Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Annu Rev Microbiol ; 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38684082

RESUMEN

This review explores the origins of intracellular parasitism, an intriguing facet of symbiosis, where one organism harms its host, potentially becoming deadly. We focus on three distantly related groups of single-celled eukaryotes, namely Kinetoplastea, Holomycota, and Apicomplexa, which contain multiple species-rich lineages of intracellular parasites. Using comparative analysis of morphological, physiological, and molecular features of kinetoplastids, microsporidians, and sporozoans, as well as their closest free-living relatives, we reveal the evolutionary trajectories and adaptations that enabled the transition to intracellular parasitism. Intracellular parasites have evolved various efficient mechanisms for host acquisition and exploitation, allowing them to thrive in a variety of hosts. Each group has developed unique features related to the parasitic lifestyle, involving dedicated protein families associated with host cell invasion, survival, and exit. Indeed, parallel evolution has led to distinct lineages of intracellular parasites employing diverse traits and approaches to achieve similar outcomes.

2.
Int J Mol Sci ; 22(12)2021 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-34204357

RESUMEN

Heme biosynthesis is essential for almost all living organisms. Despite its conserved function, the pathway's enzymes can be located in a remarkable diversity of cellular compartments in different organisms. This location does not always reflect their evolutionary origins, as might be expected from the history of their acquisition through endosymbiosis. Instead, the final subcellular localization of the enzyme reflects multiple factors, including evolutionary origin, demand for the product, availability of the substrate, and mechanism of pathway regulation. The biosynthesis of heme in the apicomonad Chromera velia follows a chimeric pathway combining heme elements from the ancient algal symbiont and the host. Computational analyses using different algorithms predict complex targeting patterns, placing enzymes in the mitochondrion, plastid, endoplasmic reticulum, or the cytoplasm. We employed heterologous reporter gene expression in the apicomplexan parasite Toxoplasma gondii and the diatom Phaeodactylum tricornutum to experimentally test these predictions. 5-aminolevulinate synthase was located in the mitochondria in both transfection systems. In T. gondii, the two 5-aminolevulinate dehydratases were located in the cytosol, uroporphyrinogen synthase in the mitochondrion, and the two ferrochelatases in the plastid. In P. tricornutum, all remaining enzymes, from ALA-dehydratase to ferrochelatase, were placed either in the endoplasmic reticulum or in the periplastidial space.


Asunto(s)
Alveolados/fisiología , Apicomplexa/metabolismo , Diatomeas/metabolismo , Hemo/metabolismo , Redes y Vías Metabólicas , Secuencia de Aminoácidos , Transporte Biológico , Evolución Molecular , Regulación Enzimológica de la Expresión Génica , Mitocondrias/genética , Mitocondrias/metabolismo , Mitocondrias/ultraestructura , Proteínas Protozoarias/química , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo
3.
Planta ; 250(5): 1731-1741, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31422509

RESUMEN

MAIN CONCLUSION: We present an easy and effective procedure to purify plastids and mitochondria from Chromera velia. Our method enables downstream analyses of protein and metabolite content of the organelles. Chromerids are alveolate algae that are the closest known phototrophic relatives to apicomplexan parasites such as Plasmodium or Toxoplasma. While genomic and transcriptomic resources for chromerids are in place, tools and experimental conditions for proteomic studies have not been developed yet. Here we describe a rapid and efficient protocol for simultaneous isolation of plastids and mitochondria from the chromerid alga Chromera velia. This procedure involves enzymatic treatment and breakage of cells, followed by differential centrifugation. While plastids sediment in the first centrifugation step, mitochondria remain in the supernatant. Subsequently, plastids can be purified from the crude pellet by centrifugation on a discontinuous 60%/70% sucrose density gradient, while mitochondria can be obtained by centrifugation on a discontinuous 33%/80% Percoll density gradient. Isolated plastids are autofluorescent, and their multi-membrane structure was confirmed by transmission electron microscopy. Fluorescent optical microscopy was used to identify isolated mitochondria stained with MitoTrackerTM green, while their intactness and membrane potential were confirmed by staining with MitoTrackerTM orange CMTMRos. Total proteins were extracted from isolated organellar fractions, and the purity of isolated organelles was confirmed using immunoblotting. Antibodies against the beta subunit of the mitochondrial ATP synthase and the plastid protochlorophyllide oxidoreductase did not cross-react on immunoblots, suggesting that each organellar fraction is free of the residues of the other. The presented protocol represents an essential step for further proteomic, organellar, and cell biological studies of C. velia and can be employed, with minor optimizations, in other thick-walled unicellular algae.


Asunto(s)
Alveolados/ultraestructura , Microalgas/ultraestructura , Mitocondrias/ultraestructura , Plastidios/ultraestructura
4.
Front Plant Sci ; 14: 1226027, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38143581

RESUMEN

Most organisms on Earth are affected by periodic changes in their environment. The circadian clock is an endogenous device that synchronizes behavior, physiology, or biochemical processes to an approximately 24-hour cycle, allowing organisms to anticipate the periodic changes of day and night. Although circadian clocks are widespread in organisms, the actual molecular components differ remarkably among the clocks of plants, animals, fungi, and prokaryotes. Chromera velia is the closest known photosynthetic relative of apicomplexan parasites. Formation of its motile stage, zoospores, has been described as associated with the light part of the day. We examined the effects on the periodic release of the zoospores under different light conditions and investigated the influence of the spectral composition on zoosporogenesis. We performed a genomic search for homologs of known circadian clock genes. Our results demonstrate the presence of an almost 24-hour free-running cycle of zoosporogenesis. We also identified the blue light spectra as the essential compound for zoosporogenesis. Further, we developed a new and effective method for zoospore separation from the culture and estimated the average motility speed and lifespan of the C. velia zoospores. Our genomic search identified six cryptochrome-like genes, two genes possibly related to Arabidopsis thaliana CCA/LHY, whereas no homolog of an animal, cyanobacterial, or fungal circadian clock gene was found. Our results suggest that C. velia has a functional circadian clock, probably based mainly on a yet undefined mechanism.

5.
Microorganisms ; 7(8)2019 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-31387253

RESUMEN

In this paper, we describe a novel bacteriophagous biflagellate, Cafileria marina with two smooth flagellae, isolated from material collected from a rock surface in the Kvernesfjorden (Norway). This flagellate was characterized by scanning and transmission electron microscopy, fluorescence, and light microscopy. The sequence of the small subunit ribosomal RNA gene (18S) was used as a molecular marker for determining the phylogenetic position of this organism. Apart from the nuclear ribosomal gene, the whole mitochondrial genome was sequenced, assembled, and annotated. Morphological observations show that the newly described flagellate shares key ultrastructural characters with representatives of the family Bicosoecida (Heterokonta). Intriguingly, mitochondria of C. marina frequently associate with its nucleus through an electron-dense disc at the boundary of the two compartments. The function of this association remains unclear. Phylogenetic analyses corroborate the morphological data and place C. marina with other sequence data of representatives from the family Bicosoecida. We describe C. marina as a new species from a new genus in this family.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA