Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Nature ; 589(7842): 456-461, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33328639

RESUMEN

Autophagy, a process of degradation that occurs via the lysosomal pathway, has an essential role in multiple aspects of immunity, including immune system development, regulation of innate and adaptive immune and inflammatory responses, selective degradation of intracellular microorganisms, and host protection against infectious diseases1,2. Autophagy is known to be induced by stimuli such as nutrient deprivation and suppression of mTOR, but little is known about how autophagosomal biogenesis is initiated in mammalian cells in response to viral infection. Here, using genome-wide short interfering RNA screens, we find that the endosomal protein sorting nexin 5 (SNX5)3,4 is essential for virus-induced, but not for basal, stress- or endosome-induced, autophagy. We show that SNX5 deletion increases cellular susceptibility to viral infection in vitro, and that Snx5 knockout in mice enhances lethality after infection with several human viruses. Mechanistically, SNX5 interacts with beclin 1 and ATG14-containing class III phosphatidylinositol-3-kinase (PI3KC3) complex 1 (PI3KC3-C1), increases the lipid kinase activity of purified PI3KC3-C1, and is required for endosomal generation of phosphatidylinositol-3-phosphate (PtdIns(3)P) and recruitment of the PtdIns(3)P-binding protein WIPI2 to virion-containing endosomes. These findings identify a context- and organelle-specific mechanism-SNX5-dependent PI3KC3-C1 activation at endosomes-for initiation of autophagy during viral infection.


Asunto(s)
Autofagia/inmunología , Nexinas de Clasificación/metabolismo , Virus/inmunología , Animales , Autofagia/genética , Proteínas Relacionadas con la Autofagia/metabolismo , Beclina-1/metabolismo , Línea Celular , Fosfatidilinositol 3-Quinasas Clase III/metabolismo , Endosomas/metabolismo , Femenino , Humanos , Técnicas In Vitro , Masculino , Ratones , Ratones Endogámicos C57BL , ARN Interferente Pequeño/genética , Nexinas de Clasificación/deficiencia , Nexinas de Clasificación/genética , Proteínas de Transporte Vesicular/metabolismo
2.
Proc Natl Acad Sci U S A ; 118(49)2021 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-34873063

RESUMEN

Flaviviruses such as Zika virus and West Nile virus have the potential to cause severe neuropathology if they invade the central nervous system. The type I interferon response is well characterized as contributing to control of flavivirus-induced neuropathogenesis. However, the interferon-stimulated gene (ISG) effectors that confer these neuroprotective effects are less well studied. Here, we used an ISG expression screen to identify Shiftless (SHFL, C19orf66) as a potent inhibitor of diverse positive-stranded RNA viruses, including multiple members of the Flaviviridae (Zika, West Nile, dengue, yellow fever, and hepatitis C viruses). In cultured cells, SHFL functions as a viral RNA-binding protein that inhibits viral replication at a step after primary translation of the incoming genome. The murine ortholog, Shfl, is expressed constitutively in multiple tissues, including the central nervous system. In a mouse model of Zika virus infection, Shfl-/- knockout mice exhibit reduced survival, exacerbated neuropathological outcomes, and increased viral replication in the brain and spinal cord. These studies demonstrate that Shfl is an important antiviral effector that contributes to host protection from Zika virus infection and virus-induced neuropathological disease.


Asunto(s)
Proteínas de Unión al ARN/metabolismo , Infección por el Virus Zika/patología , Virus Zika/metabolismo , Animales , Línea Celular , Efecto Citopatogénico Viral , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades/metabolismo , Susceptibilidad a Enfermedades/virología , Flavivirus/genética , Infecciones por Flavivirus/genética , Infecciones por Flavivirus/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Fármacos Neuroprotectores/metabolismo , Proteínas de Unión al ARN/genética , Replicación Viral/fisiología , Virus Zika/patogenicidad , Infección por el Virus Zika/genética
3.
Nature ; 505(7485): 691-5, 2014 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-24284630

RESUMEN

The type I interferon (IFN) response protects cells from viral infection by inducing hundreds of interferon-stimulated genes (ISGs), some of which encode direct antiviral effectors. Recent screening studies have begun to catalogue ISGs with antiviral activity against several RNA and DNA viruses. However, antiviral ISG specificity across multiple distinct classes of viruses remains largely unexplored. Here we used an ectopic expression assay to screen a library of more than 350 human ISGs for effects on 14 viruses representing 7 families and 11 genera. We show that 47 genes inhibit one or more viruses, and 25 genes enhance virus infectivity. Comparative analysis reveals that the screened ISGs target positive-sense single-stranded RNA viruses more effectively than negative-sense single-stranded RNA viruses. Gene clustering highlights the cytosolic DNA sensor cyclic GMP-AMP synthase (cGAS, also known as MB21D1) as a gene whose expression also broadly inhibits several RNA viruses. In vitro, lentiviral delivery of enzymatically active cGAS triggers a STING-dependent, IRF3-mediated antiviral program that functions independently of canonical IFN/STAT1 signalling. In vivo, genetic ablation of murine cGAS reveals its requirement in the antiviral response to two DNA viruses, and an unappreciated contribution to the innate control of an RNA virus. These studies uncover new paradigms for the preferential specificity of IFN-mediated antiviral pathways spanning several virus families.


Asunto(s)
Inmunidad Innata/genética , Inmunidad Innata/inmunología , Interferones/inmunología , Nucleotidiltransferasas/inmunología , Nucleotidiltransferasas/metabolismo , Virus/inmunología , Animales , Análisis por Conglomerados , Virus ADN/inmunología , Virus ADN/patogenicidad , Citometría de Flujo , Biblioteca de Genes , Factor 3 Regulador del Interferón/inmunología , Factor 3 Regulador del Interferón/metabolismo , Interferones/metabolismo , Proteínas de la Membrana/metabolismo , Ratones , Ratones Noqueados , Nucleotidiltransferasas/deficiencia , Nucleotidiltransferasas/genética , Virus ARN/inmunología , Virus ARN/patogenicidad , Factor de Transcripción STAT1/metabolismo , Especificidad por Sustrato , Virus/clasificación , Virus/patogenicidad
5.
J Virol ; 87(7): 4005-16, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23365430

RESUMEN

The Kaposi's sarcoma-associated herpesvirus (KSHV) open reading frame 57 (ORF57)-encoded protein (Mta) is a multifunctional regulator of viral gene expression. ORF57 is essential for viral replication, so elucidation of its molecular mechanisms is important for understanding KSHV infection. ORF57 has been implicated in nearly every aspect of viral gene expression, including transcription, RNA stability, splicing, export, and translation. Here we demonstrate that ORF57 interacts with the KSHV K-bZIP protein in vitro and in cell extracts from lytically reactivated infected cells. To further test the biological relevance of the interaction, we performed a chromatin immunoprecipitation and microarray (ChIP-chip) analysis using anti-ORF57 antibodies and a KSHV tiling array. The results revealed four specific areas of enrichment, including the ORF4 and K8 (K-bZIP) promoters, as well as oriLyt, all of which interact with K-bZIP. In addition, ORF57 associated with DNA corresponding to the PAN RNA transcribed region, a known posttranscriptional target of ORF57. All of the peaks were RNase insensitive, demonstrating that ORF57 association with the viral genome is unlikely to be mediated exclusively by an RNA tether. Our data demonstrate that ORF57 associates with the viral genome by using at least two modes of recruitment, and they suggest that ORF57 and K-bZIP coregulate viral gene expression during lytic infection.


Asunto(s)
Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Regulación Viral de la Expresión Génica/genética , Herpesvirus Humano 8/genética , Proteínas Represoras/metabolismo , Proteínas Virales/metabolismo , Replicación Viral/genética , Northern Blotting , Western Blotting , Inmunoprecipitación de Cromatina , Cartilla de ADN/genética , Herpesvirus Humano 8/metabolismo , Inmunoprecipitación , Análisis por Micromatrices , Plásmidos/genética , Regiones Promotoras Genéticas/genética , Reacción en Cadena en Tiempo Real de la Polimerasa
6.
Nat Commun ; 15(1): 5426, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38926343

RESUMEN

Zika and dengue virus nonstructural protein 5 antagonism of STAT2, a critical interferon signaling transcription factor, to suppress the host interferon response is required for viremia and pathogenesis in a vertebrate host. This affects viral species tropism, as mouse STAT2 resistance renders only immunocompromised or humanized STAT2 mice infectable. Here, we explore how STAT2 evolution impacts antagonism. By measuring the susceptibility of 38 diverse STAT2 proteins, we demonstrate that resistance arose numerous times in mammalian evolution. In four species, resistance requires distinct sets of multiple amino acid changes that often individually disrupt STAT2 signaling. This reflects an evolutionary ridge where progressive resistance is balanced by the need to maintain STAT2 function. Furthermore, resistance may come with a fitness cost, as resistance that arose early in lemur evolution was subsequently lost in some lemur lineages. These findings underscore that while it is possible to evolve resistance to antagonism, complex evolutionary trajectories are required to avoid detrimental host fitness consequences.


Asunto(s)
Evolución Molecular , Factor de Transcripción STAT2 , Proteínas no Estructurales Virales , Factor de Transcripción STAT2/metabolismo , Factor de Transcripción STAT2/genética , Animales , Proteínas no Estructurales Virales/genética , Proteínas no Estructurales Virales/metabolismo , Humanos , Ratones , Virus del Dengue/genética , Virus del Dengue/fisiología , Virus Zika/genética , Flavivirus/genética , Flavivirus/fisiología , Filogenia , Interacciones Huésped-Patógeno/genética
7.
Cell Host Microbe ; 31(10): 1668-1684.e12, 2023 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-37738983

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) encodes several proteins that inhibit host interferon responses. Among these, ORF6 antagonizes interferon signaling by disrupting nucleocytoplasmic trafficking through interactions with the nuclear pore complex components Nup98-Rae1. However, the roles and contributions of ORF6 during physiological infection remain unexplored. We assessed the role of ORF6 during infection using recombinant viruses carrying a deletion or loss-of-function (LoF) mutation in ORF6. ORF6 plays key roles in interferon antagonism and viral pathogenesis by interfering with nuclear import and specifically the translocation of IRF and STAT transcription factors. Additionally, ORF6 inhibits cellular mRNA export, resulting in the remodeling of the host cell proteome, and regulates viral protein expression. Interestingly, the ORF6:D61L mutation that emerged in the Omicron BA.2 and BA.4 variants exhibits reduced interactions with Nup98-Rae1 and consequently impairs immune evasion. Our findings highlight the role of ORF6 in antagonizing innate immunity and emphasize the importance of studying the immune evasion strategies of SARS-CoV-2.


Asunto(s)
COVID-19 , SARS-CoV-2 , Proteínas Virales , Humanos , COVID-19/virología , Inmunidad Innata , Interferones/genética , Interferones/metabolismo , SARS-CoV-2/genética , Proteínas Virales/genética , Proteínas Virales/metabolismo
8.
bioRxiv ; 2022 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-36299428

RESUMEN

We and others have previously shown that the SARS-CoV-2 accessory protein ORF6 is a powerful antagonist of the interferon (IFN) signaling pathway by directly interacting with Nup98-Rae1 at the nuclear pore complex (NPC) and disrupting bidirectional nucleo-cytoplasmic trafficking. In this study, we further assessed the role of ORF6 during infection using recombinant SARS-CoV-2 viruses carrying either a deletion or a well characterized M58R loss-of-function mutation in ORF6. We show that ORF6 plays a key role in the antagonism of IFN signaling and in viral pathogenesis by interfering with karyopherin(importin)-mediated nuclear import during SARS-CoV-2 infection both in vitro , and in the Syrian golden hamster model in vivo . In addition, we found that ORF6-Nup98 interaction also contributes to inhibition of cellular mRNA export during SARS-CoV-2 infection. As a result, ORF6 expression significantly remodels the host cell proteome upon infection. Importantly, we also unravel a previously unrecognized function of ORF6 in the modulation of viral protein expression, which is independent of its function at the nuclear pore. Lastly, we characterized the ORF6 D61L mutation that recently emerged in Omicron BA.2 and BA.4 and demonstrated that it is able to disrupt ORF6 protein functions at the NPC and to impair SARS-CoV-2 innate immune evasion strategies. Importantly, the now more abundant Omicron BA.5 lacks this loss-of-function polymorphism in ORF6. Altogether, our findings not only further highlight the key role of ORF6 in the antagonism of the antiviral innate immune response, but also emphasize the importance of studying the role of non-spike mutations to better understand the mechanisms governing differential pathogenicity and immune evasion strategies of SARS-CoV-2 and its evolving variants. ONE SENTENCE SUMMARY: SARS-CoV-2 ORF6 subverts bidirectional nucleo-cytoplasmic trafficking to inhibit host gene expression and contribute to viral pathogenesis.

9.
Nat Commun ; 9(1): 3603, 2018 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-30190477

RESUMEN

Interferons (IFNs) contribute to cell-intrinsic antiviral immunity by inducing hundreds of interferon-stimulated genes (ISGs). In a screen to identify antiviral ISGs, we unexpectedly found that LY6E, a member of the LY6/uPAR family, enhanced viral infection. Here, we show that viral enhancement by ectopically expressed LY6E extends to several cellular backgrounds and affects multiple RNA viruses. LY6E does not impair IFN antiviral activity or signaling, but rather promotes viral entry. Using influenza A virus as a model, we narrow the enhancing effect of LY6E to uncoating after endosomal escape. Diverse mammalian orthologs of LY6E also enhance viral infectivity, indicating evolutionary conservation of function. By structure-function analyses, we identify a single amino acid in a predicted loop region that is essential for viral enhancement. Our study suggests that LY6E belongs to a class of IFN-inducible host factors that enhance viral infectivity without suppressing IFN antiviral activity.


Asunto(s)
Antígenos de Superficie/metabolismo , Interacciones Huésped-Patógeno/fisiología , Virus ARN/patogenicidad , Animales , Antígenos de Superficie/genética , Evolución Biológica , Línea Celular , Fibroblastos/virología , Proteínas Ligadas a GPI/genética , Proteínas Ligadas a GPI/metabolismo , Regulación de la Expresión Génica , Humanos , Virus de la Influenza A/patogenicidad , Interferones/genética , Interferones/metabolismo , Leucina , Infecciones por Virus ARN/metabolismo , Virus ARN/fisiología , Internalización del Virus , Replicación Viral , Virus de la Fiebre Amarilla/patogenicidad
10.
Nat Microbiol ; 3(11): 1214-1223, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30224801

RESUMEN

The endoplasmic reticulum (ER) is an architecturally diverse organelle that serves as a membrane source for the replication of multiple viruses. Flaviviruses, including yellow fever virus, West Nile virus, dengue virus and Zika virus, induce unique single-membrane ER invaginations that house the viral replication machinery1. Whether this virus-induced ER remodelling is vulnerable to antiviral pathways is unknown. Here, we show that flavivirus replication at the ER is targeted by the interferon (IFN) response. Through genome-scale CRISPR screening, we uncovered an antiviral mechanism mediated by a functional gene pairing between IFI6 (encoding IFN-α-inducible protein 6), an IFN-stimulated gene cloned over 30 years ago2, and HSPA5, which encodes the ER-resident heat shock protein 70 chaperone BiP. We reveal that IFI6 is an ER-localized integral membrane effector that is stabilized through interactions with BiP. Mechanistically, IFI6 prophylactically protects uninfected cells by preventing the formation of virus-induced ER membrane invaginations. Notably, IFI6 has little effect on other mammalian RNA viruses, including the related Flaviviridae family member hepatitis C virus, which replicates in double-membrane vesicles that protrude outwards from the ER. These findings support a model in which the IFN response is armed with a membrane-targeted effector that discriminately blocks the establishment of virus-specific ER microenvironments that are required for replication.


Asunto(s)
Antivirales/farmacología , Retículo Endoplásmico/metabolismo , Interferón-alfa/farmacología , Proteínas Mitocondriales/metabolismo , Replicación Viral , Fiebre Amarilla/metabolismo , Virus de la Fiebre Amarilla/efectos de los fármacos , Animales , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Chaperón BiP del Retículo Endoplásmico , Técnicas de Inactivación de Genes , Estudio de Asociación del Genoma Completo , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Humanos , Proteínas Mitocondriales/genética , Unión Proteica , Especificidad de la Especie , Fiebre Amarilla/virología , Virus de la Fiebre Amarilla/fisiología
11.
Cell Rep ; 15(11): 2315-22, 2016 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-27268504

RESUMEN

The recent Zika virus (ZIKV) outbreak in the Western hemisphere is associated with severe pathology in newborns, including microcephaly and brain damage. The mechanisms underlying these outcomes are under intense investigation. Here, we show that a 2015 ZIKV isolate replicates in multiple cell types, including primary human fetal neural progenitors (hNPs). In immortalized cells, ZIKV is cytopathic and grossly rearranges endoplasmic reticulum membranes similar to other flaviviruses. In hNPs, ZIKV infection has a partial cytopathic phase characterized by cell rounding, pyknosis, and activation of caspase 3. Despite notable cell death, ZIKV did not activate a cytokine response in hNPs. This lack of cell intrinsic immunity to ZIKV is consistent with our observation that virus replication persists in hNPs for at least 28 days. These findings, supported by published fetal neuropathology, establish a proof-of-concept that neural progenitors in the developing human fetus can be direct targets of detrimental ZIKV-induced pathology.


Asunto(s)
Efecto Citopatogénico Viral/inmunología , Feto/patología , Células-Madre Neurales/inmunología , Células-Madre Neurales/virología , Infección por el Virus Zika/inmunología , Infección por el Virus Zika/virología , Virus Zika/inmunología , Línea Celular , Humanos , Factores de Tiempo , Replicación Viral , Virus Zika/aislamiento & purificación , Virus Zika/fisiología , Virus Zika/ultraestructura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA