Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34.693
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 187(3): 585-595.e6, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38194968

RESUMEN

Evolution of SARS-CoV-2 requires the reassessment of current vaccine measures. Here, we characterized BA.2.86 and XBB-derived variant FLip by investigating their neutralization alongside D614G, BA.1, BA.2, BA.4/5, XBB.1.5, and EG.5.1 by sera from 3-dose-vaccinated and bivalent-vaccinated healthcare workers, XBB.1.5-wave-infected first responders, and monoclonal antibody (mAb) S309. We assessed the biology of the variant spikes by measuring viral infectivity and membrane fusogenicity. BA.2.86 is less immune evasive compared to FLip and other XBB variants, consistent with antigenic distances. Importantly, distinct from XBB variants, mAb S309 was unable to neutralize BA.2.86, likely due to a D339H mutation based on modeling. BA.2.86 had relatively high fusogenicity and infectivity in CaLu-3 cells but low fusion and infectivity in 293T-ACE2 cells compared to some XBB variants, suggesting a potentially different conformational stability of BA.2.86 spike. Overall, our study underscores the importance of SARS-CoV-2 variant surveillance and the need for updated COVID-19 vaccines.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Evasión Inmune , SARS-CoV-2 , Humanos , Anticuerpos Monoclonales , Anticuerpos Neutralizantes , Anticuerpos Antivirales , COVID-19/inmunología , SARS-CoV-2/clasificación , SARS-CoV-2/fisiología
2.
Cell ; 187(11): 2838-2854.e17, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38744282

RESUMEN

Retrospective lineage reconstruction of humans predicts that dramatic clonal imbalances in the body can be traced to the 2-cell stage embryo. However, whether and how such clonal asymmetries arise in the embryo is unclear. Here, we performed prospective lineage tracing of human embryos using live imaging, non-invasive cell labeling, and computational predictions to determine the contribution of each 2-cell stage blastomere to the epiblast (body), hypoblast (yolk sac), and trophectoderm (placenta). We show that the majority of epiblast cells originate from only one blastomere of the 2-cell stage embryo. We observe that only one to three cells become internalized at the 8-to-16-cell stage transition. Moreover, these internalized cells are more frequently derived from the first cell to divide at the 2-cell stage. We propose that cell division dynamics and a cell internalization bottleneck in the early embryo establish asymmetry in the clonal composition of the future human body.


Asunto(s)
Blastómeros , Linaje de la Célula , Embrión de Mamíferos , Femenino , Humanos , Blastómeros/citología , Blastómeros/metabolismo , División Celular , Embrión de Mamíferos/citología , Embrión de Mamíferos/metabolismo , Desarrollo Embrionario , Estratos Germinativos/citología , Estratos Germinativos/metabolismo , Masculino , Animales , Ratones
3.
Cell ; 186(10): 2176-2192.e22, 2023 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-37137307

RESUMEN

The ClpC1:ClpP1P2 protease is a core component of the proteostasis system in mycobacteria. To improve the efficacy of antitubercular agents targeting the Clp protease, we characterized the mechanism of the antibiotics cyclomarin A and ecumicin. Quantitative proteomics revealed that the antibiotics cause massive proteome imbalances, including upregulation of two unannotated yet conserved stress response factors, ClpC2 and ClpC3. These proteins likely protect the Clp protease from excessive amounts of misfolded proteins or from cyclomarin A, which we show to mimic damaged proteins. To overcome the Clp security system, we developed a BacPROTAC that induces degradation of ClpC1 together with its ClpC2 caretaker. The dual Clp degrader, built from linked cyclomarin A heads, was highly efficient in killing pathogenic Mycobacterium tuberculosis, with >100-fold increased potency over the parent antibiotic. Together, our data reveal Clp scavenger proteins as important proteostasis safeguards and highlight the potential of BacPROTACs as future antibiotics.


Asunto(s)
Antituberculosos , Mycobacterium tuberculosis , Antituberculosos/farmacología , Proteínas Bacterianas/metabolismo , Endopeptidasa Clp/metabolismo , Proteínas de Choque Térmico/metabolismo , Mycobacterium tuberculosis/efectos de los fármacos , Proteostasis
4.
Cell ; 186(15): 3277-3290.e16, 2023 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-37413988

RESUMEN

The Alpha, Beta, and Gamma SARS-CoV-2 variants of concern (VOCs) co-circulated globally during 2020 and 2021, fueling waves of infections. They were displaced by Delta during a third wave worldwide in 2021, which, in turn, was displaced by Omicron in late 2021. In this study, we use phylogenetic and phylogeographic methods to reconstruct the dispersal patterns of VOCs worldwide. We find that source-sink dynamics varied substantially by VOC and identify countries that acted as global and regional hubs of dissemination. We demonstrate the declining role of presumed origin countries of VOCs in their global dispersal, estimating that India contributed <15% of Delta exports and South Africa <1%-2% of Omicron dispersal. We estimate that >80 countries had received introductions of Omicron within 100 days of its emergence, associated with accelerated passenger air travel and higher transmissibility. Our study highlights the rapid dispersal of highly transmissible variants, with implications for genomic surveillance along the hierarchical airline network.


Asunto(s)
Viaje en Avión , COVID-19 , Humanos , Filogenia , SARS-CoV-2
5.
Cell ; 186(13): 2765-2782.e28, 2023 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-37327786

RESUMEN

Cancer is characterized by hypomethylation-associated silencing of large chromatin domains, whose contribution to tumorigenesis is uncertain. Through high-resolution genome-wide single-cell DNA methylation sequencing, we identify 40 core domains that are uniformly hypomethylated from the earliest detectable stages of prostate malignancy through metastatic circulating tumor cells (CTCs). Nested among these repressive domains are smaller loci with preserved methylation that escape silencing and are enriched for cell proliferation genes. Transcriptionally silenced genes within the core hypomethylated domains are enriched for immune-related genes; prominent among these is a single gene cluster harboring all five CD1 genes that present lipid antigens to NKT cells and four IFI16-related interferon-inducible genes implicated in innate immunity. The re-expression of CD1 or IFI16 murine orthologs in immuno-competent mice abrogates tumorigenesis, accompanied by the activation of anti-tumor immunity. Thus, early epigenetic changes may shape tumorigenesis, targeting co-located genes within defined chromosomal loci. Hypomethylation domains are detectable in blood specimens enriched for CTCs.


Asunto(s)
Metilación de ADN , Neoplasias de la Próstata , Animales , Humanos , Masculino , Ratones , Carcinogénesis/genética , ADN , Epigénesis Genética , Neoplasias de la Próstata/genética , Células Neoplásicas Circulantes
6.
Cell ; 185(25): 4826-4840.e17, 2022 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-36402135

RESUMEN

Congenital Zika virus (ZIKV) infection results in neurodevelopmental deficits in up to 14% of infants born to ZIKV-infected mothers. Neutralizing antibodies are a critical component of protective immunity. Here, we demonstrate that plasma IgM contributes to ZIKV immunity in pregnancy, mediating neutralization up to 3 months post-symptoms. From a ZIKV-infected pregnant woman, we isolated a pentameric ZIKV-specific IgM (DH1017.IgM) that exhibited ultrapotent ZIKV neutralization dependent on the IgM isotype. DH1017.IgM targets an envelope dimer epitope within domain II. The epitope arrangement on the virion is compatible with concurrent engagement of all ten antigen-binding sites of DH1017.IgM, a solution not available to IgG. DH1017.IgM protected mice against viremia upon lethal ZIKV challenge more efficiently than when expressed as an IgG. Our findings identify a role for antibodies of the IgM isotype in protection against ZIKV and posit DH1017.IgM as a safe and effective candidate immunotherapeutic, particularly during pregnancy.


Asunto(s)
Inmunoglobulina M , Embarazo , Infección por el Virus Zika , Virus Zika , Animales , Femenino , Ratones , Embarazo/inmunología , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Epítopos , Pruebas de Neutralización , Infección por el Virus Zika/inmunología , Inmunoglobulina M/inmunología , Inmunoglobulina M/aislamiento & purificación
7.
Cell ; 184(20): 5189-5200.e7, 2021 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-34537136

RESUMEN

The independent emergence late in 2020 of the B.1.1.7, B.1.351, and P.1 lineages of SARS-CoV-2 prompted renewed concerns about the evolutionary capacity of this virus to overcome public health interventions and rising population immunity. Here, by examining patterns of synonymous and non-synonymous mutations that have accumulated in SARS-CoV-2 genomes since the pandemic began, we find that the emergence of these three "501Y lineages" coincided with a major global shift in the selective forces acting on various SARS-CoV-2 genes. Following their emergence, the adaptive evolution of 501Y lineage viruses has involved repeated selectively favored convergent mutations at 35 genome sites, mutations we refer to as the 501Y meta-signature. The ongoing convergence of viruses in many other lineages on this meta-signature suggests that it includes multiple mutation combinations capable of promoting the persistence of diverse SARS-CoV-2 lineages in the face of mounting host immune recognition.


Asunto(s)
COVID-19/epidemiología , Evolución Molecular , Mutación , Pandemias , SARS-CoV-2/genética , Secuencia de Aminoácidos/genética , COVID-19/inmunología , COVID-19/transmisión , COVID-19/virología , Codón/genética , Genes Virales , Flujo Genético , Adaptación al Huésped/genética , Humanos , Evasión Inmune , Filogenia , Salud Pública
8.
Cell ; 184(8): 2167-2182.e22, 2021 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-33811809

RESUMEN

Cardiac injury and dysfunction occur in COVID-19 patients and increase the risk of mortality. Causes are ill defined but could be through direct cardiac infection and/or inflammation-induced dysfunction. To identify mechanisms and cardio-protective drugs, we use a state-of-the-art pipeline combining human cardiac organoids with phosphoproteomics and single nuclei RNA sequencing. We identify an inflammatory "cytokine-storm", a cocktail of interferon gamma, interleukin 1ß, and poly(I:C), induced diastolic dysfunction. Bromodomain-containing protein 4 is activated along with a viral response that is consistent in both human cardiac organoids (hCOs) and hearts of SARS-CoV-2-infected K18-hACE2 mice. Bromodomain and extraterminal family inhibitors (BETi) recover dysfunction in hCOs and completely prevent cardiac dysfunction and death in a mouse cytokine-storm model. Additionally, BETi decreases transcription of genes in the viral response, decreases ACE2 expression, and reduces SARS-CoV-2 infection of cardiomyocytes. Together, BETi, including the Food and Drug Administration (FDA) breakthrough designated drug, apabetalone, are promising candidates to prevent COVID-19 mediated cardiac damage.


Asunto(s)
COVID-19/complicaciones , Cardiotónicos/uso terapéutico , Proteínas de Ciclo Celular/antagonistas & inhibidores , Cardiopatías/tratamiento farmacológico , Quinazolinonas/uso terapéutico , Factores de Transcripción/antagonistas & inhibidores , Enzima Convertidora de Angiotensina 2/metabolismo , Animales , Proteínas de Ciclo Celular/metabolismo , Línea Celular , Citocinas/metabolismo , Femenino , Cardiopatías/etiología , Células Madre Embrionarias Humanas , Humanos , Inflamación/complicaciones , Inflamación/tratamiento farmacológico , Ratones , Ratones Endogámicos C57BL , Factores de Transcripción/metabolismo , Tratamiento Farmacológico de COVID-19
9.
Nat Immunol ; 24(9): 1511-1526, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37592015

RESUMEN

Evidence suggests that innate and adaptive cellular responses mediate resistance to the influenza virus and confer protection after vaccination. However, few studies have resolved the contribution of cellular responses within the context of preexisting antibody titers. Here, we measured the peripheral immune profiles of 206 vaccinated or unvaccinated adults to determine how baseline variations in the cellular and humoral immune compartments contribute independently or synergistically to the risk of developing symptomatic influenza. Protection correlated with diverse and polyfunctional CD4+ and CD8+ T, circulating T follicular helper, T helper type 17, myeloid dendritic and CD16+ natural killer (NK) cell subsets. Conversely, increased susceptibility was predominantly attributed to nonspecific inflammatory populations, including γδ T cells and activated CD16- NK cells, as well as TNFα+ single-cytokine-producing CD8+ T cells. Multivariate and predictive modeling indicated that cellular subsets (1) work synergistically with humoral immunity to confer protection, (2) improve model performance over demographic and serologic factors alone and (3) comprise the most important predictive covariates. Together, these results demonstrate that preinfection peripheral cell composition improves the prediction of symptomatic influenza susceptibility over vaccination, demographics or serology alone.


Asunto(s)
Enfermedades Transmisibles , Gripe Humana , Infecciones por Orthomyxoviridae , Orthomyxoviridae , Adulto , Humanos , Linfocitos T CD8-positivos
10.
Nat Rev Mol Cell Biol ; 24(3): 167-185, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36302887

RESUMEN

Autophagy is a process that targets various intracellular elements for degradation. Autophagy can be non-selective - associated with the indiscriminate engulfment of cytosolic components - occurring in response to nutrient starvation and is commonly referred to as bulk autophagy. By contrast, selective autophagy degrades specific targets, such as damaged organelles (mitophagy, lysophagy, ER-phagy, ribophagy), aggregated proteins (aggrephagy) or invading bacteria (xenophagy), thereby being importantly involved in cellular quality control. Hence, not surprisingly, aberrant selective autophagy has been associated with various human pathologies, prominently including neurodegeneration and infection. In recent years, considerable progress has been made in understanding mechanisms governing selective cargo engulfment in mammals, including the identification of ubiquitin-dependent selective autophagy receptors such as p62, NBR1, OPTN and NDP52, which can bind cargo and ubiquitin simultaneously to initiate pathways leading to autophagy initiation and membrane recruitment. This progress opens the prospects for enhancing selective autophagy pathways to boost cellular quality control capabilities and alleviate pathology.


Asunto(s)
Macroautofagia , Proteínas , Animales , Humanos , Proteínas/metabolismo , Autofagia , Ubiquitina/metabolismo , Mamíferos/metabolismo
11.
Cell ; 183(5): 1143-1146, 2020 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-33128870

RESUMEN

Given the heterogeneity of senescent cells, our knowledge of both the drivers and consequences of cellular senescence in tissues and organs remains limited, as is our understanding of how this process could be harnessed for human health. Here we identified five broad areas that would help propel the field forward.


Asunto(s)
Senescencia Celular , Biomarcadores/metabolismo , Ensayos Clínicos como Asunto , Humanos , Modelos Biológicos
12.
Cell ; 182(5): 1170-1185.e9, 2020 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-32795412

RESUMEN

Loss of the gene (Fmr1) encoding Fragile X mental retardation protein (FMRP) causes increased mRNA translation and aberrant synaptic development. We find neurons of the Fmr1-/y mouse have a mitochondrial inner membrane leak contributing to a "leak metabolism." In human Fragile X syndrome (FXS) fibroblasts and in Fmr1-/y mouse neurons, closure of the ATP synthase leak channel by mild depletion of its c-subunit or pharmacological inhibition normalizes stimulus-induced and constitutive mRNA translation rate, decreases lactate and key glycolytic and tricarboxylic acid (TCA) cycle enzyme levels, and triggers synapse maturation. FMRP regulates leak closure in wild-type (WT), but not FX synapses, by stimulus-dependent ATP synthase ß subunit translation; this increases the ratio of ATP synthase enzyme to its c-subunit, enhancing ATP production efficiency and synaptic growth. In contrast, in FXS, inability to close developmental c-subunit leak prevents stimulus-dependent synaptic maturation. Therefore, ATP synthase c-subunit leak closure encourages development and attenuates autistic behaviors.


Asunto(s)
Adenosina Trifosfato/metabolismo , Síndrome del Cromosoma X Frágil/metabolismo , Subunidades de Proteína/metabolismo , Animales , Línea Celular , Ciclo del Ácido Cítrico/fisiología , Fibroblastos/metabolismo , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Células HEK293 , Humanos , Ratones , Neuronas/metabolismo , ARN Mensajero , Sinapsis/metabolismo
13.
Annu Rev Biochem ; 88: 247-280, 2019 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-30901264

RESUMEN

The complexity of human cancer underlies its devastating clinical consequences. Drugs designed to target the genetic alterations that drive cancer have improved the outcome for many patients, but not the majority of them. Here, we review the genomic landscape of cancer, how genomic data can provide much more than a sum of its parts, and the approaches developed to identify and validate genomic alterations with potential therapeutic value. We highlight notable successes and pitfalls in predicting the value of potential therapeutic targets and discuss the use of multi-omic data to better understand cancer dependencies and drug sensitivity. We discuss how integrated approaches to collecting, curating, and sharing these large data sets might improve the identification and prioritization of cancer vulnerabilities as well as patient stratification within clinical trials. Finally, we outline how future approaches might improve the efficiency and speed of translating genomic data into clinically effective therapies and how the use of unbiased genome-wide information can identify novel predictive biomarkers that can be either simple or complex.


Asunto(s)
Genómica , Mutación , Neoplasias/tratamiento farmacológico , Humanos , Neoplasias/genética , Neoplasias/terapia , Medicina de Precisión
14.
Cell ; 179(1): 59-73.e13, 2019 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-31539500

RESUMEN

Development of microbiota-directed foods (MDFs) that selectively increase the abundance of beneficial human gut microbes, and their expressed functions, requires knowledge of both the bioactive components of MDFs and the mechanisms underlying microbe-microbe interactions. Here, gnotobiotic mice were colonized with a defined consortium of human-gut-derived bacterial strains and fed different combinations of 34 food-grade fibers added to a representative low-fiber diet consumed in the United States. Bioactive carbohydrates in fiber preparations targeting particular Bacteroides species were identified using community-wide quantitative proteomic analyses of bacterial gene expression coupled with forward genetic screens. Deliberate manipulation of community membership combined with administration of retrievable artificial food particles, consisting of paramagnetic microscopic beads coated with dietary polysaccharides, disclosed the contributions of targeted species to fiber degradation. Our approach, including the use of bead-based biosensors, defines nutrient-harvesting strategies that underlie, as well as alleviate, competition between Bacteroides and control the selectivity of MDF components.


Asunto(s)
Bacteroides/genética , Fibras de la Dieta/farmacología , Microbioma Gastrointestinal/efectos de los fármacos , Vida Libre de Gérmenes/fisiología , Interacciones Microbianas/efectos de los fármacos , Polisacáridos/farmacología , Proteómica/métodos , Animales , Dieta/métodos , Fibras de la Dieta/metabolismo , Heces/microbiología , Microbioma Gastrointestinal/fisiología , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Polisacáridos/metabolismo
15.
Annu Rev Cell Dev Biol ; 36: 265-289, 2020 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-33021820

RESUMEN

Maintaining mitochondrial health is essential for the survival and function of eukaryotic organisms. Misfunctioning mitochondria activate stress-responsive pathways to restore mitochondrial network homeostasis, remove damaged or toxic proteins, and eliminate damaged organelles via selective autophagy of mitochondria, a process termed mitophagy. Failure of these quality control pathways is implicated in the pathogenesis of Parkinson's disease and other neurodegenerative diseases. Impairment of mitochondrial quality control has been demonstrated to activate innate immune pathways, including inflammasome-mediated signaling and the antiviral cyclic GMP-AMP synthase (cGAS)/stimulator of interferon genes (STING)-regulated interferon response. Immune system malfunction is a common hallmark in many neurodegenerative diseases; however, whether inflammation suppresses or exacerbates disease pathology is still unclear. The goal of this review is to provide a historical overview of the field, describe mechanisms of mitochondrial quality control, and highlight recent advances on the emerging role of mitochondria in innate immunity and inflammation.


Asunto(s)
Inmunidad Innata , Mitocondrias/metabolismo , Animales , Apoptosis , ADN Mitocondrial/genética , Humanos , Potencial de la Membrana Mitocondrial , Proteínas Mitocondriales/metabolismo
16.
Annu Rev Biochem ; 87: 585-620, 2018 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-29494239

RESUMEN

2-Oxoglutarate (2OG)-dependent oxygenases (2OGXs) catalyze a remarkably diverse range of oxidative reactions. In animals, these comprise hydroxylations and N-demethylations proceeding via hydroxylation; in plants and microbes, they catalyze a wider range including ring formations, rearrangements, desaturations, and halogenations. The catalytic flexibility of 2OGXs is reflected in their biological functions. After pioneering work identified the roles of 2OGXs in collagen biosynthesis, research revealed they also function in plant and animal development, transcriptional regulation, nucleic acid modification/repair, fatty acid metabolism, and secondary metabolite biosynthesis, including of medicinally important antibiotics. In plants, 2OGXs are important agrochemical targets and catalyze herbicide degradation. Human 2OGXs, particularly those regulating transcription, are current therapeutic targets for anemia and cancer. Here, we give an overview of the biochemistry of 2OGXs, providing examples linking to biological function, and outline how knowledge of their enzymology is being exploited in medicine, agrochemistry, and biocatalysis.


Asunto(s)
Ácidos Cetoglutáricos/metabolismo , Oxigenasas/metabolismo , Animales , Biocatálisis , Colágeno/biosíntesis , Humanos , Hidroxilación , Modelos Biológicos , Modelos Moleculares , Oxidación-Reducción , Oxigenasas/química , Conformación Proteica , Especificidad por Sustrato
17.
Immunity ; 57(2): 256-270.e10, 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38354703

RESUMEN

Antibodies can block immune receptor engagement or trigger the receptor machinery to initiate signaling. We hypothesized that antibody agonists trigger signaling by sterically excluding large receptor-type protein tyrosine phosphatases (RPTPs) such as CD45 from sites of receptor engagement. An agonist targeting the costimulatory receptor CD28 produced signals that depended on antibody immobilization and were sensitive to the sizes of the receptor, the RPTPs, and the antibody itself. Although both the agonist and a non-agonistic anti-CD28 antibody locally excluded CD45, the agonistic antibody was more effective. An anti-PD-1 antibody that bound membrane proximally excluded CD45, triggered Src homology 2 domain-containing phosphatase 2 recruitment, and suppressed systemic lupus erythematosus and delayed-type hypersensitivity in experimental models. Paradoxically, nivolumab and pembrolizumab, anti-PD-1-blocking antibodies used clinically, also excluded CD45 and were agonistic in certain settings. Reducing these agonistic effects using antibody engineering improved PD-1 blockade. These findings establish a framework for developing new and improved therapies for autoimmunity and cancer.


Asunto(s)
Proteínas Tirosina Fosfatasas , Transducción de Señal , Proteínas Tirosina Fosfatasas/metabolismo , Antígenos CD28 , Receptores Inmunológicos
18.
Nat Immunol ; 21(11): 1408-1420, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32868930

RESUMEN

B lymphocyte development and selection are central to adaptive immunity and self-tolerance. These processes require B cell receptor (BCR) signaling and occur in bone marrow, an environment with variable hypoxia, but whether hypoxia-inducible factor (HIF) is involved is unknown. We show that HIF activity is high in human and murine bone marrow pro-B and pre-B cells and decreases at the immature B cell stage. This stage-specific HIF suppression is required for normal B cell development because genetic activation of HIF-1α in murine B cells led to reduced repertoire diversity, decreased BCR editing and developmental arrest of immature B cells, resulting in reduced peripheral B cell numbers. HIF-1α activation lowered surface BCR, CD19 and B cell-activating factor receptor and increased expression of proapoptotic BIM. BIM deletion rescued the developmental block. Administration of a HIF activator in clinical use markedly reduced bone marrow and transitional B cells, which has therapeutic implications. Together, our work demonstrates that dynamic regulation of HIF-1α is essential for normal B cell development.


Asunto(s)
Linfocitos B/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Linfopoyesis/genética , Animales , Subgrupos de Linfocitos B/inmunología , Subgrupos de Linfocitos B/metabolismo , Linfocitos B/citología , Linfocitos B/inmunología , Biomarcadores , Regulación de la Expresión Génica , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Cadenas Ligeras de Inmunoglobulina/genética , Inmunofenotipificación , Ratones , Ratones Noqueados , Edición de ARN , Receptores de Antígenos de Linfocitos B/metabolismo , Transducción de Señal , Activación Transcripcional
19.
Nat Immunol ; 21(9): 998-1009, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32747815

RESUMEN

Metastasis constitutes the primary cause of cancer-related deaths, with the lung being a commonly affected organ. We found that activation of lung-resident group 2 innate lymphoid cells (ILC2s) orchestrated suppression of natural killer (NK) cell-mediated innate antitumor immunity, leading to increased lung metastases and mortality. Using multiple models of lung metastasis, we show that interleukin (IL)-33-dependent ILC2 activation in the lung is involved centrally in promoting tumor burden. ILC2-driven innate type 2 inflammation is accompanied by profound local suppression of interferon-γ production and cytotoxic function of lung NK cells. ILC2-dependent suppression of NK cells is elaborated via an innate regulatory mechanism, which is reliant on IL-5-induced lung eosinophilia, ultimately limiting the metabolic fitness of NK cells. Therapeutic targeting of IL-33 or IL-5 reversed NK cell suppression and alleviated cancer burden. Thus, we reveal an important function of IL-33 and ILC2s in promoting tumor metastasis via their capacity to suppress innate type 1 immunity.


Asunto(s)
Eosinófilos/inmunología , Células Asesinas Naturales/inmunología , Neoplasias Pulmonares/inmunología , Pulmón/inmunología , Linfocitos/inmunología , Animales , Línea Celular Tumoral , Citotoxicidad Inmunológica , Humanos , Tolerancia Inmunológica , Inmunidad Innata , Interleucina-33/metabolismo , Interleucina-5/metabolismo , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Metástasis de la Neoplasia , Células Th2/inmunología
20.
Mol Cell ; 84(6): 995-997, 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38518749

RESUMEN

Chakrabarty et al.1 demonstrate that phospho-EIF2α (pEIF2α), the translation initiation factor that mediates the integrated stress response (ISR), is necessary and sufficient for the autophagic degradation of mitochondria following the addition of mitochondrial stressors.


Asunto(s)
Mitocondrias , Estrés Fisiológico , Fosforilación , Mitocondrias/metabolismo , Factor 2 Eucariótico de Iniciación/genética , Factor 2 Eucariótico de Iniciación/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA