Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Nature ; 627(8005): 873-879, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38418882

RESUMEN

Cyclic GMP-AMP synthase (cGAS) senses aberrant DNA during infection, cancer and inflammatory disease, and initiates potent innate immune responses through the synthesis of 2'3'-cyclic GMP-AMP (cGAMP)1-7. The indiscriminate activity of cGAS towards DNA demands tight regulatory mechanisms that are necessary to maintain cell and tissue homeostasis under normal conditions. Inside the cell nucleus, anchoring to nucleosomes and competition with chromatin architectural proteins jointly prohibit cGAS activation by genomic DNA8-15. However, the fate of nuclear cGAS and its role in cell physiology remains unclear. Here we show that the ubiquitin proteasomal system (UPS) degrades nuclear cGAS in cycling cells. We identify SPSB3 as the cGAS-targeting substrate receptor that associates with the cullin-RING ubiquitin ligase 5 (CRL5) complex to ligate ubiquitin onto nuclear cGAS. A cryo-electron microscopy structure of nucleosome-bound cGAS in a complex with SPSB3 reveals a highly conserved Asn-Asn (NN) minimal degron motif at the C terminus of cGAS that directs SPSB3 recruitment, ubiquitylation and cGAS protein stability. Interference with SPSB3-regulated nuclear cGAS degradation primes cells for type I interferon signalling, conferring heightened protection against infection by DNA viruses. Our research defines protein degradation as a determinant of cGAS regulation in the nucleus and provides structural insights into an element of cGAS that is amenable to therapeutic exploitation.


Asunto(s)
Proteínas Nucleares , Nucleosomas , Nucleotidiltransferasas , Proteolisis , Ubiquitina-Proteína Ligasas , Animales , Humanos , Ratones , Núcleo Celular/metabolismo , Microscopía por Crioelectrón , Degrones , Infecciones por Virus ADN/inmunología , Virus ADN/inmunología , Virus ADN/metabolismo , ADN Viral/inmunología , ADN Viral/metabolismo , Inmunidad Innata , Reconocimiento de Inmunidad Innata , Interferón Tipo I/inmunología , Proteínas Nucleares/metabolismo , Nucleosomas/química , Nucleosomas/metabolismo , Nucleosomas/ultraestructura , Nucleotidiltransferasas/química , Nucleotidiltransferasas/metabolismo , Nucleotidiltransferasas/ultraestructura , Complejo de la Endopetidasa Proteasomal/metabolismo , Estabilidad Proteica , Especificidad por Sustrato , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas/química , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/ultraestructura , Ubiquitinación
2.
Nature ; 610(7933): 761-767, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36261523

RESUMEN

Stimulator of interferon genes (STING) functions downstream of cyclic GMP-AMP synthase in DNA sensing or as a direct receptor for bacterial cyclic dinucleotides and small molecules to activate immunity during infection, cancer and immunotherapy1-10. Precise regulation of STING is essential to ensure balanced immune responses and prevent detrimental autoinflammation11-16. After activation, STING, a transmembrane protein, traffics from the endoplasmic reticulum to the Golgi, where its phosphorylation by the protein kinase TBK1 enables signal transduction17-20. The mechanism that ends STING signalling at the Golgi remains unknown. Here we show that adaptor protein complex 1 (AP-1) controls the termination of STING-dependent immune activation. We find that AP-1 sorts phosphorylated STING into clathrin-coated transport vesicles for delivery to the endolysosomal system, where STING is degraded21. We identify a highly conserved dileucine motif in the cytosolic C-terminal tail (CTT) of STING that, together with TBK1-dependent CTT phosphorylation, dictates the AP-1 engagement of STING. A cryo-electron microscopy structure of AP-1 in complex with phosphorylated STING explains the enhanced recognition of TBK1-activated STING. We show that suppression of AP-1 exacerbates STING-induced immune responses. Our results reveal a structural mechanism of negative regulation of STING and establish that the initiation of signalling is inextricably associated with its termination to enable transient activation of immunity.


Asunto(s)
Complejo 1 de Proteína Adaptadora , Clatrina , Complejo 1 de Proteína Adaptadora/química , Complejo 1 de Proteína Adaptadora/metabolismo , Complejo 1 de Proteína Adaptadora/ultraestructura , Clatrina/metabolismo , Microscopía por Crioelectrón , ADN/metabolismo , Inmunidad Innata , Proteínas Serina-Treonina Quinasas , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/ultraestructura , Secuencias de Aminoácidos , Endosomas/metabolismo , Lisosomas/metabolismo , Fosforilación
3.
J Am Chem Soc ; 143(26): 9798-9812, 2021 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-34161085

RESUMEN

Huntington's disease is a neurodegenerative disorder caused by the expansion of a polyglutamine repeat (>36Q) in the N-terminal domain of the huntingtin protein (Htt), which renders the protein or fragments thereof more prone to aggregate and form inclusions. Although several Htt N-terminal fragments of different lengths have been identified within Htt inclusions, most studies on the mechanisms, sequence, and structural determinants of Htt aggregation have focused on the Httexon1 (Httex1). Herein, we investigated the aggregation properties of mutant N-terminal Htt fragments of various lengths (Htt171, Htt140, and Htt104) in comparison to mutant Httex1 (mHttex1). We also present a new chemoenzymatic semisynthetic strategy that enables site-specific phosphorylation of Htt beyond Httex1. These advances yielded insights into how post-translational modifications (PTMs) and structured domains beyond Httex1 influence aggregation mechanisms, kinetics, and fibril morphology of longer N-terminal Htt fragments. We demonstrate that phosphorylation at T107 significantly slows the aggregation of mHtt171, whereas phosphorylation at T107 and S116 accelerates the aggregation, underscoring the importance of crosstalk between different PTMs. The mHtt171 proteins aggregate via a different mechanism and form oligomers and fibrillar aggregates with morphological properties that are distinct from that of mHttex1. These observations suggest that different N-terminal fragments could have distinct aggregation mechanisms and that a single polyQ-targeting antiaggregation strategy may not effectively inhibit the aggregation of all N-terminal Htt fragments. Finally, our results underscore the need for further studies to investigate the aggregation mechanisms of Htt fragments and how the various fragments interact with each other and influence Htt toxicity and disease progression.


Asunto(s)
Proteína Huntingtina/síntesis química , Péptidos/química , Exones , Humanos , Enfermedad de Huntington/metabolismo , Cinética , Fosforilación , Agregado de Proteínas , Unión Proteica , Conformación Proteica , Procesamiento Proteico-Postraduccional
4.
Chembiochem ; 22(1): 217-231, 2021 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-32805086

RESUMEN

Post-translational modifications (PTMs) within the first 17 amino acids (Nt17) of exon 1 of the Huntingtin protein (Httex1) play important roles in modulating its cellular properties and functions in health and disease. In particular, phosphorylation of threonine and serine residues (T3, S13, and/or S16) has been shown to inhibit Htt aggregation in vitro and inclusion formation in cellular and animal models of Huntington's disease (HD). In this paper, we describe a new and simple methodology for producing milligram quantities of highly pure wild-type or mutant Httex1 proteins that are site-specifically phosphorylated at T3 or at both S13 and S16. This advance was enabled by 1) the discovery and validation of novel kinases that efficiently phosphorylate Httex1 at S13 and S16 (TBK1), at T3 (GCK) or T3 and S13 (TNIK and HGK), and 2) the development of an efficient methodology for producing recombinant native Httex1 proteins by using a SUMO-fusion expression and purification strategy.[26] As a proof of concept, we demonstrate how this method can be applied to produce Httex1 proteins that are both site-specifically phosphorylated and fluorescently or isotopically labeled. Together, these advances should increase access to these valuable tools and expand the range of methods and experimental approaches that can be used to elucidate the mechanisms by which phosphorylation influences Httex1 or HTT structure, aggregation, interactome, and function(s) in health and disease.


Asunto(s)
Proteína Huntingtina/metabolismo , Fosfotransferasas/metabolismo , Exones , Humanos , Proteína Huntingtina/química , Proteína Huntingtina/genética , Mutación , Fosforilación , Fosfotransferasas/química , Agregado de Proteínas , Conformación Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
5.
NPJ Parkinsons Dis ; 8(1): 136, 2022 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-36266318

RESUMEN

Antibodies against phosphorylated alpha-synuclein (aSyn) at S129 have emerged as the primary tools to investigate, monitor, and quantify aSyn pathology in the brain and peripheral tissues of patients with Parkinson's disease and other neurodegenerative diseases. Herein, we demonstrate that the co-occurrence of multiple pathology-associated C-terminal post-translational modifications (PTMs) (e.g., phosphorylation at Tyrosine 125 or truncation at residue 133 or 135) differentially influences the detection of pS129-aSyn species by pS129-aSyn antibodies. These observations prompted us to systematically reassess the specificity of the most commonly used pS129 antibodies against monomeric and aggregated forms of pS129-aSyn in mouse brain slices, primary neurons, mammalian cells and seeding models of aSyn pathology formation. We identified two antibodies that are insensitive to pS129 neighboring PTMs. Although most pS129 antibodies showed good performance in detecting aSyn aggregates in cells, neurons and mouse brain tissue containing abundant aSyn pathology, they also showed cross-reactivity towards other proteins and often detected non-specific low and high molecular weight bands in aSyn knock-out samples that could be easily mistaken for monomeric or high molecular weight aSyn species. Our observations suggest that not all pS129 antibodies capture the biochemical and morphological diversity of aSyn pathology, and all should be used with the appropriate protein standards and controls when investigating aSyn under physiological conditions. Finally, our work underscores the need for more pS129 antibodies that are not sensitive to neighboring PTMs and more thorough characterization and validation of existing and new antibodies.

6.
J Vis Exp ; (136)2018 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-30010666

RESUMEN

Huntington's Disease (HD) is an inherited fatal neurodegenerative disease caused by a CAG expansion (≥36) in the first exon of the HD gene, resulting in the expression of the Huntingtin protein (Htt) or N-terminal fragments thereof with an expanded polyglutamine (polyQ) stretch. The exon1 of the Huntingtin protein (Httex1) is the smallest Htt fragment that recapitulates many of the features of HD in cellular and animal models and is one of the most widely studied fragments of Htt. The small size of Httex1 makes it experimentally more amenable to biophysical characterization using standard and high-resolution techniques in comparison to longer fragments or full-length Htt. However, the high aggregation propensity of mutant Httex1 (mHttex1) with increased polyQ content (≥42) has made it difficult to develop efficient expression and purification systems to produce these proteins in sufficient quantities and make them accessible to scientists from different disciplines without the use of fusion proteins or other strategies that alter the native sequence of the protein. We present here a robust and optimized method for the production of milligram quantities of native, tag-free Httex1 based on the transient fusion of small ubiquitin related modifier (SUMO). The simplicity and efficiency of the strategy will eliminate the need to use non-native sequences of Httex1, thus making this protein more accessible to researchers and improving the reproducibility of experiments across different laboratories. We believe that these advances will also facilitate future studies aimed at elucidating the structure-function relationship of Htt as well as developing novel diagnostic tools and therapies to treat or slow the progression of HD.


Asunto(s)
Exones/genética , Proteína Huntingtina/genética , Enfermedad de Huntington/genética , Ubiquitina/genética , Humanos , Proteína Huntingtina/metabolismo , Enfermedad de Huntington/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA