Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 109(23): 9083-8, 2012 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-22615383

RESUMEN

Emerging evidence suggests that chromatin adopts a nonrandom 3D topology and that the organization of genes into structural hubs and domains affects their transcriptional status. How chromatin conformation changes in diseases such as cancer is poorly understood. Moreover, how oncogenic transcription factors, which bind to thousands of sites across the genome, influence gene regulation by globally altering the topology of chromatin requires further investigation. To address these questions, we performed unbiased high-resolution mapping of intra- and interchromosome interactions upon overexpression of ERG, an oncogenic transcription factor frequently overexpressed in prostate cancer as a result of a gene fusion. By integrating data from genome-wide chromosome conformation capture (Hi-C), ERG binding, and gene expression, we demonstrate that oncogenic transcription factor overexpression is associated with global, reproducible, and functionally coherent changes in chromatin organization. The results presented here have broader implications, as genomic alterations in other cancer types frequently give rise to aberrant transcription factor expression, e.g., EWS-FLI1, c-Myc, n-Myc, and PML-RARα.


Asunto(s)
Ensamble y Desensamble de Cromatina/genética , Conformación de Ácido Nucleico , Transactivadores/metabolismo , Secuencia de Bases , Línea Celular , Inmunoprecipitación de Cromatina , Cartilla de ADN/genética , Citometría de Flujo , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Hibridación Fluorescente in Situ , Cariotipificación , Datos de Secuencia Molecular , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Regulador Transcripcional ERG
2.
Proc Natl Acad Sci U S A ; 109(17): 6686-91, 2012 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-22496589

RESUMEN

Copy number variants (CNVs) are a recently recognized class of human germ line polymorphisms and are associated with a variety of human diseases, including cancer. Because of the strong genetic influence on prostate cancer, we sought to identify functionally active CNVs associated with susceptibility of this cancer type. We queried low-frequency biallelic CNVs from 1,903 men of Caucasian origin enrolled in the Tyrol Prostate Specific Antigen Screening Cohort and discovered two CNVs strongly associated with prostate cancer risk. The first risk locus (P = 7.7 × 10(-4), odds ratio = 2.78) maps to 15q21.3 and overlaps a noncoding enhancer element that contains multiple activator protein 1 (AP-1) transcription factor binding sites. Chromosome conformation capture (Hi-C) data suggested direct cis-interactions with distant genes. The second risk locus (P = 2.6 × 10(-3), odds ratio = 4.8) maps to the α-1,3-mannosyl-glycoprotein 4-ß-N-acetylglucosaminyltransferase C (MGAT4C) gene on 12q21.31. In vitro cell-line assays found this gene to significantly modulate cell proliferation and migration in both benign and cancer prostate cells. Furthermore, MGAT4C was significantly overexpressed in metastatic versus localized prostate cancer. These two risk associations were replicated in an independent PSA-screened cohort of 800 men (15q21.3, combined P = 0.006; 12q21.31, combined P = 0.026). These findings establish noncoding and coding germ line CNVs as significant risk factors for prostate cancer susceptibility and implicate their role in disease development and progression.


Asunto(s)
Cromosomas Humanos Par 12 , Cromosomas Humanos Par 15 , Dosificación de Gen , Predisposición Genética a la Enfermedad , Neoplasias de la Próstata/genética , Estudios de Casos y Controles , Línea Celular Tumoral , Proliferación Celular , Estudios de Cohortes , Humanos , Masculino , Reacción en Cadena de la Polimerasa , Polimorfismo de Nucleótido Simple , Neoplasias de la Próstata/patología
3.
Genome Res ; 21(1): 56-67, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21036922

RESUMEN

Half of prostate cancers harbor gene fusions between TMPRSS2 and members of the ETS transcription factor family. To date, little is known about the presence of non-ETS fusion events in prostate cancer. We used next-generation transcriptome sequencing (RNA-seq) in order to explore the whole transcriptome of 25 human prostate cancer samples for the presence of chimeric fusion transcripts. We generated more than 1 billion sequence reads and used a novel computational approach (FusionSeq) in order to identify novel gene fusion candidates with high confidence. In total, we discovered and characterized seven new cancer-specific gene fusions, two involving the ETS genes ETV1 and ERG, and four involving non-ETS genes such as CDKN1A (p21), CD9, and IKBKB (IKK-beta), genes known to exhibit key biological roles in cellular homeostasis or assumed to be critical in tumorigenesis of other tumor entities, as well as the oncogene PIGU and the tumor suppressor gene RSRC2. The novel gene fusions are found to be of low frequency, but, interestingly, the non-ETS fusions were all present in prostate cancer harboring the TMPRSS2-ERG gene fusion. Future work will focus on determining if the ETS rearrangements in prostate cancer are associated or directly predispose to a rearrangement-prone phenotype.


Asunto(s)
Fusión Génica , Neoplasias de la Próstata/genética , Proteínas Proto-Oncogénicas c-ets/genética , Análisis de Secuencia de ARN/métodos , Antígenos CD/genética , Biología Computacional/métodos , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Perfilación de la Expresión Génica , Humanos , Quinasa I-kappa B/genética , Hibridación Fluorescente in Situ , Masculino , Glicoproteínas de Membrana/genética , Datos de Secuencia Molecular , Neoplasias de la Próstata/patología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Serina Endopeptidasas/genética , Serina Endopeptidasas/metabolismo , Tetraspanina 29 , Transactivadores/metabolismo , Regulador Transcripcional ERG
4.
Res Sq ; 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38405800

RESUMEN

Enhancer of zeste homolog 2 (EZH2) is a histone methyltransferase and emerging therapeutic target that is overexpressed in most castration-resistant prostate cancers and implicated as a driver of disease progression and resistance to hormonal therapies. Here we define the lineage-specific action and differential activity of EZH2 in both prostate adenocarcinoma (PRAD) and neuroendocrine prostate cancer (NEPC) subtypes of advanced prostate cancer to better understand the role of EZH2 in modulating differentiation, lineage plasticity, and to identify mediators of response and resistance to EZH2 inhibitor therapy. Mechanistically, EZH2 modulates bivalent genes that results in upregulation of NEPC-associated transcriptional drivers (e.g., ASCL1) and neuronal gene programs, and leads to forward differentiation after targeting EZH2 in NEPC. Subtype-specific downstream effects of EZH2 inhibition on cell cycle genes support the potential rationale for co-targeting cyclin/CDK to overcome resistance to EZH2 inhibition.

5.
Nat Commun ; 15(1): 363, 2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38191471

RESUMEN

In the complex tumor microenvironment (TME), mesenchymal cells are key players, yet their specific roles in prostate cancer (PCa) progression remain to be fully deciphered. This study employs single-cell RNA sequencing to delineate molecular changes in tumor stroma that influence PCa progression and metastasis. Analyzing mesenchymal cells from four genetically engineered mouse models (GEMMs) and correlating these findings with human tumors, we identify eight stromal cell populations with distinct transcriptional identities consistent across both species. Notably, stromal signatures in advanced mouse disease reflect those in human bone metastases, highlighting periostin's role in invasion and differentiation. From these insights, we derive a gene signature that predicts metastatic progression in localized disease beyond traditional Gleason scores. Our results illuminate the critical influence of stromal dynamics on PCa progression, suggesting new prognostic tools and therapeutic targets.


Asunto(s)
Células Madre Mesenquimatosas , Neoplasias de la Próstata , Humanos , Masculino , Animales , Ratones , Neoplasias de la Próstata/genética , Próstata , Células del Estroma , Diferenciación Celular , Microambiente Tumoral/genética
6.
Haematologica ; 98(8): 1250-8, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23716562

RESUMEN

Peripheral T-cell lymphoma, not otherwise specified is a heterogeneous group of aggressive neoplasms with indistinct borders. By gene expression profiling we previously reported unsupervised clusters of peripheral T-cell lymphomas, not otherwise specified correlating with CD30 expression. In this work we extended the analysis of peripheral T-cell lymphoma molecular profiles to prototypical CD30(+) peripheral T-cell lymphomas (anaplastic large cell lymphomas), and validated mRNA expression profiles at the protein level. Existing transcriptomic datasets from peripheral T-cell lymphomas, not otherwise specified and anaplastic large cell lymphomas were reanalyzed. Twenty-one markers were selected for immunohistochemical validation on 80 peripheral T-cell lymphoma samples (not otherwise specified, CD30(+) and CD30(-); anaplastic large cell lymphomas, ALK(+) and ALK(-)), and differences between subgroups were assessed. Clinical follow-up was recorded. Compared to CD30(-) tumors, CD30(+) peripheral T-cell lymphomas, not otherwise specified were significantly enriched in ALK(-) anaplastic large cell lymphoma-related genes. By immunohistochemistry, CD30(+) peripheral T-cell lymphomas, not otherwise specified differed significantly from CD30(-) samples [down-regulated expression of T-cell receptor-associated proximal tyrosine kinases (Lck, Fyn, Itk) and of proteins involved in T-cell differentiation/activation (CD69, ICOS, CD52, NFATc2); upregulation of JunB and MUM1], while overlapping with anaplastic large cell lymphomas. CD30(-) peripheral T-cell lymphomas, not otherwise specified tended to have an inferior clinical outcome compared to the CD30(+) subgroups. In conclusion, we show molecular and phenotypic features common to CD30(+) peripheral T-cell lymphomas, and significant differences between CD30(-) and CD30(+) peripheral T-cell lymphomas, not otherwise specified, suggesting that CD30 expression might delineate two biologically distinct subgroups.


Asunto(s)
Antígeno Ki-1/biosíntesis , Antígeno Ki-1/genética , Linfoma de Células T Periférico/genética , Linfoma de Células T Periférico/metabolismo , Fenotipo , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Niño , Preescolar , Femenino , Estudios de Seguimiento , Perfilación de la Expresión Génica/métodos , Humanos , Linfoma de Células T Periférico/diagnóstico , Masculino , Persona de Mediana Edad , Adulto Joven
7.
bioRxiv ; 2023 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-37034687

RESUMEN

Alterations in tumor stroma influence prostate cancer progression and metastatic potential. However, the molecular underpinnings of this stromal-epithelial crosstalk are largely unknown. Here, we compare mesenchymal cells from four genetically engineered mouse models (GEMMs) of prostate cancer representing different stages of the disease to their wild-type (WT) counterparts by single-cell RNA sequencing (scRNA-seq) and, ultimately, to human tumors with comparable genotypes. We identified 8 transcriptionally and functionally distinct stromal populations responsible for common and GEMM-specific transcriptional programs. We show that stromal responses are conserved in mouse models and human prostate cancers with the same genomic alterations. We noted striking similarities between the transcriptional profiles of the stroma of murine models of advanced disease and those of of human prostate cancer bone metastases. These profiles were then used to build a robust gene signature that can predict metastatic progression in prostate cancer patients with localized disease and is also associated with progression-free survival independent of Gleason score. Taken together, this offers new evidence that stromal microenvironment mediates prostate cancer progression, further identifying tissue-based biomarkers and potential therapeutic targets of aggressive and metastatic disease.

8.
Cancer Res Commun ; 3(8): 1447-1459, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37546702

RESUMEN

Although recent efforts have led to the development of highly effective androgen receptor (AR)-directed therapies for the treatment of advanced prostate cancer, a significant subset of patients will progress with resistant disease including AR-negative tumors that display neuroendocrine features [neuroendocrine prostate cancer (NEPC)]. On the basis of RNA sequencing (RNA-seq) data from a clinical cohort of tissue from benign prostate, locally advanced prostate cancer, metastatic castration-resistant prostate cancer and NEPC, we developed a multi-step bioinformatics pipeline to identify NEPC-specific, overexpressed gene transcripts that encode cell surface proteins. This included the identification of known NEPC surface protein CEACAM5 as well as other potentially targetable proteins (e.g., HMMR and CESLR3). We further showed that cadherin EGF LAG seven-pass G-type receptor 3 (CELSR3) knockdown results in reduced NEPC tumor cell proliferation and migration in vitro. We provide in vivo data including laser capture microdissection followed by RNA-seq data supporting a causal role of CELSR3 in the development and/or maintenance of the phenotype associated with NEPC. Finally, we provide initial data that suggests CELSR3 is a target for T-cell redirection therapeutics. Further work is now needed to fully evaluate the utility of targeting CELSR3 with T-cell redirection or other similar therapeutics as a potential new strategy for patients with NEPC. Significance: The development of effective treatment for patients with NEPC remains an unmet clinical need. We have identified specific surface proteins, including CELSR3, that may serve as novel biomarkers or therapeutic targets for NEPC.


Asunto(s)
Tumores Neuroendocrinos , Neoplasias de la Próstata , Humanos , Masculino , Neoplasias de la Próstata/genética , Tumores Neuroendocrinos/genética , Próstata/metabolismo , Membrana Celular/metabolismo , Cadherinas/genética
9.
Elife ; 112022 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-35848798

RESUMEN

Expression of the AR splice variant, androgen receptor variant 7 (AR-V7), in prostate cancer is correlated with poor patient survival and resistance to AR targeted therapies and taxanes. Currently, there is no specific inhibitor of AR-V7, while the molecular mechanisms regulating its biological function are not well elucidated. Here, we report that AR-V7 has unique biological features that functionally differentiate it from canonical AR-fl or from the second most prevalent variant, AR-v567. First, AR-V7 exhibits fast nuclear import kinetics via a pathway distinct from the nuclear localization signal dependent importin-α/ß pathway used by AR-fl and AR-v567. We also show that the dimerization box domain, known to mediate AR dimerization and transactivation, is required for AR-V7 nuclear import but not for AR-fl. Once in the nucleus, AR-V7 is transcriptionally active, yet exhibits unusually high intranuclear mobility and transient chromatin interactions, unlike the stable chromatin association of liganded AR-fl. The high intranuclear mobility of AR-V7 together with its high transcriptional output, suggest a Hit-and-Run mode of transcription. Our findings reveal unique mechanisms regulating AR-V7 activity, offering the opportunity to develop selective therapeutic interventions.


Asunto(s)
Neoplasias de la Próstata Resistentes a la Castración , Receptores Androgénicos , Transporte Activo de Núcleo Celular , Línea Celular Tumoral , Cromatina , Humanos , Masculino , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Neoplasias de la Próstata Resistentes a la Castración/genética , Neoplasias de la Próstata Resistentes a la Castración/metabolismo , Isoformas de Proteínas/metabolismo , Receptores Androgénicos/genética , Receptores Androgénicos/metabolismo
10.
Elife ; 112022 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-36511483

RESUMEN

Advanced prostate malignancies are a leading cause of cancer-related deaths in men, in large part due to our incomplete understanding of cellular drivers of disease progression. We investigate prostate cancer cell dynamics at single-cell resolution from disease onset to the development of androgen independence in an in vivo murine model. We observe an expansion of a castration-resistant intermediate luminal cell type that correlates with treatment resistance and poor prognosis in human patients. Moreover, transformed epithelial cells and associated fibroblasts create a microenvironment conducive to pro-tumorigenic immune infiltration, which is partially androgen responsive. Androgen-independent prostate cancer leads to significant diversification of intermediate luminal cell populations characterized by a range of androgen signaling activity, which is inversely correlated with proliferation and mRNA translation. Accordingly, distinct epithelial populations are exquisitely sensitive to translation inhibition, which leads to epithelial cell death, loss of pro-tumorigenic signaling, and decreased tumor heterogeneity. Our findings reveal a complex tumor environment largely dominated by castration-resistant luminal cells and immunosuppressive infiltrates.


Asunto(s)
Andrógenos , Neoplasias de la Próstata , Masculino , Humanos , Ratones , Animales , Próstata/metabolismo , Neoplasias de la Próstata/patología , Orquiectomía , Dinámica Poblacional , Receptores Androgénicos/metabolismo , Progresión de la Enfermedad , Microambiente Tumoral
11.
Adv Mater ; 34(2): e2100096, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34676924

RESUMEN

Following treatment with androgen receptor (AR) pathway inhibitors, ≈20% of prostate cancer patients progress by shedding their AR-dependence. These tumors undergo epigenetic reprogramming turning castration-resistant prostate cancer adenocarcinoma (CRPC-Adeno) into neuroendocrine prostate cancer (CRPC-NEPC). No targeted therapies are available for CRPC-NEPCs, and there are minimal organoid models to discover new therapeutic targets against these aggressive tumors. Here, using a combination of patient tumor proteomics, RNA sequencing, spatial-omics, and a synthetic hydrogel-based organoid, putative extracellular matrix (ECM) cues that regulate the phenotypic, transcriptomic, and epigenetic underpinnings of CRPC-NEPCs are defined. Short-term culture in tumor-expressed ECM differentially regulated DNA methylation and mobilized genes in CRPC-NEPCs. The ECM type distinctly regulates the response to small-molecule inhibitors of epigenetic targets and Dopamine Receptor D2 (DRD2), the latter being an understudied target in neuroendocrine tumors. In vivo patient-derived xenograft in immunocompromised mice showed strong anti-tumor response when treated with a DRD2 inhibitor. Finally, we demonstrate that therapeutic response in CRPC-NEPCs under drug-resistant ECM conditions can be overcome by first cellular reprogramming with epigenetic inhibitors, followed by DRD2 treatment. The synthetic organoids suggest the regulatory role of ECM in therapeutic response to targeted therapies in CRPC-NEPCs and enable the discovery of therapies to overcome resistance.


Asunto(s)
Organoides , Neoplasias de la Próstata Resistentes a la Castración , Antagonistas de Receptores Androgénicos/farmacología , Antagonistas de Receptores Androgénicos/uso terapéutico , Animales , Línea Celular Tumoral , Proteína Potenciadora del Homólogo Zeste 2 , Matriz Extracelular/metabolismo , Humanos , Hidrogeles/farmacología , Hidrogeles/uso terapéutico , Masculino , Ratones , Organoides/metabolismo , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Neoplasias de la Próstata Resistentes a la Castración/metabolismo , Neoplasias de la Próstata Resistentes a la Castración/patología , Receptores de Dopamina D2/genética , Receptores de Dopamina D2/uso terapéutico
12.
Dev Cell ; 10(6): 759-70, 2006 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-16740478

RESUMEN

The molecular mechanisms by which liver genes are differentially expressed along a portocentral axis, allowing for metabolic zonation, are poorly understood. We provide here compelling evidence that the Wnt/beta-catenin pathway plays a key role in liver zonation. First, we show the complementary localization of activated beta-catenin in the perivenous area and the negative regulator Apc in periportal hepatocytes. We then analyzed the immediate consequences of either a liver-inducible Apc disruption or a blockade of Wnt signaling after infection with an adenovirus encoding Dkk1, and we show that Wnt/beta-catenin signaling inversely controls the perivenous and periportal genetic programs. Finally, we show that genes involved in the periportal urea cycle and the perivenous glutamine synthesis systems are critical targets of beta-catenin signaling, and that perturbations to ammonia metabolism are likely responsible for the death of mice with liver-targeted Apc loss. From our results, we propose that Apc is the liver "zonation-keeper" gene.


Asunto(s)
Proteína de la Poliposis Adenomatosa del Colon/genética , Genes APC , Genes Supresores de Tumor , Hígado/metabolismo , Adenoviridae/genética , Amoníaco/metabolismo , Animales , Regulación de la Expresión Génica , Vectores Genéticos , Hepatocitos/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Hígado/citología , Ratones , Ratones Noqueados , Ratones Transgénicos , Modelos Biológicos , Nitrógeno/metabolismo , Transducción de Señal , Urea/metabolismo , Proteínas Wnt/fisiología , beta Catenina/fisiología
13.
Nat Commun ; 12(1): 3372, 2021 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-34099734

RESUMEN

Despite advances in the development of highly effective androgen receptor (AR)-directed therapies for the treatment of men with advanced prostate cancer, acquired resistance to such therapies frequently ensues. A significant subset of patients with resistant disease develop AR-negative tumors that lose their luminal identity and display neuroendocrine features (neuroendocrine prostate cancer (NEPC)). The cellular heterogeneity and the molecular evolution during the progression from AR-positive adenocarcinoma to AR-negative NEPC has yet to be characterized. Utilizing a new genetically engineered mouse model, we have characterized the synergy between Rb1 loss and MYCN (encodes N-Myc) overexpression which results in the formation of AR-negative, poorly differentiated tumors with high metastatic potential. Single-cell-based approaches revealed striking temporal changes to the transcriptome and chromatin accessibility which have identified the emergence of distinct cell populations, marked by differential expression of Ascl1 and Pou2f3, during the transition to NEPC. Moreover, global DNA methylation and the N-Myc cistrome are redirected following Rb1 loss. Altogether, our data provide insight into the progression of prostate adenocarcinoma to NEPC.


Asunto(s)
Adenocarcinoma/genética , Carcinoma Neuroendocrino/genética , Regulación Neoplásica de la Expresión Génica , Próstata/metabolismo , Neoplasias de la Próstata/genética , Receptores Androgénicos/genética , Adenocarcinoma/metabolismo , Animales , Carcinoma Neuroendocrino/metabolismo , Línea Celular Tumoral , Progresión de la Enfermedad , Humanos , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Proteína Proto-Oncogénica N-Myc/genética , Proteína Proto-Oncogénica N-Myc/metabolismo , Técnicas de Cultivo de Órganos/métodos , Pronóstico , Próstata/patología , Neoplasias de la Próstata/metabolismo , Receptores Androgénicos/metabolismo , Proteína de Retinoblastoma/genética , Proteína de Retinoblastoma/metabolismo
14.
Cancer Res ; 81(18): 4736-4750, 2021 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-34312180

RESUMEN

Neuroendocrine (NE) differentiation in metastatic castration-resistant prostate cancer (mCRPC) is an increasingly common clinical feature arising from cellular plasticity. We recently characterized two mCRPC phenotypes with NE features: androgen receptor (AR)-positive NE-positive amphicrine prostate cancer (AMPC) and AR-negative small cell or neuroendocrine prostate cancer (SCNPC). Here, we interrogated the regulation of RE1-silencing transcription factor (REST), a transcriptional repressor of neuronal genes, and elucidated molecular programs driving AMPC and SCNPC biology. Analysis of prostate cancer cell lines, mCRPC specimens, and LuCaP patient-derived xenograft models detected alternative splicing of REST to REST4 and attenuated REST repressor activity in AMPC and SCNPC. The REST locus was also hypermethylated and REST expression was reduced in SCNPC. While serine/arginine repetitive matrix protein 4 (SRRM4) was previously implicated in alternative splicing of REST in mCRPC, we detected SRRM3 expression in REST4-positive, SRRM4-negative AMPC, and SCNPC. In CRPC cell lines, SRRM3 induced alternative splicing of REST to REST4 and exacerbated the expression of REST-repressed genes. Furthermore, SRRM3 and SRRM4 expression defined molecular subsets of AMPC and SCNPC across species and tumor types. Two AMPC phenotypes and three SCNPC phenotypes were characterized, denoted either by REST attenuation and ASCL1 activity or by progressive activation of neuronal transcription factor programs, respectively. These results nominate SRRM3 as the principal REST splicing factor expressed in early NE differentiation and provide a framework to molecularly classify diverse NE phenotypes in mCRPC. SIGNIFICANCE: This study identifies SRRM3 as a key inducer of cellular plasticity in prostate cancer with neuroendocrine features and delineates distinct neuroendocrine phenotypes to inform therapeutic development and precision medicine applications.


Asunto(s)
Empalme Alternativo , Carcinoma Neuroendocrino/genética , Carcinoma Neuroendocrino/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neoplasias de la Próstata Resistentes a la Castración/genética , Neoplasias de la Próstata Resistentes a la Castración/metabolismo , Proteínas/metabolismo , Biomarcadores de Tumor , Carcinoma Neuroendocrino/patología , Línea Celular Tumoral , Expresión Génica Ectópica , Regulación Neoplásica de la Expresión Génica , Humanos , Inmunohistoquímica , Masculino , Proteínas del Tejido Nervioso/genética , Neoplasias de la Próstata Resistentes a la Castración/patología , Proteínas/genética , Factores de Empalme de ARN/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo
15.
NPJ Precis Oncol ; 5(1): 44, 2021 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-34040147

RESUMEN

The epichaperome is a new cancer target composed of hyperconnected networks of chaperome members that facilitate cell survival. Cancers with an altered chaperone configuration may be susceptible to epichaperome inhibitors. We developed a flow cytometry-based assay for evaluation and monitoring of epichaperome abundance at the single cell level, with the goal of prospectively identifying patients likely to respond to epichaperome inhibitors, to measure target engagement, and dependency during treatment. As proof of principle, we describe a patient with an unclassified myeloproliferative neoplasm harboring a novel PML-SYK fusion, who progressed to acute myeloid leukemia despite chemotherapy and allogeneic stem cell transplant. The leukemia was identified as having high epichaperome abundance. We obtained compassionate access to an investigational epichaperome inhibitor, PU-H71. After 16 doses, the patient achieved durable complete remission. These encouraging results suggest that further investigation of epichaperome inhibitors in patients with abundant baseline epichaperome levels is warranted.

16.
Genes Chromosomes Cancer ; 48(9): 816-27, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19530245

RESUMEN

Based on characterization of both genomic and expression status of WT1 and CTNNB1 (beta-catenin) in a series of 60 Wilms tumor samples, combined with genome-wide expression profiling of these tumors, normal mature and fetal kidney controls, we show that WT1/beta-catenin expression was a better classifier than WT1/CTNNB1 mutations. We present molecular data supporting that the WNT pathway is involved in both tumor classes, with and without WT1/beta-catenin alterations. In the tumor class with WT1/beta-catenin alterations, we identified overexpression of 14 previously unreported WNT target genes, including TWIST1. We show that the TWIST1 protein was specifically expressed in these tumors, where staining was restricted to the stromal, nuclear beta-catenin positive, component. By comparing the state of the WNT pathway in tumors without WT1/beta-catenin alterations and fetal kidneys we provide evidence that suggests that these tumors have a heightened level of pathway activation. We characterized mutations of the WNT pathway regulator gene WTX in 16% of this tumor class. Moreover, genome-transcriptome correlation analysis allowed us to identify three other WNT pathway regulator genes that could participate in the activation of the WNT pathway: BCL9 (1p36.2), CTNNBIP1 (1p36.2), and CBY1 (22q13.1). These genes thus represent new potential important actors in WT tumorigenesis.


Asunto(s)
Perfilación de la Expresión Génica/métodos , Proteínas WT1/metabolismo , Tumor de Wilms/metabolismo , beta Catenina/metabolismo , Análisis por Conglomerados , Análisis Mutacional de ADN , Femenino , Humanos , Inmunohistoquímica , Quinasas Janus/genética , Quinasas Janus/metabolismo , Masculino , Mutación , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteómica , Reproducibilidad de los Resultados , Factor de Transcripción STAT3/genética , Factor de Transcripción STAT3/metabolismo , Transducción de Señal , Proteína 1 Relacionada con Twist/genética , Proteína 1 Relacionada con Twist/metabolismo , Proteínas WT1/genética , Tumor de Wilms/genética , Proteínas Wnt/genética , Proteínas Wnt/metabolismo , beta Catenina/genética
17.
Genes Chromosomes Cancer ; 48(4): 366-80, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19156837

RESUMEN

Emerging molecular and clinical data suggest that ETS fusion prostate cancer represents a distinct molecular subclass, driven most commonly by a hormonally regulated promoter and characterized by an aggressive natural history. The study of the genomic landscape of prostate cancer in the light of ETS fusion events is required to understand the foundation of this molecularly and clinically distinct subtype. We performed genome-wide profiling of 49 primary prostate cancers and identified 20 recurrent chromosomal copy number aberrations, mainly occurring as genomic losses. Co-occurring events included losses at 19q13.32 and 1p22.1. We discovered three genomic events associated with ERG rearranged prostate cancer, affecting 6q, 7q, and 16q. 6q loss in nonrearranged prostate cancer is accompanied by gene expression deregulation in an independent dataset and by protein deregulation of MYO6. To analyze copy number alterations within the ETS genes, we performed a comprehensive analysis of all 27 ETS genes and of the 3 Mbp genomic area between ERG and TMPRSS2 (21q) with an unprecedented resolution (30 bp). We demonstrate that high-resolution tiling arrays can be used to pin-point breakpoints leading to fusion events. This study provides further support to define a distinct molecular subtype of prostate cancer based on the presence of ETS gene rearrangements.


Asunto(s)
Aberraciones Cromosómicas , Reordenamiento Génico , Neoplasias de la Próstata/genética , Proteínas Proto-Oncogénicas c-ets/genética , Transactivadores/genética , Línea Celular Tumoral , Mapeo Cromosómico , Regulación Neoplásica de la Expresión Génica , Humanos , Hibridación Fluorescente in Situ , Masculino , Análisis de Secuencia por Matrices de Oligonucleótidos , Regulador Transcripcional ERG
18.
Hepatology ; 47(1): 247-58, 2008 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-18038450

RESUMEN

UNLABELLED: During hepatogenesis, after the liver has budded out of the endoderm, the hepatoblasts quickly expand and differentiate into either hepatocytes or biliary cells, the latter of which arise only within the ductal plate surrounding the portal vein. Because the Wnt/beta-catenin pathway is involved in liver homeostasis and regeneration and in liver carcinogenesis, we investigated here a role for Wnt/beta-catenin signaling in the embryonic liver. A cyclization recombination (Cre)/locus of X-over P1 (loxP) strategy was chosen to perform adenomatous polyposis coli (Apc) invalidation in order to activate ectopic beta-catenin signaling in hepatoblasts; an appropriate transgenic model expressing the Cre recombinase was used. Phenotypic and immunolocalization studies, together with messenger RNA analyses, by microarray and real-time quantitative polymerase chain reaction approaches were performed on this model during normal hepatogenesis. The loss of Apc allowed beta-catenin activation in the hepatoblasts after the formation of the liver bud and led to embryonic lethality. In this model, the liver became hypoplastic, and hepatocyte differentiation failed, whereas beta-catenin-activated ducts developed and gave rise to fully differentiated bile ducts when transplanted into adult recipient livers. Microarray analyses suggested that beta-catenin plays a role in repressing the hepatocyte genetic program and remodeling the ductal plate. According to these data, in normal embryonic livers, beta-catenin was transiently activated in the nascent bile ducts. CONCLUSION: We demonstrated a key role for the Wnt/beta-catenin pathway in liver embryonic growth and in controlling the fate of hepatoblasts, preventing them from differentiating toward the hepatocyte lineage, and guiding them to biliary ductal morphogenesis.


Asunto(s)
Hígado/embriología , Proteínas Wnt/metabolismo , beta Catenina/metabolismo , Proteína de la Poliposis Adenomatosa del Colon/genética , Proteína de la Poliposis Adenomatosa del Colon/metabolismo , Animales , Diferenciación Celular/fisiología , Pérdida del Embrión/fisiopatología , Hepatocitos/citología , Ratones , Morfogénesis/fisiología , Fenotipo , Transducción de Señal/fisiología
19.
Neoplasia ; 21(4): 389-400, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30901730

RESUMEN

Approximately 50% of prostate cancers harbor the TMPRSS2:ERG fusion, resulting in elevated expression of the ERG transcription factor. Despite the identification of this subclass of prostate cancers, no personalized therapeutic strategies have achieved clinical implementation. Kinases are attractive therapeutic targets as signaling networks are commonly perturbed in cancers. The impact of elevated ERG expression on kinase signaling networks in prostate cancer has not been investigated. Resolution of this issue may identify novel therapeutic approaches for ERG-positive prostate cancers. In this study, we used quantitative mass spectrometry-based kinomic profiling to identify ERG-mediated changes to cellular signaling networks. We identified 76 kinases that were differentially expressed and/or phosphorylated in DU145 cells engineered to express ERG. In particular, the Traf2 and Nck-interacting kinase (TNIK) was markedly upregulated and phosphorylated on multiple sites upon ERG overexpression. Importantly, TNIK has not previously been implicated in prostate cancer. To validate the clinical relevance of these findings, we characterized expression of TNIK and TNIK phosphorylated at serine 764 (pS764) in a localized prostate cancer patient cohort and showed that nuclear enrichment of TNIK (pS764) was significantly positively correlated with ERG expression. Moreover, TNIK protein levels were dependent upon ERG expression in VCaP cells and primary cells established from a prostate cancer patient-derived xenograft. Furthermore, reduction of TNIK expression and activity by silencing TNIK expression or using the TNIK inhibitor NCB-0846 reduced cell viability, colony formation and anchorage independent growth. Therefore, TNIK represents a novel and actionable therapeutic target for ERG-positive prostate cancers that could be exploited to develop new treatments for these patients.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Neoplasias de la Próstata/genética , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Serina-Treonina Quinasas/genética , Regulador Transcripcional ERG/metabolismo , Biomarcadores de Tumor , Línea Celular Tumoral , Perfilación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Quinasas del Centro Germinal , Humanos , Masculino , Terapia Molecular Dirigida , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Interferencia de ARN , ARN Interferente Pequeño/genética
20.
J Clin Invest ; 129(9): 3924-3940, 2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-31260412

RESUMEN

Despite recent therapeutic advances, prostate cancer remains a leading cause of cancer-related death. A subset of castration resistant prostate cancers become androgen receptor (AR) signaling-independent and develop neuroendocrine prostate cancer (NEPC) features through lineage plasticity. These NEPC tumors, associated with aggressive disease and poor prognosis, are driven, in part, by aberrant expression of N-Myc, through mechanisms that remain unclear. Integrative analysis of the N-Myc transcriptome, cistrome and interactome using in vivo, in vitro and ex vivo models (including patient-derived organoids) identified a lineage switch towards a neural identity associated with epigenetic reprogramming. N-Myc and known AR-co-factors (e.g., FOXA1 and HOXB13) overlapped, independently of AR, at genomic loci implicated in neural lineage specification. Moreover, histone marks specifically associated with lineage-defining genes were reprogrammed by N-Myc. We also demonstrated that the N-Myc-induced molecular program accurately classifies our cohort of patients with advanced prostate cancer. Finally, we revealed the potential for EZH2 inhibition to reverse the N-Myc-induced suppression of epithelial lineage genes. Altogether, our data provide insights on how N-Myc regulates lineage plasticity and epigenetic reprogramming associated with lineage-specification. The N-Myc signature we defined could also help predict the evolution of prostate cancer and thus better guide the choice of future therapeutic strategies.


Asunto(s)
Linaje de la Célula , Epigénesis Genética , Proteína Proto-Oncogénica N-Myc/metabolismo , Neoplasias de la Próstata Resistentes a la Castración/metabolismo , Neoplasias de la Próstata/metabolismo , Animales , Línea Celular Tumoral , Plasticidad de la Célula , ADN/química , Regulación Neoplásica de la Expresión Génica , Humanos , Masculino , Ratones , Ratones Transgénicos , Proteína Proto-Oncogénica N-Myc/genética , Trasplante de Neoplasias , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/genética , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Neoplasias de la Próstata Resistentes a la Castración/genética , Receptores Androgénicos/genética , Transducción de Señal , Transcriptoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA