer progression, regardless of its elevated levels in circulation and in the bone. DKK1 does not support tumor proliferation directly but rather suppresses the activation and tumoricidal activity of NK cells. Importantly, increased DKK1 levels and reduced number of cytotoxic NK cells are detected in breast cancer patients with progressive bone metastases compared to those with stable disease. Our findings indicate that DKK1 creates a tumor-supporting environment through the suppression of NK cells in breast cancer.

7.
Front Immunol ; 15: 1368946, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38881905

RESUMEN

Background: In early infected or severe coronavirus disease 2019 (COVID-19) patients, circulating NK cells are consistently reduced, despite being highly activated or exhausted. The aim of this paper was to establish whether severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike glycoprotein (SP) may directly trigger NK cells and through which receptor(s). Methods: SP-stimulated human NK cells have been evaluated for the expression of activation markers, cytokine release, and cytotoxic activity, as well as for gene expression profiles and NF-kB phosphorylation, and they have been silenced with specific small interfering RNAs. Results: SPs from the Wuhan strain and other variants of concern (VOCs) directly bind and stimulate purified NK cells by increasing activation marker expression, cytokine release, and cytolytic activity, prevalently in the CD56brightNK cell subset. VOC-SPs differ in their ability to activate NK cells, G614, and Delta-Plus strains providing the strongest activity in the majority of donors. While VOC-SPs do not trigger ACE2, which is not expressed on NK cells, or other activating receptors, they directly and variably bind to both Toll-like receptor 2 (TLR2) and TLR4. Moreover, SP-driven NK cell functions are inhibited upon masking such receptors or silencing the relative genes. Lastly, VOC-SPs upregulate CD56dimNK cell functions in COVID-19 recovered, but not in non-infected, individuals. Conclusions: TLR2 and TLR4 are novel activating receptors for SP in NK cells, suggesting a new role of these cells in orchestrating the pathophysiology of SARS-CoV-2 infection. The pathogenic relevance of this finding is highlighted by the fact that free SP providing NK cell activation is frequently detected in a SARS-CoV-2 inflamed environment and in plasma of infected and long-COVID-19 subjects.


Asunto(s)
COVID-19 , Células Asesinas Naturales , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Receptor Toll-Like 2 , Receptor Toll-Like 4 , Humanos , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/metabolismo , Glicoproteína de la Espiga del Coronavirus/inmunología , Glicoproteína de la Espiga del Coronavirus/metabolismo , SARS-CoV-2/inmunología , SARS-CoV-2/fisiología , COVID-19/inmunología , COVID-19/virología , Receptor Toll-Like 4/metabolismo , Receptor Toll-Like 4/inmunología , Receptor Toll-Like 2/metabolismo , Receptor Toll-Like 2/inmunología , Activación de Linfocitos/inmunología , Citocinas/metabolismo , Citocinas/inmunología , Enzima Convertidora de Angiotensina 2/metabolismo , Enzima Convertidora de Angiotensina 2/genética , Enzima Convertidora de Angiotensina 2/inmunología
8.
Methods Mol Biol ; 2700: 151-162, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37603179

RESUMEN

Poor knowledge is currently available about the biology of Toll-like receptors (TLRs) in natural killer (NK) cells. This is particularly due to the old belief that NK cells are unable to specifically eliminate microbes without presensitization. On the contrary, it has been clearly demonstrated that not only they can be activated through the engagement of Toll-like receptors (TLRs) by microbial molecules, but also that this interaction induces NK cells to release cytokines that, in turn, activate other cells of both innate and adaptive immunity. For this reason, immunotherapy based on local infusion of TLRs ligands is currently considered as a novel potential strategy to treat solid tumors. Here, we provide a protocol to efficiently stimulate NK cells via endosomal TLRs agonists and to determine endosomal TLRs gene expression level. This protocol can be used for in vitro investigation into endosomal TLRs function in NK cells under different conditions.


Asunto(s)
Endosomas , Células Asesinas Naturales , Inmunidad Adaptativa , Receptores Toll-Like , Expresión Génica
9.
Biomedicines ; 10(11)2022 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-36359345

RESUMEN

IgE-mediated diseases represent a highly diversified and multifactorial group of disorders that can deeply impact the patients' quality of life. Currently, allergy immunotherapy (AIT) still remains the gold standard for the management of such pathologies. In this review, we comprehensively examine and discuss how AIT can affect both the innate and the adaptive immune responses at different cell levels and propose timing-scheduled alterations induced by AIT by hypothesizing five sequential phases: after the desensitization of effector non-lymphoid cells and a transient increase of IgE (phase 1), high doses of allergen given by AIT stimulate the shift from type 2/type 3 towards type 1 response (phase 2), which is progressively potentiated by the increase of IFN-γ that promotes the chronic activation of APCs, progressively leading to the hyperexpression of Notch1L (Delta4) and the secretion of IL-12 and IL-27, which are essential to activate IL-10 gene in Th1 and ILC1 cells. As consequence, an expansion of circulating memory Th1/Tr1 cells and ILC-reg characterizes the third phase addressed to antagonize/balance the excess of type 1 response (phase 3). The progressive increase of IL-10 triggers a number of regulatory circuits sustained by innate and adaptive immune cells and favoring T-cell tolerance (phase 4), which may also be maintained for a long period after AIT interruption (phase 5). Different administration approaches of AIT have shown a similar tailoring of the immune responses and can be monitored by timely, optimized biomarkers. The clinical failure of this treatment can occur, and many genetic/epigenetic polymorphisms/mutations involving several immunological mechanisms, such as the plasticity of immune responses and the induction/maintenance of regulatory circuits, have been described. The knowledge of how AIT can shape the immune system and its responses is a key tool to develop novel AIT strategies including the engineering of allergen or their epitopes. We now have the potential to understand the precise causes of AIT failure and to establish the best biomarkers of AIT efficacy in each phase of the treatment.

10.
J Immunother Cancer ; 10(1)2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-35091452

RESUMEN

BACKGROUND: Toll-like receptors (TLRs) are pattern-recognition sensors mainly expressed in innate immune cells that directly recognize conserved pathogen structures (pathogen-associated molecular patterns-PAMPs). Natural killer (NK) cells have been described to express different endosomal TLRs triggered by RNA and DNA sequences derived from both viruses and bacteria. This study was addressed to establish which endosomal TLR could directly mediate NK activation and function after proper stimuli. It was also important to establish the most suitable TLR agonist to be used as adjuvant in tumor vaccines or in combined cancer immunotherapies. METHODS: We assessed endosomal TLR expression in total NK cells by using RT-qPCR and western blotting technique. In some experiments, we purified CD56brightCD16- and CD56dimCD16+ cells subsets by using NK Cell Isolation Kit Activation marker, cytokine production, CD107a expression and cytotoxicity assay were evaluated by flow cytometry. Cytokine release was quantified by ELISA. NK cells obtained from ovarian ascites underwent the same analyses. RESULTS: Although the four endosomal TLRs (TLR3, TLR7/8, and TLR9) were uniformly expressed on CD56brightCD16- and CD56dimCD16+ cell subsets, the TLR7/8 (R848), TLR3 (polyinosinic-polycytidylic acid, Poly I:C) and TLR9 (ODN2395) ligands promoted NK-cell function only in the presence of suboptimal doses of cytokines, including interleukin (IL)-2, IL-12, IL-15, and IL-18, produced in vivo by other environmental cells. We showed that R848 rather than TLR3 and TLR9 agonists primarily activated CD56brightCD16- NK cells by increasing their proliferation, cytokine production and cytotoxic activity. Moreover, we demonstrated that R848, which usually triggers TLR7 and TLR8 on dendritic cells, macrophages and neutrophils cells, activated CD56brightCD16- NK-cell subset only via TLR8. Indeed, specific TLR8 but not TLR7 agonists increased cytokine production and cytotoxic activity of CD56brightCD16- NK cells. Importantly, these activities were also observed in peritoneal NK cells from patients with metastatic ovarian carcinoma, prevalently belonging to the CD56brightCD16- subset. CONCLUSION: These data highlight the potential value of TLR8 in NK cells as a new target for immunotherapy in patients with cancer.


Asunto(s)
Antígeno CD56/análisis , Imidazoles/farmacología , Células Asesinas Naturales/efectos de los fármacos , Receptores de IgG/análisis , Receptor Toll-Like 8/agonistas , Línea Celular Tumoral , Citocinas/biosíntesis , Citotoxicidad Inmunológica/efectos de los fármacos , Femenino , Proteínas Ligadas a GPI/análisis , Humanos , Células Asesinas Naturales/clasificación , Células Asesinas Naturales/inmunología , Neoplasias Ováricas/inmunología , Receptor Toll-Like 8/fisiología
11.
J Immunother Cancer ; 10(3)2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35292515

RESUMEN

The inhibitory receptor interleukin-1 receptor 8 (IL-1R8) has been recently recognized to be expressed also by human natural killer (NK) cells. This study was aimed to design and optimize IL-1R8 silencing conditions in human NK cells to precisely establish the activity of such receptor in these cells. Electroporation of freshly isolated or IL-2-cultured NK cells with small interfering RNA (siRNA), resulted in a marked, even though variable, IL-1R8-silencing. Although the expression profile revealed downregulation of most genes involved in several intracellular pathways, some genes related to proliferation, expression of some chemokine receptors, antibody-dependent cell cytotoxicity and cytotoxic activity were upregulated in IL-1R8-silenced NK cells. Furthermore, upon IL-15 activation, the majority of genes involved in NK cell function were upregulated in IL-1R8-siRNA-compared with control-siRNA-transfected NK cells. More importantly, in agreement with these findings, the reduction of IL-1R8 gene expression levels resulted in enhanced expression of NK cell activation markers, production of cytokines and chemokines, and cytotoxic activity against several NK cell targets with different susceptibility to NK-mediated lysis. Similar results were obtained following stimulation with IL-18. All together these data, deeply impacting on the main effector functions of human NK cells, can lead to a better understanding of IL-1R8-mediated regulation on these cells and to the design of new strategies for improving NK cell-mediated anti-tumor responses.


Asunto(s)
Antineoplásicos , Células Asesinas Naturales , Receptores Tipo I de Interleucina-1/inmunología , Citotoxicidad Celular Dependiente de Anticuerpos , Citocinas/metabolismo , Humanos , Activación de Linfocitos
12.
Front Immunol ; 12: 672853, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34248954

RESUMEN

Through the release of hormones, the neuro-endocrine system regulates the immune system function promoting adaptation of the organism to the external environment and to intrinsic physiological changes. Glucocorticoids (GCs) and sex hormones not only regulate immune responses, but also control the hematopoietic stem cell (HSC) differentiation and subsequent maturation of immune cell subsets. During the development of an organism, this regulation has long-term consequences. Indeed, the effects of GC exposure during the perinatal period become evident in the adulthood. Analogously, in the context of HSC transplantation (HSCT), the immune system development starts de novo from the donor HSCs. In this review, we summarize the effects of GCs and sex hormones on the regulation of HSC, as well as of adaptive and innate immune cells. Moreover, we discuss the short and long-term implications on hematopoiesis of sex steroid ablation and synthetic GC administration upon HSCT.


Asunto(s)
Glucocorticoides/inmunología , Hormonas Esteroides Gonadales/inmunología , Sistema Inmunológico/crecimiento & desarrollo , Sistema Inmunológico/inmunología , Animales , Humanos
13.
PLoS One ; 16(7): e0254426, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34292968

RESUMEN

Aberrant NF-κB signaling fuels tumor growth in multiple human cancer types including both hematologic and solid malignancies. Chronic elevated alternative NF-κB signaling can be modeled in transgenic mice upon activation of a conditional NF-κB-inducing kinase (NIK) allele lacking the regulatory TRAF3 binding domain (NT3). Here, we report that expression of NT3 in the mesenchymal lineage with Osterix (Osx/Sp7)-Cre or Fibroblast-Specific Protein 1 (FSP1)-Cre caused subcutaneous, soft tissue tumors. These tumors displayed significantly shorter latency and a greater multiple incidence rate in Fsp1-Cre;NT3 compared to Osx-Cre;NT3 mice, regardless of sex. Histological assessment revealed poorly differentiated solid tumors with some spindled patterns, as well as robust RelB immunostaining, confirming activation of alternative NF-κB. Even though NT3 expression also occurs in the osteolineage in Osx-Cre;NT3 mice, we observed no bony lesions. The staining profiles and pattern of Cre expression in the two lines pointed to a mesenchymal tumor origin. Immunohistochemistry revealed that these tumors stain strongly for alpha-smooth muscle actin (αSMA), although vimentin staining was uniform only in Osx-Cre;NT3 tumors. Negative CD45 and S100 immunostains precluded hematopoietic and melanocytic origins, respectively, while positive staining for cytokeratin 19 (CK19), typically associated with epithelia, was found in subpopulations of both tumors. Principal component, differential expression, and gene ontology analyses revealed that NT3 tumors are distinct from normal mesenchymal tissues and are enriched for NF-κB related biological processes. We conclude that constitutive activation of the alternative NF-κB pathway in the mesenchymal lineage drives spontaneous sarcoma and provides a novel mouse model for NF-κB related sarcomas.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Integrasas , Proteínas de Neoplasias , Proteínas Serina-Treonina Quinasas , Proteína de Unión al Calcio S100A4 , Sarcoma Experimental , Factor de Transcripción Sp7 , Animales , Inducción Enzimática , Integrasas/genética , Integrasas/metabolismo , Ratones , Ratones Transgénicos , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Proteínas Serina-Treonina Quinasas/biosíntesis , Proteínas Serina-Treonina Quinasas/genética , Proteína de Unión al Calcio S100A4/genética , Proteína de Unión al Calcio S100A4/metabolismo , Sarcoma Experimental/genética , Sarcoma Experimental/metabolismo , Sarcoma Experimental/patología , Factor de Transcripción Sp7/genética , Factor de Transcripción Sp7/metabolismo , Quinasa de Factor Nuclear kappa B
14.
Elife ; 92020 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-32755539

RESUMEN

Cancer-associated fibroblasts (CAFs) are a heterogeneous population of mesenchymal cells supporting tumor progression, whose origin remains to be fully elucidated. Osterix (Osx) is a marker of osteogenic differentiation, expressed in skeletal progenitor stem cells and bone-forming osteoblasts. We report Osx expression in CAFs and by using Osx-cre;TdTomato reporter mice we confirm the presence and pro-tumorigenic function of TdTOSX+ cells in extra-skeletal tumors. Surprisingly, only a minority of TdTOSX+ cells expresses fibroblast and osteogenic markers. The majority of TdTOSX+ cells express the hematopoietic marker CD45, have a genetic and phenotypic profile resembling that of tumor infiltrating myeloid and lymphoid populations, but with higher expression of lymphocytic immune suppressive genes. We find Osx transcript and Osx protein expression early during hematopoiesis, in subsets of hematopoietic stem cells and multipotent progenitor populations. Our results indicate that Osx marks distinct tumor promoting CD45- and CD45+ populations and challenge the dogma that Osx is expressed exclusively in cells of mesenchymal origin.


Asunto(s)
Diferenciación Celular , Antígenos Comunes de Leucocito/metabolismo , Neoplasias/metabolismo , Osteoblastos/fisiología , Factor de Transcripción Sp7/genética , Células Madre/fisiología , Animales , Línea Celular Tumoral , Femenino , Marcadores Genéticos , Masculino , Ratones , Ratones Endogámicos C57BL , Factor de Transcripción Sp7/metabolismo
15.
Cancer Res ; 80(5): 1171-1182, 2020 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-31932453

RESUMEN

Chemotherapy is important for cancer treatment, however, toxicities limit its use. While great strides have been made to ameliorate the acute toxicities induced by chemotherapy, long-term comorbidities including bone loss remain a significant problem. Chemotherapy-driven estrogen loss is postulated to drive bone loss, but significant data suggests the existence of an estrogen-independent mechanism of bone loss. Using clinically relevant mouse models, we showed that senescence and its senescence-associated secretory phenotype (SASP) contribute to chemotherapy-induced bone loss that can be rescued by depleting senescent cells. Chemotherapy-induced SASP could be limited by targeting the p38MAPK-MK2 pathway, which resulted in preservation of bone integrity in chemotherapy-treated mice. These results transform our understanding of chemotherapy-induced bone loss by identifying senescent cells as major drivers of bone loss and the p38MAPK-MK2 axis as a putative therapeutic target that can preserve bone and improve a cancer survivor's quality of life. SIGNIFICANCE: Senescence drives chemotherapy-induced bone loss that is rescued by p38MAPK or MK2 inhibitors. These findings may lead to treatments for therapy-induced bone loss, significantly increasing quality of life for cancer survivors.


Asunto(s)
Antineoplásicos/efectos adversos , Senescencia Celular/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Neoplasias/tratamiento farmacológico , Osteoporosis/inducido químicamente , Animales , Modelos Animales de Enfermedad , Doxorrubicina/efectos adversos , Fémur/citología , Fémur/diagnóstico por imagen , Fémur/patología , Humanos , Inyecciones Intraperitoneales , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Ratones , Ratones Transgénicos , Osteoporosis/diagnóstico , Osteoporosis/patología , Paclitaxel/efectos adversos , Proteínas Serina-Treonina Quinasas/metabolismo , Microtomografía por Rayos X , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
16.
Cancer Immunol Res ; 6(7): 860-869, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29691234

RESUMEN

Treatment of multiple myeloma (MM) cells with sublethal doses of genotoxic drugs leads to senescence and results in increased NK cell recognition and effector functions. Herein, we demonstrated that doxorubicin- and melphalan-treated senescent cells display increased expression of IL15, a cytokine involved in NK cell activation, proliferation, and maturation. IL15 upregulation was evident at the mRNA and protein level, both in MM cell lines and malignant plasma cells from patients' bone marrow (BM) aspirates. However, IL15 was detectable as a soluble cytokine only in vivo, thus indicating a functional role of IL15 in the BM tumor microenvironment. The increased IL15 was accompanied by enhanced expression of the IL15/IL15RA complex on the membrane of senescent myeloma cells, allowing the functional trans-presentation of this cytokine to neighboring NK cells, which consequently underwent activation and proliferation. We demonstrated that MM cell-derived exosomes, the release of which was augmented by melphalan treatment in senescent cells, also expressed IL15RA and IL15, and their interaction with NK cells in the presence of exogenous IL15 resulted in increased proliferation. Altogether, our data demonstrated that low doses of chemotherapeutic drugs, by inducing tumor cell senescence and a senescence-associated secretory phenotype, promoted IL15 trans-presentation to NK cells and, in turn, their activation and proliferation, thus enhancing NK cell-tumor immune surveillance and providing new insights for the exploitation of senescence-based cancer therapies. Cancer Immunol Res; 6(7); 860-9. ©2018 AACR.


Asunto(s)
Senescencia Celular , Exosomas/metabolismo , Interleucina-15/metabolismo , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/metabolismo , Mieloma Múltiple/inmunología , Mieloma Múltiple/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Senescencia Celular/efectos de los fármacos , Senescencia Celular/inmunología , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Activación de Linfocitos/efectos de los fármacos , Activación de Linfocitos/inmunología , Receptores de Interleucina-15/genética , Receptores de Interleucina-15/metabolismo
17.
Sci Rep ; 7(1): 6630, 2017 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-28747793

RESUMEN

The NLRP3 inflammasome senses a variety of signals referred to as danger associated molecular patterns (DAMPs), including those triggered by crystalline particulates or degradation products of extracellular matrix. Since some DAMPs confer tissue-specific activation of the inflammasomes, we tested the hypothesis that bone matrix components function as DAMPs for the NLRP3 inflammasome and regulate osteoclast differentiation. Indeed, bone particles cause exuberant osteoclastogenesis in the presence of RANKL, a response that correlates with NLRP3 abundance and the state of inflammasome activation. To determine the relevance of these findings to bone homeostasis, we studied the impact of Nlrp3 deficiency on bone using pre-clinical mouse models of high bone turnover, including estrogen deficiency and sustained exposure to parathyroid hormone or RANKL. Despite comparable baseline indices of bone mass, bone loss caused by hormonal or RANKL perturbations is significantly reduced in Nlrp3 deficient than in wild type mice. Consistent with the notion that osteolysis releases DAMPs from bone matrix, pharmacologic inhibition of bone resorption by zoledronate attenuates inflammasome activation in mice. Thus, signals originating from bone matrix activate the NLRP3 inflammasome in the osteoclast lineage, and may represent a bone-restricted positive feedback mechanism that amplifies bone resorption in pathologic conditions of accelerated bone turnover.


Asunto(s)
Matriz Ósea/metabolismo , Resorción Ósea/patología , Diferenciación Celular , Inflamasomas/metabolismo , Osteoclastos/efectos de los fármacos , Osteoclastos/fisiología , Receptores de Superficie Celular/metabolismo , Animales , Estrógenos/deficiencia , Ratones Endogámicos C57BL , Ratones Noqueados , Modelos Animales , Hormona Paratiroidea/metabolismo , Ligando RANK/metabolismo
18.
Oncoimmunology ; 6(1): e1264564, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28197392

RESUMEN

The mechanisms that regulate the expression of the NKG2D and DNAM-1 activating ligands are only partially known, but it is now widely established that their expression is finely regulated at transcriptional, post-transcriptional and post-translational level, and involve numerous stress pathways depending on the type of ligand, stressor, and cell context. We show that treatment of Multiple Myeloma (MM) cells with sub-lethal doses of Vincristine (VCR), an anticancer drug that inhibits the assembly of microtubules, stimulates the expression of NKG2D and DNAM-1 activating ligands, rendering these cells more susceptible to NK cell-mediated killing. Herein, we focused our attention on the identification of the signaling pathways leading to de novo surface expression of ULBP-1, and to MICA and PVR upregulation on VCR-treated MM cells, both at protein and mRNA levels. We found that p38MAPK differentially regulates drug-dependent ligand upregulation at transcriptional and post-transcriptional level. More specifically, we observed that ULBP-1 expression is attributable to both increased transcriptional activity mediated by ATM-dependent p53 activation, and enhanced mRNA stability; while the p38-activated E2F1 transcription factor regulates MICA and PVR mRNA expression. All together, our findings reveal a previously unrecognized activity of VCR as anticancer agent, and indicate that in addition to its established ability to arrest cell growth, VCR can also modulate the expression of NKG2D and DNAM-1 activating ligand on tumor cells and thus promoting NK cell-mediated immunosurveillance.

19.
Oncoimmunology ; 5(10): e1218105, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27853638

RESUMEN

Recognition of tumor cells by the immune system is a key step in cancer eradication. Melphalan is an alkylating agent routinely used in the treatment of patients with multiple myeloma (MM), but at therapeutic doses it leads to an immunosuppressive state due to lymphopenia. Here, we used a mouse model of MM to investigate the ability of in vivo treatment with low doses of melphalan to modulate natural killer (NK) cell activity, which have been shown to play a major role in the control of MM growth. Melphalan treatment was able to enhance the surface expression of the stress-induced NKG2D ligands RAE-1 and MULT-1, and of the DNAM-1 ligand PVR (CD155) on MM cells, leading to better tumor cell recognition and killing by NK cells, as highlighted by NK cell increased degranulation triggered by melphalan-treated tumor cells. Remarkably, NK cell population was not affected by the melphalan dose used, but rather displayed activation features as indicated by CD107a and CD69 expression. Furthermore, we showed that low doses of melphalan fail to induce tumor cell apoptosis, but promote the in vivo establishment of a senescent tumor cell population, harboring high levels of the stress-induced ligands RAE-1 and PVR. Taken together our data support the concept of using chemotherapy in order to boost antitumor innate immune responses and report the possibility to induce cellular senescence of tumor cells in vivo.

20.
Oncotarget ; 7(31): 49751-49764, 2016 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-27391074

RESUMEN

Despite successful therapeutic options for estrogen receptor-α (ERα)+ breast cancer, resistance to endocrine therapy frequently occurs leading to tumor recurrence. In addition to intrinsic changes in the cancer cells, herein we demonstrate that tumor cell-microenvironment interactions can drive recurrence at specific sites. By using two ERα+ cell lines derived from spontaneous mammary carcinomas in STAT1-/- mice (SSM2, SSM3), we establish that the bone microenvironment offers growth advantage over primary site or lung in the absence of ovarian hormones. While SSM3 did not engraft at primary and skeletal locations in the absence of estrogen, SSM2 selectively grew in bone of ovariectomized mice and following administration of aromatase inhibitors. However, SSM2 growth remained hormone-dependent at extraskeletal sites. Unexpectedly, bone-residing SSM2 cells retained ERα expression and JAK2/STAT3 activation regardless of the hormonal status. These data position the bone microenvironment as a unique site for acquisition of tumor/estrogen independency and identify the first ERα+ hormone-independent tumor model in immunocompetent mice.


Asunto(s)
Neoplasias Óseas/secundario , Neoplasias de la Mama/metabolismo , Receptor alfa de Estrógeno/metabolismo , Recurrencia Local de Neoplasia/tratamiento farmacológico , Animales , Antineoplásicos Hormonales/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Línea Celular Tumoral , Resistencia a Antineoplásicos/efectos de los fármacos , Estrógenos/farmacología , Femenino , Masculino , Ratones , Ratones Noqueados , Metástasis de la Neoplasia , Trasplante de Neoplasias , Ovario/metabolismo , Fenotipo , Receptores de Progesterona/metabolismo , Microambiente Tumoral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA