Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Lipid Res ; 64(8): 100392, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37211250

RESUMEN

Bile acids are detergents derived from cholesterol that function to solubilize dietary lipids, remove cholesterol from the body, and act as nutrient signaling molecules in numerous tissues with functions in the liver and gut being the best understood. Studies in the early 20th century established the structures of bile acids, and by mid-century, the application of gnotobiology to bile acids allowed differentiation of host-derived "primary" bile acids from "secondary" bile acids generated by host-associated microbiota. In 1960, radiolabeling studies in rodent models led to determination of the stereochemistry of the bile acid 7-dehydration reaction. A two-step mechanism was proposed, which we have termed the Samuelsson-Bergström model, to explain the formation of deoxycholic acid. Subsequent studies with humans, rodents, and cell extracts of Clostridium scindens VPI 12708 led to the realization that bile acid 7-dehydroxylation is a result of a multi-step, bifurcating pathway that we have named the Hylemon-Björkhem pathway. Due to the importance of hydrophobic secondary bile acids and the increasing measurement of microbial bai genes encoding the enzymes that produce them in stool metagenome studies, it is important to understand their origin.


Asunto(s)
Ácidos y Sales Biliares , Clostridium , Humanos , Ácidos y Sales Biliares/metabolismo , Heces
2.
J Biol Chem ; 298(5): 101896, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35378131

RESUMEN

Ruminococcus bromii is a keystone species in the human gut that has the rare ability to degrade dietary resistant starch (RS). This bacterium secretes a suite of starch-active proteins that work together within larger complexes called amylosomes that allow R. bromii to bind and degrade RS. Starch adherence system protein 20 (Sas20) is one of the more abundant proteins assembled within amylosomes, but little could be predicted about its molecular features based on amino acid sequence. Here, we performed a structure-function analysis of Sas20 and determined that it features two discrete starch-binding domains separated by a flexible linker. We show that Sas20 domain 1 contains an N-terminal ß-sandwich followed by a cluster of α-helices, and the nonreducing end of maltooligosaccharides can be captured between these structural features. Furthermore, the crystal structure of a close homolog of Sas20 domain 2 revealed a unique bilobed starch-binding groove that targets the helical α1,4-linked glycan chains found in amorphous regions of amylopectin and crystalline regions of amylose. Affinity PAGE and isothermal titration calorimetry demonstrated that both domains bind maltoheptaose and soluble starch with relatively high affinity (Kd ≤ 20 µM) but exhibit limited or no binding to cyclodextrins. Finally, small-angle X-ray scattering analysis of the individual and combined domains support that these structures are highly flexible, which may allow the protein to adopt conformations that enhance its starch-targeting efficiency. Taken together, we conclude that Sas20 binds distinct features within the starch granule, facilitating the ability of R. bromii to hydrolyze dietary RS.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteínas Portadoras , Ruminococcus , Amilopectina/metabolismo , Amilosa/metabolismo , Proteínas Portadoras/metabolismo , Carbohidratos de la Dieta , Humanos , Almidón/metabolismo
3.
Am J Physiol Gastrointest Liver Physiol ; 323(3): G205-G218, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-35819158

RESUMEN

Feeding modes influence the gut microbiome, immune system, and intestinal barrier homeostasis in neonates; how feeding modes impact susceptibility to neonatal gastrointestinal (GI) diseases is still uncertain. Here, we investigated the impact of dam feeding (DF) and formula feeding (FF) on features of the gut microbiome and physiological inflammation during the first 2 days of postnatal development and on the susceptibility to intestinal injury related to the inflammatory state in neonatal mouse pups. 16S rRNA sequencing data revealed microbiome changes, lower α-diversity, and a distinct pattern of ß-diversity including expansion of f_Enterobacteriaceae and f_Enterococcaceae in the ileum of FF pups compared with DF pups by postnatal day (P)2. Together with gut dysbiosis, the FF cohort also had greater ileal mucosa physiological inflammatory activity compared with DF pups by P2 but maintained normal histological features. Interestingly, FF but not DF mouse pups developed necrotizing enterocolitis (NEC)-like intestinal injury within 24 h after anti-CD3 mAb treatment, suggesting that FF influences the susceptibility to intestinal injury in neonates. We further found that NEC-like incidence in anti-CD3 mAb-treated FF neonatal pups was attenuated by antibiotic treatment. Collectively, our data suggest that FF predisposes mouse pups to anti-CD3 mAb-induced intestinal injury due to abnormal f_Enterobacteriaceae and f_Enterococcaceae colonization. These findings advance our understanding of FF-associated microbial colonization and intestinal inflammation, which may help inform the development of new therapeutic approaches to GI diseases like NEC in infants.NEW & NOTEWORTHY This report shows that a feeding mode profoundly affects gut colonization in neonatal mice. Furthermore, our results demonstrate that formula feeding predisposes mouse pups to anti-CD3 mAb-induced necrotizing enterocolitis (NEC)-like intestinal injury upon inadequate microbial colonization. The study suggests the role of the combined presence of formula feeding-associated dysbiosis and mucosal inflammation in the pathogenesis of NEC and provides a new mouse model to study this disease.


Asunto(s)
Enterocolitis Necrotizante , Microbioma Gastrointestinal , Animales , Animales Recién Nacidos , Disbiosis , Enterocolitis Necrotizante/tratamiento farmacológico , Humanos , Inflamación/patología , Mucosa Intestinal/patología , Ratones , ARN Ribosómico 16S
4.
BMC Microbiol ; 21(1): 24, 2021 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-33430766

RESUMEN

BACKGROUND: Berberine (BBR) is a plant-based nutraceutical that has been used for millennia to treat diarrheal infections and in contemporary medicine to improve patient lipid profiles. Reduction in lipids, particularly cholesterol, is achieved partly through up-regulation of bile acid synthesis and excretion into the gastrointestinal tract (GI). The efficacy of BBR is also thought to be dependent on structural and functional alterations of the gut microbiome. However, knowledge of the effects of BBR on gut microbiome communities is currently lacking. Distinguishing indirect effects of BBR on bacteria through altered bile acid profiles is particularly important in understanding how dietary nutraceuticals alter the microbiome. RESULTS: Germfree mice were colonized with a defined minimal gut bacterial consortium capable of functional bile acid metabolism (Bacteroides vulgatus, Bacteroides uniformis, Parabacteroides distasonis, Bilophila wadsworthia, Clostridium hylemonae, Clostridium hiranonis, Blautia producta; B4PC2). Multi-omics (bile acid metabolomics, 16S rDNA sequencing, cecal metatranscriptomics) were performed in order to provide a simple in vivo model from which to identify network-based correlations between bile acids and bacterial transcripts in the presence and absence of dietary BBR. Significant alterations in network topology and connectivity in function were observed, despite similarity in gut microbial alpha diversity (P = 0.30) and beta-diversity (P = 0.123) between control and BBR treatment. BBR increased cecal bile acid concentrations, (P < 0.05), most notably deoxycholic acid (DCA) (P < 0.001). Overall, analysis of transcriptomes and correlation networks indicates both bacterial species-specific responses to BBR, as well as functional commonalities among species, such as up-regulation of Na+/H+ antiporter, cell wall synthesis/repair, carbohydrate metabolism and amino acid metabolism. Bile acid concentrations in the GI tract increased significantly during BBR treatment and developed extensive correlation networks with expressed genes in the B4PC2 community. CONCLUSIONS: This work has important implications for interpreting the effects of BBR on structure and function of the complex gut microbiome, which may lead to targeted pharmaceutical interventions aimed to achieve the positive physiological effects previously observed with BBR supplementation.


Asunto(s)
Bacterias/clasificación , Proteínas Bacterianas/genética , Berberina/administración & dosificación , Ácidos y Sales Biliares/metabolismo , ARN Ribosómico 16S/genética , Animales , Bacterias/efectos de los fármacos , Bacterias/genética , Bacterias/aislamiento & purificación , Berberina/farmacología , ADN Bacteriano/genética , ADN Ribosómico/genética , Femenino , Microbioma Gastrointestinal/efectos de los fármacos , Perfilación de la Expresión Génica , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Masculino , Metabolómica , Ratones , Análisis de Secuencia de ARN , Especificidad de la Especie
5.
BMC Gastroenterol ; 21(1): 62, 2021 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-33573601

RESUMEN

BACKGROUND: Cholecystectomy (XGB) is the most common abdominal surgery performed in the United States and is associated with an increased post-surgery incidence of metabolic and gastrointestinal (GI) diseases. Two main risk factors for XGB are sex (female) and age (40-50 yr), corresponding with onset of menopause. Post-menopausal estrogen loss alone facilitates metabolic dysfunction, but the effects of XGB on metabolic and GI health have yet to be investigated in this population. Study objectives were to (1) identify possible short-term effects of XGB and (2) develop a novel murine model of XGB in human menopause via subsequent ovariectomy (OVX) and assess longitudinal effects of OVX on metabolism, GI physiology, and GI microbiota in XGB mice. METHODS: Female C57BL/6 mice were utilized in two parallel studies (S1&S2). In S1, XGB mice were compared to a non-XGB baseline group after six wk. In S2, mice were XGB at wk0, either sham (SHM) or OVX at wk6, and sacrificed at wk12, wk18, and wk24. Body composition assessment and fresh fecal collections were conducted periodically. Serum and tissues were collected at sacrifice for metabolic and GI health endpoints. RESULTS: Compared to baseline, XGB increased hepatic CYP7A1 and decreased HMGCR relative expression, but did not influence BW, fat mass, or hepatic triglycerides after six wk. In S2, XGB/OVX mice had greater BW and fat mass than XGB/SHM. Cecal microbiota alpha diversity metrics were lower in XGB/OVX mice at wk24 compared the XGB/SHM. No consistent longitudinal patterns in fasting serum lipids, fecal microbial diversity, and GI gene expression were observed between S2 groups. CONCLUSIONS: In addition to developing a novel, clinically-representative model of XGB and subsequent OVX, our results suggest that OVX resulted in the expected phenotype to some extent, but that XGB may modify or mask some responses and requires further investigation.


Asunto(s)
Colecistectomía , Animales , Femenino , Humanos , Ratones , Ratones Endogámicos C57BL , Fenotipo , Proyectos Piloto , Triglicéridos
6.
J Biol Chem ; 294(32): 12040-12053, 2019 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-31209107

RESUMEN

Anaerobic bacteria inhabiting the human gastrointestinal tract have evolved various enzymes that modify host-derived steroids. The bacterial steroid-17,20-desmolase pathway cleaves the cortisol side chain, forming pro-androgens predicted to impact host physiology. Bacterial 20ß-hydroxysteroid dehydrogenase (20ß-HSDH) regulates cortisol side-chain cleavage by reducing the C-20 carboxyl group on cortisol, yielding 20ß-dihydrocortisol. Recently, the gene encoding 20ß-HSDH in Butyricicoccus desmolans ATCC 43058 was reported, and a nonredundant protein search yielded a candidate 20ß-HSDH gene in Bifidobacterium adolescentis strain L2-32. B. adolescentis 20ß-HSDH could regulate cortisol side-chain cleavage by limiting pro-androgen formation in bacteria such as Clostridium scindens and 21-dehydroxylation by Eggerthella lenta Here, the putative B. adolescentis 20ß-HSDH was cloned, overexpressed, and purified. 20ß-HSDH activity was confirmed through whole-cell and pure enzymatic assays, and it is specific for cortisol. Next, we solved the structures of recombinant 20ß-HSDH in both the apo- and holo-forms at 2.0-2.2 Å resolutions, revealing close overlap except for rearrangements near the active site. Interestingly, the structures contain a large, flexible N-terminal region that was investigated by gel-filtration chromatography and CD spectroscopy. This extended N terminus is important for protein stability because deletions of varying lengths caused structural changes and reduced enzymatic activity. A nonconserved extended N terminus was also observed in several short-chain dehydrogenase/reductase family members. B. adolescentis strains capable of 20ß-HSDH activity could alter glucocorticoid metabolism in the gut and thereby serve as potential probiotics for the management of androgen-dependent diseases.


Asunto(s)
Proteínas Bacterianas/metabolismo , Bifidobacterium adolescentis/enzimología , Hidroxiesteroide Deshidrogenasas/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Cristalografía por Rayos X , Hidrocortisona/química , Hidrocortisona/metabolismo , Hidroxiesteroide Deshidrogenasas/química , Hidroxiesteroide Deshidrogenasas/genética , Cinética , Mutagénesis Sitio-Dirigida , NAD/química , NAD/metabolismo , Unión Proteica , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Especificidad por Sustrato
7.
Appl Environ Microbiol ; 86(16)2020 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-32503912

RESUMEN

Vertebrates synthesize a diverse set of steroids and bile acids that undergo bacterial biotransformations. The endocrine literature has principally focused on the biochemistry and molecular biology of host synthesis and tissue-specific metabolism of steroids. Host-associated microbiota possess a coevolved set of steroid and bile acid modifying enzymes that match the majority of host peripheral biotransformations in addition to unique capabilities. The set of host-associated microbial genes encoding enzymes involved in steroid transformations is known as the sterolbiome. This review focuses on the current knowledge of the sterolbiome as well as its importance in medicine and agriculture.


Asunto(s)
Ácidos y Sales Biliares/metabolismo , Microbioma Gastrointestinal/genética , Esteroles/metabolismo , Vertebrados/microbiología , Animales , Vertebrados/metabolismo
8.
Appl Environ Microbiol ; 85(7)2019 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-30737348

RESUMEN

In the human gut, Clostridium scindens ATCC 35704 is a predominant bacterium and one of the major bile acid 7α-dehydroxylating anaerobes. While this organism is well-studied relative to bile acid metabolism, little is known about the basic nutrition and physiology of C. scindens ATCC 35704. To determine the amino acid and vitamin requirements of C. scindens, the leave-one-out (one amino acid group or vitamin) technique was used to eliminate the nonessential amino acids and vitamins. With this approach, the amino acid tryptophan and three vitamins (riboflavin, pantothenate, and pyridoxal) were found to be required for the growth of C. scindens In the newly developed defined medium, C. scindens fermented glucose mainly to ethanol, acetate, formate, and H2. The genome of C. scindens ATCC 35704 was completed through PacBio sequencing. Pathway analysis of the genome sequence coupled with transcriptome sequencing (RNA-Seq) under defined culture conditions revealed consistency with the growth requirements and end products of glucose metabolism. Induction with bile acids revealed complex and differential responses to cholic acid and deoxycholic acid, including the expression of potentially novel bile acid-inducible genes involved in cholic acid metabolism. Responses to toxic deoxycholic acid included expression of genes predicted to be involved in DNA repair, oxidative stress, cell wall maintenance/metabolism, chaperone synthesis, and downregulation of one-third of the genome. These analyses provide valuable insight into the overall biology of C. scindens which may be important in treatment of disease associated with increased colonic secondary bile acids.IMPORTANCEC. scindens is one of a few identified gut bacterial species capable of converting host cholic acid into disease-associated secondary bile acids such as deoxycholic acid. The current work represents an important advance in understanding the nutritional requirements and response to bile acids of the medically important human gut bacterium, C. scindens ATCC 35704. A defined medium has been developed which will further the understanding of bile acid metabolism in the context of growth substrates, cofactors, and other metabolites in the vertebrate gut. Analysis of the complete genome supports the nutritional requirements reported here. Genome-wide transcriptomic analysis of gene expression in the presence of cholic acid and deoxycholic acid provides a unique insight into the complex response of C. scindens ATCC 35704 to primary and secondary bile acids. Also revealed are genes with the potential to function in bile acid transport and metabolism.


Asunto(s)
Ácidos y Sales Biliares/metabolismo , Clostridiales/genética , Clostridiales/metabolismo , Microbioma Gastrointestinal , Necesidades Nutricionales , Secuenciación Completa del Genoma , Aminoácidos/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Metabolismo de los Hidratos de Carbono , Ácido Cólico/metabolismo , Clostridiales/crecimiento & desarrollo , Medios de Cultivo , Reparación del ADN , ADN Bacteriano/genética , ADN Bacteriano/aislamiento & purificación , Ácido Desoxicólico/metabolismo , Fermentación , Humanos , Hidroxilación , Análisis de Secuencia de ARN
9.
J Lipid Res ; 59(6): 1005-1014, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29572237

RESUMEN

Clostridium scindens is a gut microbe capable of removing the side-chain of cortisol, forming 11ß-hydro-xyandrostenedione. A cortisol-inducible operon (desABCD) was previously identified in C. scindens ATCC 35704 by RNA-Seq. The desC gene was shown to encode a cortisol 20α-hydroxysteroid dehydrogenase (20α-HSDH). The desD encodes a protein annotated as a member of the major facilitator family, predicted to function as a cortisol transporter. The desA and desB genes are annotated as N-terminal and C-terminal transketolases, respectively. We hypothesized that the DesAB forms a complex and has steroid-17,20-desmolase activity. We cloned the desA and desB genes from C. scindens ATCC 35704 in pETDuet for overexpression in Escherichia coli The purified recombinant DesAB was determined to be a 142 ± 5.4 kDa heterotetramer. We developed an enzyme-linked continuous spectrophotometric assay to quantify steroid-17,20-desmolase. This was achieved by coupling DesAB-dependent formation of 11ß-hydroxyandrostenedione with the NADPH-dependent reduction of the steroid 17-keto group by a recombinant 17ß-HSDH from the filamentous fungus, Cochliobolus lunatus The pH optimum for the coupled assay was 7.0 and kinetic constants using cortisol as substrate were Km of 4.96 ± 0.57 µM and kcat of 0.87 ± 0.076 min-1 Substrate-specificity studies revealed that rDesAB recognized substrates regardless of 11ß-hydroxylation, but had an absolute requirement for 17,21-dihydroxy 20-ketosteroids.


Asunto(s)
Clostridium/enzimología , Clostridium/genética , Esteroide 17-alfa-Hidroxilasa/genética , Esteroide 17-alfa-Hidroxilasa/metabolismo , Clonación Molecular , Cinética , Especificidad por Sustrato
10.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1863(3): 276-283, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29217478

RESUMEN

BACKGROUND: The multi-step bile acid 7α-dehydroxylating pathway by which a few species of Clostridium convert host primary bile acids to toxic secondary bile acids is of great importance to gut microbiome structure and host physiology and disease. While genes in the oxidative arm of the 7α-dehydroxylating pathway have been identified, genes in the reductive arm of the pathway are still obscure. METHODS: We identified a candidate flavoprotein-encoding gene predicted to metabolize steroids. This gene was cloned and overexpressed in E. coli and affinity purified. Reaction substrate and product were separated by thin layer chromatography and identified by liquid chromatograph mass spectrometry-ion trap-time of flight (LCMS-IT-TOF). Phylogenetic analysis of the amino acid sequence was performed. RESULTS: We report the identification of a gene encoding a flavoprotein (EDS08212.1) involved in secondary bile acid metabolism by Clostridium scindens ATCC 35704 and related species. Purified rEDS08212.1 catalyzed formation of a product from 3-dehydro-deoxycholic acid that UPLC-IT-TOF-MS analysis suggests loses 4amu. Our phylogeny identified this gene in other bile acid 7α-dehydroxylating bacteria. CONCLUSIONS: These data suggest formation of a product, 3-dehydro-4,6-deoxycholic acid, a recognized intermediate in the reductive arm of bile acid 7α-dehydroxylation pathway and the first report of a gene in the reductive arm of the bile acid 7α-dehydroxylating pathway.


Asunto(s)
Proteínas Bacterianas , Ácidos y Sales Biliares/metabolismo , Clostridium , Flavoproteínas , Proteínas Bacterianas/biosíntesis , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/aislamiento & purificación , Clostridium/genética , Clostridium/metabolismo , Flavoproteínas/biosíntesis , Flavoproteínas/química , Flavoproteínas/genética , Flavoproteínas/aislamiento & purificación , Humanos , Intestinos/microbiología
11.
Appl Environ Microbiol ; 84(7)2018 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-29330189

RESUMEN

Gut metagenomic sequences provide a rich source of microbial genes, the majority of which are annotated by homology or unknown. Genes and gene pathways that encode enzymes catalyzing biotransformation of host bile acids are important to identify in gut metagenomic sequences due to the importance of bile acids in gut microbiome structure and host physiology. Hydroxysteroid dehydrogenases (HSDHs) are pyridine nucleotide-dependent enzymes with stereospecificity and regiospecificity for bile acid and steroid hydroxyl groups. HSDHs have been identified in several protein families, including medium-chain and short-chain dehydrogenase/reductase families as well as the aldo-keto reductase family. These protein families are large and contain diverse functionalities, making prediction of HSDH-encoding genes difficult and necessitating biochemical characterization. We located a gene cluster in Eggerthella sp. CAG:298 predicted to encode three HSDHs (CDD59473, CDD59474, and CDD59475) and synthesized the genes for heterologous expression in Escherichia coli We then screened bile acid substrates against the purified recombinant enzymes. CDD59475 is a novel 12α-HSDH, and we determined that CDD59474 (3α-HSDH) and CDD59473 (3ß-HSDH) constitute novel enzymes in an iso-bile acid pathway. Phylogenetic analysis of these HSDHs with other gut bacterial HSDHs and closest homologues in the database revealed predictable clustering of HSDHs by function and identified several likely HSDH sequences from bacteria isolated or sequenced from diverse mammalian and avian gut samples.IMPORTANCE Bacterial HSDHs have the potential to significantly alter the physicochemical properties of bile acids, with implications for increased/decreased toxicity for gut bacteria and the host. The generation of oxo-bile acids is known to inhibit host enzymes involved in glucocorticoid metabolism and may alter signaling through nuclear receptors such as farnesoid X receptor and G-protein-coupled receptor TGR5. Biochemical or similar approaches are required to fill in many gaps in our ability to link a particular enzymatic function with a nucleic acid or amino acid sequence. In this regard, we have identified a novel 12α-HSDH and a novel set of genes encoding an iso-bile acid pathway (3α-HSDH and 3ß-HSDH) involved in epimerization and detoxification of harmful secondary bile acids.


Asunto(s)
Actinobacteria/genética , Microbioma Gastrointestinal/genética , Genes Bacterianos , Familia de Multigenes/genética , 3-alfa-Hidroxiesteroide Deshidrogenasa (B-Específica)/genética , 3-alfa-Hidroxiesteroide Deshidrogenasa (B-Específica)/metabolismo , Actinobacteria/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Humanos , Hidroxiesteroide Deshidrogenasas/genética , Hidroxiesteroide Deshidrogenasas/metabolismo , Metagenómica
12.
Appl Environ Microbiol ; 84(10)2018 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-29549099

RESUMEN

Bile acids are important cholesterol-derived nutrient signaling hormones, synthesized in the liver, that act as detergents to solubilize dietary lipids. Bile acid 7α-dehydroxylating gut bacteria generate the toxic bile acids deoxycholic acid and lithocholic acid from host bile acids. The ability of these bacteria to remove the 7-hydroxyl group is partially dependent on 7α-hydroxysteroid dehydrogenase (HSDH) activity, which reduces 7-oxo-bile acids generated by other gut bacteria. 3α-HSDH has an important enzymatic activity in the bile acid 7α-dehydroxylation pathway. 12α-HSDH activity has been reported for the low-activity bile acid 7α-dehydroxylating bacterium Clostridium leptum; however, this activity has not been reported for high-activity bile acid 7α-dehydroxylating bacteria, such as Clostridium scindens, Clostridium hylemonae, and Clostridium hiranonis Here, we demonstrate that these strains express bile acid 12α-HSDH. The recombinant enzymes were characterized from each species and shown to preferentially reduce 12-oxolithocholic acid to deoxycholic acid, with low activity against 12-oxochenodeoxycholic acid and reduced activity when bile acids were conjugated to taurine or glycine. Phylogenetic analysis suggests that 12α-HSDH is widespread among Firmicutes, Actinobacteria in the Coriobacteriaceae family, and human gut ArchaeaIMPORTANCE 12α-HSDH activity has been established in the medically important bile acid 7α-dehydroxylating bacteria C. scindens, C. hiranonis, and C. hylemonae Experiments with recombinant 12α-HSDHs from these strains are consistent with culture-based experiments that show a robust preference for 12-oxolithocholic acid over 12-oxochenodeoxycholic acid. Phylogenetic analysis identified novel members of the gut microbiome encoding 12α-HSDH. Future reengineering of 12α-HSDH enzymes to preferentially oxidize cholic acid may provide a means to industrially produce the therapeutic bile acid ursodeoxycholic acid. In addition, a cholic acid-specific 12α-HSDH expressed in the gut may be useful for the reduction in deoxycholic acid concentration, a bile acid implicated in cancers of the gastrointestinal (GI) tract.


Asunto(s)
Bacterias/enzimología , Proteínas Bacterianas/metabolismo , Ácidos y Sales Biliares/metabolismo , Microbioma Gastrointestinal , Tracto Gastrointestinal/microbiología , Hidroxiesteroide Deshidrogenasas/metabolismo , Cetoácidos/metabolismo , Secuencia de Aminoácidos , Bacterias/clasificación , Bacterias/aislamiento & purificación , Bacterias/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Ácidos y Sales Biliares/química , Tracto Gastrointestinal/metabolismo , Humanos , Hidroxilación , Hidroxiesteroide Deshidrogenasas/química , Hidroxiesteroide Deshidrogenasas/genética , Cetoácidos/química , Filogenia , Alineación de Secuencia
13.
Br J Nutr ; 120(6): 711-720, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30064535

RESUMEN

Because obesity is associated with many co-morbidities, including diabetes mellitus, this study evaluated the second-meal effect of a commercial prebiotic, inulin-type fructans, and the effects of the prebiotic on faecal microbiota, metabolites and bile acids (BA). Nine overweight beagles were used in a replicated 3×3 Latin square design to test a non-prebiotic control (cellulose) against a low (equivalent to 0·5 % diet) and high dose (equivalent to 1·0 % diet) of prebiotic over 14-d treatments. All dogs were fed the same diet twice daily, with treatments provided orally via gelatin capsules before meals. On days 13 or 14 of each period, fresh faecal samples were collected, dogs were fed at 08.00 hours and then challenged with 1 g/kg body weight of maltodextrin in place of the 16.00 hours meal. Repeated blood samples were analysed for glucose and hormone concentrations to determine postprandial incremental AUC (IAUC) data. Baseline glucose, insulin and active glucagon-like peptide-1 levels were similar between all groups (P>0·10). Glucose and insulin IAUC after glucose challenge appeared lower following the high dose, but did not reach statistical relevance. Prebiotic intervention resulted in an increase in relative abundance of some Firmicutes and a decrease in the relative abundance of some Proteobacteria. Individual and total faecal SCFA were significantly increased (P<0·05) following prebiotic supplementation. Total concentration of excreted faecal BA tended to increase in dogs fed the prebiotic (P=0·06). Our results indicate that higher doses of inulin-type prebiotics may serve as modulators of gut microbiota, metabolites and BA pool in overweight dogs.


Asunto(s)
Colon , Heces , Fructanos/farmacología , Microbioma Gastrointestinal/efectos de los fármacos , Inulina/farmacología , Obesidad , Prebióticos , Animales , Área Bajo la Curva , Ácidos y Sales Biliares/metabolismo , Glucemia/metabolismo , Colon/metabolismo , Colon/microbiología , Perros , Ácidos Grasos Volátiles/metabolismo , Heces/química , Heces/microbiología , Femenino , Firmicutes/crecimiento & desarrollo , Fructanos/uso terapéutico , Péptido 1 Similar al Glucagón/sangre , Insulina/sangre , Inulina/uso terapéutico , Obesidad/tratamiento farmacológico , Obesidad/metabolismo , Obesidad/microbiología , Obesidad/veterinaria , Periodo Posprandial , Proteobacteria/crecimiento & desarrollo
14.
J Lipid Res ; 58(5): 916-925, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28314858

RESUMEN

Members of the gastrointestinal microbiota are known to convert glucocorticoids to androstanes, which are subsequently converted to potent androgens by other members of the gut microbiota or host tissues. Butyricicoccus desmolans and Clostridium cadaveris have previously been reported for steroid-17,20-desmolase and 20ß-hydroxysteroid dehydrogenase (HSDH) activities that are responsible for androstane formation from cortisol; however, the genes encoding these enzymes have yet to be reported. In this work, we identified and located a gene encoding 20ß-HSDH in both B. desmolans and C. cadaveris The 20ß-HSDH of B. desmolans was heterologously overexpressed and purified from Escherichia coli The enzyme was determined to be a homotetramer with subunit molecular mass of 33.8 ± 3.7 kDa. The r20ß-HSDH displayed pH optimum in the reductive direction at pH 9.0 and in the oxidative direction at pH 7.0-7.5 with (20ß-dihydro)cortisol and NAD(H) as substrates. Cortisol is the preferred substrate with Km , 0.80 ± 0.06 µM; Vmax , 30.36 ± 1.97 µmol·min-1; Kcat , 607 ± 39 µmol·µM-1·min-1; Kcat /Km , 760 ± 7.67. Phylogenetic analysis of the 20ß-HSDH from B. desmolans suggested that the 20ß-HSDH is found in several Bifidobacterium spp, one of which was shown to express 20ß-HSDH activity. Notably, we also identified a novel steroid-17,20-desmolase-elaborating bacterium, Propionimicrobium lymphophilum, a normal inhabitant of the urinary tract.


Asunto(s)
Clostridiaceae/enzimología , Clostridiaceae/genética , Hidroxiesteroide Deshidrogenasas/genética , Hidroxiesteroide Deshidrogenasas/metabolismo , Intestinos/microbiología , Anaerobiosis , Clostridiaceae/metabolismo , Clostridiaceae/fisiología , Regulación Bacteriana de la Expresión Génica , Operón/genética , Filogenia , Esteroides/metabolismo
15.
Proteins ; 84(3): 316-31, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26650892

RESUMEN

Conversion of the primary bile acids cholic acid (CA) and chenodeoxycholic acid (CDCA) to the secondary bile acids deoxycholic acid (DCA) and lithocholic acid (LCA) is performed by a few species of intestinal bacteria in the genus Clostridium through a multistep biochemical pathway that removes a 7α-hydroxyl group. The rate-determining enzyme in this pathway is bile acid 7α-dehydratase (baiE). In this study, crystal structures of apo-BaiE and its putative product-bound [3-oxo-Δ(4,6) -lithocholyl-Coenzyme A (CoA)] complex are reported. BaiE is a trimer with a twisted α + ß barrel fold with similarity to the Nuclear Transport Factor 2 (NTF2) superfamily. Tyr30, Asp35, and His83 form a catalytic triad that is conserved across this family. Site-directed mutagenesis of BaiE from Clostridium scindens VPI 12708 confirm that these residues are essential for catalysis and also the importance of other conserved residues, Tyr54 and Arg146, which are involved in substrate binding and affect catalytic turnover. Steady-state kinetic studies reveal that the BaiE homologs are able to turn over 3-oxo-Δ(4) -bile acid and CoA-conjugated 3-oxo-Δ(4) -bile acid substrates with comparable efficiency questioning the role of CoA-conjugation in the bile acid metabolism pathway.


Asunto(s)
Proteínas Bacterianas/química , Ácidos Cólicos/química , Clostridium/enzimología , Hidroliasas/química , Sustitución de Aminoácidos , Proteínas Bacterianas/genética , Dominio Catalítico , Ácidos Cólicos/biosíntesis , Cristalografía por Rayos X , Humanos , Hidroliasas/genética , Enlace de Hidrógeno , Hidroxilación , Cinética , Simulación del Acoplamiento Molecular , Mutagénesis Sitio-Dirigida , Unión Proteica , Estructura Secundaria de Proteína , Homología Estructural de Proteína
16.
Dig Dis ; 33(3): 338-45, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26045267

RESUMEN

The understanding of the complex role of the bile acid-gut microbiome axis in health and disease processes is evolving rapidly. Our focus revolves around the interaction of the gut microbiota with liver diseases, especially cirrhosis. The bile acid pool size has recently been shown to be a function of microbial metabolism of bile acid, and regulation of the microbiota by bile acids is important in the development and progression of several liver diseases. Humans produce a large, conjugated hydrophilic bile acid pool, maintained through positive-feedback antagonism of farnesoid X receptor (FXR) in the intestine and liver. Microbes use bile acids, and via FXR signaling this results in a smaller, unconjugated hydrophobic bile acid pool. This equilibrium is critical to maintain health. The challenge is to examine the manifold functions of gut bile acids as modulators of antibiotic, probiotic, and disease progression in cirrhosis, metabolic syndrome, and alcohol use. Recent studies have shown potential mechanisms explaining how perturbations in the microbiome affect bile acid pool size and composition. With advancing liver disease and cirrhosis, there is dysbiosis in the fecal, ileal, and colonic mucosa, in addition to a decrease in bile acid concentration in the intestine due to the liver problems. This results in a dramatic shift toward the Firmicutes, particularly Clostridium cluster XIVa, and increasing production of deoxycholic acid. Alcohol intake speeds up these processes in the subjects with and without cirrhosis without significant FXR feedback. Taken together, these pathways can impact intestinal and systemic inflammation while worsening dysbiosis. The interaction between bile acids, alcohol, cirrhosis, and dysbiosis is an important relationship that influences intestinal and systemic inflammation, which in turn determines progression of the overall disease process. These interactions and the impact of commonly used therapies for liver disease can provide insight into the pathogenesis of inflammation in humans.


Asunto(s)
Consumo de Bebidas Alcohólicas/metabolismo , Ácidos y Sales Biliares/metabolismo , Microbioma Gastrointestinal , Cirrosis Hepática/metabolismo , Consumo de Bebidas Alcohólicas/efectos adversos , Ácidos y Sales Biliares/análisis , Disbiosis/etiología , Disbiosis/metabolismo , Disbiosis/prevención & control , Etanol/farmacología , Heces/química , Microbioma Gastrointestinal/efectos de los fármacos , Humanos , Cirrosis Hepática/complicaciones , Cirrosis Hepática/terapia , Probióticos/administración & dosificación , Transducción de Señal
17.
Am J Physiol Gastrointest Liver Physiol ; 306(11): G929-37, 2014 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-24699327

RESUMEN

Alcohol abuse with/without cirrhosis is associated with an impaired gut barrier and inflammation. Gut microbiota can transform primary bile acids (BA) to secondary BAs, which can adversely impact the gut barrier. The purpose of this study was to define the effect of active alcohol intake on fecal BA levels and ileal and colonic inflammation in cirrhosis. Five age-matched groups {two noncirrhotic (control and drinkers) and three cirrhotic [nondrinkers/nonalcoholics (NAlc), abstinent alcoholic for >3 mo (AbsAlc), currently drinking (CurrAlc)]} were included. Fecal and serum BA analysis, serum endotoxin, and stool microbiota using pyrosequencing were performed. A subgroup of controls, NAlc, and CurrAlc underwent ileal and sigmoid colonic biopsies on which mRNA expression of TNF-α, IL-1ß, IL-6, and cyclooxygenase-2 (Cox-2) were performed. One hundred three patients (19 healthy, 6 noncirrhotic drinkers, 10 CurrAlc, 38 AbsAlc, and 30 NAlc, age 56 yr, median MELD: 10.5) were included. Five each of healthy, CurrAlc, and NAlc underwent ileal/colonic biopsies. Endotoxin, serum-conjugated DCA and stool total BAs, and secondary-to-primary BA ratios were highest in current drinkers. On biopsies, a significantly higher mRNA expression of TNF-α, IL-1ß, IL-6, and Cox-2 in colon but not ileum was seen in CurrAlc compared with NAlc and controls. Active alcohol use in cirrhosis is associated with a significant increase in the secondary BA formation compared with abstinent alcoholic cirrhotics and nonalcoholic cirrhotics. This increase in secondary BAs is associated with a significant increase in expression of inflammatory cytokines in colonic mucosa but not ileal mucosa, which may contribute to alcohol-induced gut barrier injury.


Asunto(s)
Alcoholismo/complicaciones , Ácidos y Sales Biliares/metabolismo , Enfermedades del Colon/inducido químicamente , Inflamación/etiología , Cirrosis Hepática/complicaciones , Ácidos y Sales Biliares/química , Enfermedades del Colon/patología , Heces/química , Humanos , Inflamación/patología , Cirrosis Hepática/metabolismo , Cirrosis Hepática/patología , Persona de Mediana Edad
18.
Curr Opin Gastroenterol ; 30(3): 332-8, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24625896

RESUMEN

PURPOSE OF REVIEW: We examine the latest research on the emerging bile acid-gut microbiome axis and its role in health and disease. Our focus revolves around two key microbial pathways for degrading bile salts, and the impact of bile acid composition in the gut on the gut microbiome and host physiology. RECENT FINDINGS: Bile acid pool size has recently been shown to be a function of microbial metabolism of bile acids in the intestines. Recent studies have shown potential mechanisms explaining how perturbations in the microbiome affect bile acid pool size and composition. Bile acids are emerging as regulators of the gut microbiome at the highest taxonomic levels. The role of bile acids as hormones and potentiators of liver cancer is also emerging. SUMMARY: The host and microbiome appear to regulate bile acid pool size. The host produces a large, conjugated hydrophilic bile acid pool, maintained through positive-feedback antagonism of farnesoid X receptor (FXR) in intestine and liver. Members of the microbiome utilize bile acids and their conjugates resulting in agonism of FXR in intestine and liver resulting in a smaller, unconjugated hydrophobic bile acid pool. Hydrophilicity of the bile acid pool is associated with disease states. Reduced bile acid levels in the gut are associated with bacterial overgrowth and inflammation. Diet, antibiotic therapy, and disease states affect the balance of the microbiome-bile acid pool.


Asunto(s)
Ácidos y Sales Biliares/metabolismo , Intestinos/microbiología , Microbiota/fisiología , Transformación Celular Neoplásica/metabolismo , Colesterol 7-alfa-Hidroxilasa/metabolismo , Humanos , Mucosa Intestinal/metabolismo , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/microbiología
19.
Nat Rev Gastroenterol Hepatol ; 21(5): 348-364, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38383804

RESUMEN

The field of bile acid microbiology in the gastrointestinal tract is going through a current rebirth after a peak of activity in the late 1970s and early 1980s. This renewed activity is a result of many factors, including the discovery near the turn of the century that bile acids are potent signalling molecules and technological advances in next-generation sequencing, computation, culturomics, gnotobiology, and metabolomics. We describe the current state of the field with particular emphasis on questions that have remained unanswered for many decades in both bile acid synthesis by the host and metabolism by the gut microbiota. Current knowledge of established enzymatic pathways, including bile salt hydrolase, hydroxysteroid dehydrogenases involved in the oxidation and epimerization of bile acid hydroxy groups, the Hylemon-BjÓ§rkhem pathway of bile acid C7-dehydroxylation, and the formation of secondary allo-bile acids, is described. We cover aspects of bile acid conjugation and esterification as well as evidence for bile acid C3-dehydroxylation and C12-dehydroxylation that are less well understood but potentially critical for our understanding of bile acid metabolism in the human gut. The physiological consequences of bile acid metabolism for human health, important caveats and cautionary notes on experimental design and interpretation of data reflecting bile acid metabolism are also explored.


Asunto(s)
Ácidos y Sales Biliares , Microbioma Gastrointestinal , Ácidos y Sales Biliares/metabolismo , Humanos , Microbioma Gastrointestinal/fisiología
20.
J Lipid Res ; 54(9): 2437-49, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23772041

RESUMEN

Clostridium scindens American Type Culture Collection 35704 is capable of converting primary bile acids to toxic secondary bile acids, as well as converting glucocorticoids to androgens by side-chain cleavage. The molecular structure of the side-chain cleavage product of cortisol produced by C. scindens was determined to be 11ß-hydroxyandrost-4-ene-3,17-dione (11ß-OHA) by high-resolution mass spectrometry, (1)H and (13)C NMR spectroscopy, and X-ray crystallography. Using RNA-Seq technology, we identified a cortisol-inducible (≈ 1,000-fold) operon (desABCD) encoding at least one enzyme involved in anaerobic side-chain cleavage. The desC gene was cloned, overexpressed, purified, and found to encode a 20α-hydroxysteroid dehydrogenase (HSDH). This operon also encodes a putative "transketolase" (desAB) hypothesized to have steroid-17,20-desmolase/oxidase activity, and a possible corticosteroid transporter (desD). RNA-Seq data suggests that the two-carbon side chain of glucocorticords may feed into the pentose-phosphate pathway and are used as a carbon source. The 20α-HSDH is hypothesized to function as a metabolic "rheostat" controlling rates of side-chain cleavage. Phylogenetic analysis suggests this operon is rare in nature and the desC gene evolved from a gene encoding threonine dehydrogenase. The physiological effect of 11ß-OHAD on the host or other gut microbes is currently unknown.


Asunto(s)
Andrógenos/metabolismo , Clostridium/metabolismo , Glucocorticoides/metabolismo , Intestinos/microbiología , Andrógenos/química , Androstenodiona/análogos & derivados , Androstenodiona/química , Androstenodiona/metabolismo , Clostridium/efectos de los fármacos , Clostridium/enzimología , Clostridium/genética , Humanos , Hidrocortisona/metabolismo , Hidrocortisona/farmacología , Hidroxiesteroide Deshidrogenasas/genética , Hidroxiesteroide Deshidrogenasas/metabolismo , Modelos Moleculares , Conformación Molecular , Operón/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Esteroide 17-alfa-Hidroxilasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA