RESUMEN
From industrial exoskeletons to implantable medical devices, robots that interact closely with people are poised to improve every aspect of our lives. Yet designing these systems is very challenging; humans are incredibly complex and, in many cases, we respond to robotic devices in ways that cannot be modelled or predicted with sufficient accuracy. A new approach, human-in-the-loop optimization, can overcome these challenges by systematically and empirically identifying the device characteristics that result in the best objective performance for a specific user and application. This approach has enabled substantial improvements in human-robot performance in research settings and has the potential to speed development and enhance products. In this Perspective, we describe methods for applying human-in-the-loop optimization to new human-robot interaction problems, addressing each key decision in a variety of contexts. We also identify opportunities to develop new optimization techniques and answer underlying scientific questions. We anticipate that our readers will advance human-in-the-loop optimization and use it to design robotic devices that truly enhance the human experience.
Asunto(s)
Sistemas Hombre-Máquina , Robótica , Interfaz Usuario-Computador , Humanos , Robótica/métodos , Robótica/normas , Robótica/tendenciasRESUMEN
Mitochondrial diseases are rare genetic disorders often accompanied by severe sleep disorders. We present the case of a 12-year-old boy diagnosed with a severe primary mitochondrial disease, exhibiting ataxia, spasticity, progressive external ophthalmoplegia, cardiomyopathy and severely disrupted sleep, but no cognitive impairment. Interestingly, his parents reported improved sleep during night train rides. Based on this observation, we installed a rocking bed in the patient's bedroom and performed different interventions, including immersive multimodal vestibular, kinesthetic and auditory stimuli, reminiscent of the sensory experiences encountered during train rides. Over a 5-month period, we conducted four 2-week nocturnal interventions, separated by 1-week washout phases, to determine the subjectively best-perceived stimulation parameters, followed by a final 4-week intervention using the optimal parameters. We assessed sleep duration and quality using the Mini Sleep Questionnaire, monitored pulse rate changes and used videography to document nocturnal interactions between the patient and caregivers. Patient-reported outcome measures, clinical examinations and personal outcomes of specific interests were used to document daytime sleepiness, restlessness, anxiety, fatigue, cognitive performance and physical posture. In the final 4-week intervention, sleep duration increased by 25%, required caregiver interactions reduced by 75%, and caregiving time decreased by 40%. Subjective fatigue, assessed by the Checklist Individual Strength, decreased by 40%, falling below the threshold of severe fatigue. Our study suggests that rocking beds could provide a promising treatment regime for selected patients with persistent severe sleep disorders. Further research is required to validate these findings in larger patient populations with sleep disorders and other conditions.
RESUMEN
BACKGROUND: Pressure Injuries are not exclusively an adult phenomenon; various risk factors contribute to a high prevalence rate of 43% in the neonatal and pediatric intensive care population. Effective preventive measures in this population are limited. METHODS: We performed a pilot study to analyze the distribution and localization of support surface interface pressures in neonates in a pediatric intensive care unit (PICU). The hypothesis was that pressure redistribution by a novel air mattress would reduce pressure peaks in critical neonates. The measurements were conducted in a 27-bed level III PICU between November and December 2020. This included measuring pressure distribution and pressure peaks for five neonates positioned on either a state-of-the-art foam mattress or a new prototype air mattress. RESULTS: We confirmed that the pressure peaks were significantly reduced using the prototype air mattress, compared with the state-of-the-art foam mattress. The reduction of mean pressure values was 9-29%, while the reduction of the highest 10% of pressure values was 23-41%. CONCLUSIONS: The journey to an effective, optimal, and approved product for severely ill neonates to reduce Pressure Injuries is challenging. However, a crucial step was completed by this pilot study with the first pressure measurements in a real-world setting and the successful realization of a decrease in pressure peaks obtained using a prototype air mattress.
Asunto(s)
Úlcera por Presión , Adulto , Recién Nacido , Niño , Humanos , Proyectos Piloto , Úlcera por Presión/prevención & control , Úlcera por Presión/epidemiología , Factores de Riesgo , Lechos , Unidades de Cuidado Intensivo PediátricoRESUMEN
BACKGROUND: Walking impairments are a common consequence of neurological disorders and are assessed with clinical scores that suffer from several limitations. Robot-assisted locomotor training is becoming an established clinical practice. Besides training, these devices could be used for assessing walking ability in a controlled environment. Here, we propose an adaptive assist-as-needed (AAN) control for a treadmill-based robotic exoskeleton, the Lokomat, that reduces the support of the device (body weight support and impedance of the robotic joints) based on the ability of the patient to follow a gait pattern displayed on screen. We hypothesize that the converged values of robotic support provide valid and reliable information about individuals' walking ability. METHODS: Fifteen participants with spinal cord injury and twelve controls used the AAN software in the Lokomat twice within a week and were assessed using clinical scores (10MWT, TUG). We used a regression method to identify the robotic measure that could provide the most relevant information about walking ability and determined the test-retest reliability. We also checked whether this result could be extrapolated to non-ambulatory and to unimpaired subjects. RESULTS: The AAN controller could be used in patients with different injury severity levels. A linear model based on one variable (robotic knee stiffness at terminal swing) could explain 74% of the variance in the 10MWT and 61% in the TUG in ambulatory patients and showed good relative reliability but poor absolute reliability. Adding the variable 'maximum hip flexor torque' to the model increased the explained variance above 85%. This did not extend to non-ambulatory nor to able-bodied individuals, where variables related to stance phase and to push-off phase seem more relevant. CONCLUSIONS: The novel AAN software for the Lokomat can be used to quantify the support required by a patient while performing robotic gait training. The adaptive software might enable more challenging training conditions tuned to the ability of the individuals. While the current implementation is not ready for assessment in clinical practice, we could demonstrate that this approach is safe, and it could be integrated as assist-as-needed training, rather than as assessment. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT02425332.
Asunto(s)
Procedimientos Quirúrgicos Robotizados , Robótica , Traumatismos de la Médula Espinal , Humanos , Marcha , Reproducibilidad de los Resultados , CaminataRESUMEN
The use of stereophotogrammetry systems is challenging when targeting children's gait analysis due to the time required and the need to keep physical markers in place. For this reason, marker-less photoelectric systems appear to be a solution for accurate and fast gait analysis in youth. The aim of this study is to validate a photoelectric system and its configurations (LED filter setting) on healthy children, comparing the kinematic gait parameters with those obtained from a three-dimensional stereophotogrammetry system. Twenty-seven healthy children were enrolled. Three LED filter settings for the OptoGait were compared to the BTS P6000. The analysis included the non-parametric 80% limits of agreement and the intraclass correlation coefficient (ICC). Additionally, normalised limits of agreement and bias (NLoAs and Nbias) were compared to the clinical experience of physical therapists (i.e., assuming an error lower than 5% is acceptable). ICCs showed excellent consistency for most of the parameters and filter settings; NLoAs varied between 1.39% and 12.62%. An inverse association between the number of LEDs for filter setting and the bias values was also observed. Observations confirm the validity of the OptoGait system for the evaluation of spatiotemporal gait parameters in children.
Asunto(s)
Análisis de la Marcha , Marcha , Niño , Humanos , Fenómenos Biomecánicos , Análisis de la Marcha/métodos , Reproducibilidad de los Resultados , Análisis Espacio-Temporal , CaminataRESUMEN
BACKGROUND: Exosuits have been shown to reduce metabolic cost of walking and to increase gait performance when used in clinical environment. Currently, these devices are transitioning to private use to facilitate independent training at home and in the community. However, their acceptance in unsupervised settings remains unclear. Therefore, the aim of this study was to investigate end-user perspectives and the adoption of an exosuit in domestic and community settings. METHODS: We conducted a mixed-method study to investigate the usability and user experience of an exosuit, the Myosuit. We leveraged on a cohort of seven expert users, who had the device available at home for at least 28 days. Each participant completed two standardized questionnaires (SUS and QUEST) and one personalized, custom questionnaire. Furthermore, a semi-structured interview with each participant was recorded, verbatim transcribed and analyzed using descriptive thematic analysis. Data collected from device sensors quantified the frequency of use. RESULTS: A mean SUS score of 75.4 out of 100 was reported. Five participants scored above the threshold for above-average usability. Participants also expressed high satisfaction with most of the technical features in the QUEST with an average score of 4.1 (3.86-4.71) out of 5. Participants used the Myosuit mainly for walking outside and exercising at home. However, the frequency of use did not meet the recommendations for physical activity established by the World Health Organization. Five participants used the Myosuit approximately once per week. The two other participants integrated the device in their daily life and used the Myosuit to a greater extent (approx. five times per week). Major factors that prevented an extensive use of the technology were: (i) difficulties in donning that led to (ii) lack of independence and (iii) lack of motivation in exercising. CONCLUSIONS: Although usable for various activities and well perceived, the adoption of the exosuit in domestic and community settings is yet limited. Use outside the clinic poses further challenges that should be considered when developing new wearable robots. Primarily, design should meet the users' claim for independence and increased adjustability of the device.
Asunto(s)
Ejercicio Físico , Caminata , Humanos , Marcha , Motivación , TecnologíaRESUMEN
BACKGROUND: Stroke related motor function deficits affect patients' likelihood of returning to professional activities, limit their participation in society and functionality in daily living. Hence, robot-aided gait rehabilitation needs to be fruitful and effective from a motor learning perspective. For this reason, optimal human-robot interaction strategies are necessary to foster neuroplastic shaping during therapy. Therefore, we performed a systematic search on the effects of different control algorithms on quantitative objective gait parameters of post-acute stroke patients. METHODS: We conducted a systematic search on four electronic databases using the Population Intervention Comparison and Outcome format. The heterogeneity of performance assessment, study designs and patients' numerosity prevented the possibility to conduct a rigorous meta-analysis, thus, the results were presented through narrative synthesis. RESULTS: A total of 31 studies (out of 1036) met the inclusion criteria, without applying any temporal constraints. No controller preference with respect to gait parameters improvements was found. However, preferred solutions were encountered in the implementation of force control strategies mostly on rigid devices in therapeutic scenarios. Conversely, soft devices, which were all position-controlled, were found to be more commonly used in assistive scenarios. The effect of different controllers on gait could not be evaluated since conspicuous heterogeneity was found for both performance metrics and study designs. CONCLUSIONS: Overall, due to the impossibility of performing a meta-analysis, this systematic review calls for an outcome standardisation in the evaluation of robot-aided gait rehabilitation. This could allow for the comparison of adaptive and human-dependent controllers with conventional ones, identifying the most suitable control strategies for specific pathologic gait patterns. This latter aspect could bolster individualized and personalized choices of control strategies during the therapeutic or assistive path.
Asunto(s)
Robótica , Rehabilitación de Accidente Cerebrovascular , Accidente Cerebrovascular , Marcha , Humanos , Extremidad Inferior , Robótica/métodos , Rehabilitación de Accidente Cerebrovascular/métodosRESUMEN
BACKGROUND: Wearable robots have been shown to improve the efficiency of walking in diverse scenarios. However, it is unclear how much practice is needed to fully adapt to robotic assistance, and which neuromotor processes underly this adaptation. Familiarization strategies for novice users, robotic optimization techniques (e.g. human-in-the-loop), and meaningful comparative assessments depend on this understanding. METHODS: To better understand the process of motor adaptation to robotic assistance, we analyzed the energy expenditure, gait kinematics, stride times, and muscle activities of eight naïve unimpaired participants across three 20-min sessions of robot-assisted walking. Experimental outcomes were analyzed with linear mixed effect models and statistical parametric mapping techniques. RESULTS: Most of the participants' kinematic and muscular adaptation occurred within the first minute of assisted walking. After ten minutes, or 880 steps, the energetic benefits of assistance were realized (an average of 5.1% (SD 2.4%) reduction in energy expenditure compared to unassisted walking). Motor adaptation was likely driven by the formation of an internal model for feedforward motor control as evidenced by the reduction of burst-like muscle activity at the cyclic end of robotic assistance and an increase in arm-swing asymmetry previously associated with increased cognitive load. CONCLUSION: Humans appear to adapt to walking assistance from a wearable robot over 880 steps by forming an internal model for feedforward control. The observed adaptation to the wearable robot is well-described by existing three-stage models that start from a cognitive stage, continue with an associative stage, and end in autonomous task execution. Trial registration Not applicable.
Asunto(s)
Dispositivo Exoesqueleto , Dispositivos Electrónicos Vestibles , Adaptación Fisiológica , Marcha/fisiología , Humanos , Proyectos Piloto , Caminata/fisiologíaRESUMEN
BACKGROUND: Scapular dyskinesis, i.e., the deviant mobility or function of the scapula, hampers upper limb function in daily life. A typical sign of scapular dyskinesis is a scapula alata-a protrusion of the shoulder blade during arm elevation. While some reversible causes of scapula alata can be treated with therapy, other, irreversible causes require invasive surgical interventions. When surgery is not an option, however, severe limitations arise as standard approaches for assisting the scapula in daily life do not exist. The aim of this study was to quantify functional improvements when external, i.e., non-invasive, scapula assistance is provided. METHODS: The study was designed as a randomized controlled crossover trial. Eight participants with a scapula alata due to muscular dystrophy performed arm elevations in shoulder flexion and abduction while unassisted (baseline), externally assisted by a trained therapist, and externally assisted by a novel, textile-based scapula orthosis. RESULTS: With therapist assistance, average arm elevation increased by 17.3° in flexion (p < 0.001, 95% confidence interval of the mean [Formula: see text]), and by 11.2° in abduction (p < 0.01, [Formula: see text]), constituting the potential of external scapula assistance. With orthosis assistance, average arm elevation increased by 6.2° in flexion ([Formula: see text]) and by 5.8° in abduction ([Formula: see text]). Remarkably, in three participants, the orthosis was at least as effective as the therapist. Moreover, orthosis assistance reduced average perceived exertion by 1.25 points (Borg Scale) when elevating a filled bottle during a simulated daily living task. CONCLUSION: These findings indicate a large potential for future advancements in orthotics. Already now, the textile-based scapula orthosis presented here is a feasible tool for leveraging the benefits of external scapula assistance when a therapist is unavailable, as encountered in daily life scenarios. Trial Registration ClincalTrials.gov (ID NCT04154098). Registered: November 6th 2019, https://clinicaltrials.gov/ct2/show/NCT04154098?term=scapula+orthosis&draw=2&rank=1.
Asunto(s)
Escápula , Articulación del Hombro , Fenómenos Biomecánicos , Humanos , Movimiento , Aparatos Ortopédicos , Rango del Movimiento Articular , HombroRESUMEN
Vestibular stimulation in the form of rocking movements could be a promising non-pharmacological intervention for populations with reduced sleep quality, such as the elderly. We hypothesized that rocking movements influence sleep by promoting comfort. We assessed whether gentle rocking movements can facilitate the transition from wake to sleep, increase sleep spindle density and promote deep sleep in elderly people. We assessed self-reported comfort using a pilot protocol including translational movements and movements along a pendulum trajectory with peak linear accelerations between 0.10 and 0.20 m/s2 . We provided whole-night stimulation using the settings rated most comfortable during the pilot study (movements along a pendulum trajectory with peak linear acceleration of 0.15 m/s2 ). Sleep measures (polysomnography) of two baseline and two movement nights were compared. In our sample (n = 19; eight female; mean age: 66.7 years, standard deviation: 3 years), vestibular stimulation using preferred stimulation settings did not improve sleep. A reduction of delta power was observed, suggesting reduced sleep depth during rocking movements. Sleep fragmentation was similar in both conditions. We did not observe a sleep-promoting effect using settings optimized to be comfortable. This finding could imply that comfort is not the underlying mechanism. At frequencies below 0.3 Hz, the otoliths cannot distinguish tilt from translation. Translational movement trajectories, such as used in previous studies reporting positive effects of rocking, could have caused sensory confusion due to a mismatch between vestibular and other sensory information. We propose that this sensory confusion might be essential to the sleep-promoting effect of rocking movements described in other studies.
Asunto(s)
Polisomnografía/métodos , Sueño/fisiología , Trastorno de Movimiento Estereotipado/etiología , Vestíbulo del Laberinto/fisiología , Anciano , Femenino , Humanos , Masculino , Proyectos Piloto , AutoinformeRESUMEN
BACKGROUND: Tremor is the most common movement disorder with the highest prevalence in the upper limbs. The mechanical suppression of involuntary movements is an alternative and additional treatment to medication or surgery. Here we present a new, soft, lightweight, task asjustable and passive orthosis for tremor suppression. METHODS: A new concept of a manual, textile-based, passive orthosis was designed with an integrated, task adjustable, air-filled structure, which can easily be inflated or deflated on-demand for a certain daily activity. The air-filled structure is placed on the dorsal side of the wrist and gets bent and compressed by movements when inflated. In a constant volume air-filled structure, air pressure increases while it is inflating, creating a counterforce to the compression caused by bending. We characterised the air-filled structure stiffness by measuring the reaction torque as a function of the angle of deflection on a test bench. Furthermore, we evaluated the efficacy of the developed passive soft orthosis by analysing the suppression of involuntary movements in the wrist of a tremor-affected patient during different activities of daily living (i.e. by calculating the power spectral densities of acceleration). RESULTS: By putting special emphasis on the comfort and wearability of the orthosis, we achieved a lightweight design (33 g). The measurements of the angular deflection and resulting reaction torques show non-linear, hysteretic, behaviour, as well as linear behaviour with a coefficient of determination (R2) between 0.95 and 0.99. Furthermore, we demonstrated that the soft orthosis significantly reduces tremor power for daily living activities, such as drinking from a cup, pouring water and drawing a spiral, by 74 to 82% (p = 0.03); confirmed by subjective tremor-reducing perception by the patient. CONCLUSION: The orthosis we developed is a lightweight and unobtrusive assistive technology, which suppresses involuntary movements and shows high wearability properties, with the potential to be comfortable. This air-structure technology could also be applied to other movement disorders, like spasticity, or even be integrated into future exoskeletons and exosuits for the implementation of variable stiffness in the systems.
Asunto(s)
Aparatos Ortopédicos , Diseño de Prótesis/métodos , Temblor/rehabilitación , Humanos , Masculino , Articulación de la MuñecaRESUMEN
The original article contains an error in Fig 3f whereby data is erroneously extrapolated beyond 80 years of age; this also affects statements made elsewhere in the article.
RESUMEN
BACKGROUND: Physical activity is a recommended part of treatment for numerous neurological and neuromuscular disorders. Yet, many individuals with limited mobility are not able to meet the recommended activity levels. Lightweight, wearable robots like the Myosuit promise to facilitate functional ambulation and thereby physical activity. However, there is limited evidence of the safety and feasibility of training with such devices. METHODS: Twelve participants with diverse motor disorders and the ability to walk for at least 10 m were enrolled in this uncontrolled case series study. The study protocol included five training sessions with a net training time of 45 min each. Primary outcomes were the feasibility of engaging in training with the Myosuit, the occurrence of adverse events, and participant retention. As secondary outcomes, we analyzed the walking speed using the 10-m Walk Test (10MWT) and for three participants, walking endurance using the 2-min Walk Tests. RESULTS: Eight out of 12 participants completed the entire study protocol. Three participants withdrew from the study or were excluded for reasons unrelated to the study. One participant withdrew because of an unsafe feeling when walking with the Myosuit. No adverse events occurred during the study period for any of the participants and all scheduled trainings were completed. For five out of the eight participants that completed the full study, the walking speed when using the Myosuit was higher than to their baseline walking speed. CONCLUSIONS: Activity-based training with the Myosuit appears to be safe, feasible, and well-tolerated by individuals with diverse motor disorders.
Asunto(s)
Dispositivo Exoesqueleto , Trastornos Neurológicos de la Marcha/rehabilitación , Robótica/instrumentación , Adulto , Anciano , Estudios de Factibilidad , Femenino , Humanos , Masculino , Persona de Mediana Edad , Traumatismos de la Médula Espinal/fisiopatología , Velocidad al CaminarRESUMEN
BACKGROUND: Arm weight compensation with rehabilitation robots for stroke patients has been successfully used to increase the active range of motion and reduce the effects of pathological muscle synergies. However, the differences in structure, performance, and control algorithms among the existing robotic platforms make it hard to effectively assess and compare human arm weight relief. In this paper, we introduce criteria for ideal arm weight compensation, and furthermore, we propose and analyze three distinct arm weight compensation methods (Average, Full, Equilibrium) in the arm rehabilitation exoskeleton 'ARMin'. The effect of the best performing method was validated in chronic stroke subjects to increase the active range of motion in three dimensional space. METHODS: All three methods are based on arm models that are generalizable for use in different robotic devices and allow individualized adaptation to the subject by model parameters. The first method Average uses anthropometric tables to determine subject-specific parameters. The parameters for the second method Full are estimated based on force sensor data in predefined resting poses. The third method Equilibrium estimates parameters by optimizing an equilibrium of force/torque equations in a predefined resting pose. The parameters for all three methods were first determined and optimized for temporal and spatial estimation sensitivity. Then, the three methods were compared in a randomized single-center study with respect to the remaining electromyography (EMG) activity of 31 healthy participants who performed five arm poses covering the full range of motion with the exoskeleton robot. The best method was chosen for feasibility tests with three stroke patients. In detail, the influence of arm weight compensation on the three dimensional workspace was assessed by measuring of the horizontal workspace at three different height levels in stroke patients. RESULTS: All three arm weight compensation methods reduced the mean EMG activity of healthy subjects to at least 49% compared with the no compensation reference. The Equilibrium method outperformed the Average and the Full methods with a highly significant reduction in mean EMG activity by 19% and 28% respectively. However, upon direct comparison, each method has its own individual advantages such as in set-up time, cost, or required technology. The horizontal workspace assessment in poststroke patients with the Equilibrium method revealed potential workspace size-dependence of arm height, while weight compensation helped maximize the workspace as much as possible. CONCLUSION: Different arm weight compensation methods were developed according to initially defined criteria. The methods were then analyzed with respect to their sensitivity and required technology. In general, weight compensation performance improved with the level of technology, but increased cost and calibration efforts. This study reports a systematic way to analyze the efficacy of different weight compensation methods using EMG. Additionally, the feasibility of the best method, Equilibrium, was shown by testing with three stroke patients. In this test, a height dependence of the workspace size also seemed to be present, which further highlights the importance of patient-specific weight compensation, particularly for training at different arm heights. TRIAL REGISTRATION: ClinicalTrials.gov,NCT02720341. Registered 25 March 2016.
Asunto(s)
Algoritmos , Dispositivo Exoesqueleto , Robótica/instrumentación , Rehabilitación de Accidente Cerebrovascular , Adaptación Fisiológica/fisiología , Adulto , Peso Corporal , Electromiografía/métodos , Femenino , Humanos , Masculino , Rehabilitación de Accidente Cerebrovascular/instrumentación , Rehabilitación de Accidente Cerebrovascular/métodos , Adulto JovenRESUMEN
As the world's population gradually grows older, more and more adults are experiencing sensory-motor disabilities due to stroke, traumatic brain injury, spinal cord injury and other diseases [...].
Asunto(s)
Lesiones Traumáticas del Encéfalo/rehabilitación , Robótica , Traumatismos de la Médula Espinal/rehabilitación , Rehabilitación de Accidente Cerebrovascular , Adulto , Humanos , Accidente Cerebrovascular/terapiaRESUMEN
Biometric identification (BI) of individuals is a fast-growing field of research that is producing increasingly sophisticated applications in several spheres of everyday life. Previous magnetic resonance imaging (MRI) studies have demonstrated that based on the high inter-individual variability of brain structure and function, it is possible to identify individuals with high accuracy. Otherwise, there is the common belief that electroencephalographic (EEG) data recorded at the surface of the scalp are too noisy for identification purposes with a comparably high hit rate. In the present work, we compared BI quality (F1-scores, accuracy, sensitivity, and specificity) between different types of functional (instantaneous, lagged, and total coherence, phase synchronization, correlation, and mutual information) and effective (Granger causality, phase synchronization, and coherence) connectivity measures. Results revealed that across functional connectivity metrics, identification accuracy was in the range of 0.98-1, whereas sensitivity and F1-scores were between 0.00 and 1 and specificity was between 0.99 and 1. BI was higher for the connectivity metrics that are contaminated by volume conduction (instantaneous connectivity) compared to those that are unaffected by this variable (lagged connectivity). Support vector machine and neural network algorithms yielded the highest BI, followed by random forest and weighted k-nearest neighborhood, whereas linear discriminant analysis was less accurate. These results provide cross-validated counterevidence to the belief that EEG data are too noisy for identification purposes and demonstrate that functional and effective connectivity metrics are particularly suited for BI applications with comparable accuracy to MRI. Our results have important implications for fast, low-cost, and mobile BI applications.
Asunto(s)
Identificación Biométrica/métodos , Encéfalo/fisiología , Electroencefalografía/métodos , Adolescente , Adulto , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Descanso , Máquina de Vectores de Soporte , Adulto JovenRESUMEN
Quantitative electroencephalogram analysis (e.g. spectral analysis) has become an important tool in sleep research and sleep medicine. However, reliable results are only obtained if artefacts are removed or excluded. Artefact detection is often performed manually during sleep stage scoring, which is time consuming and prevents application to large datasets. We aimed to test the performance of mostly simple algorithms of artefact detection in polysomnographic recordings, derive optimal parameters and test their generalization capacity. We implemented 14 different artefact detection methods, optimized parameters for derivation C3A2 using receiver operator characteristic curves of 32 recordings, and validated them on 21 recordings of healthy participants and 10 recordings of patients (different laboratory) and considered the methods as generalizable. We also compared average power density spectra with artefacts excluded based on algorithms and expert scoring. Analyses were performed retrospectively. We could reliably identify artefact contaminated epochs in sleep electroencephalogram recordings of two laboratories (healthy participants and patients) reaching good sensitivity (specificity 0.9) with most algorithms. The best performance was obtained using fixed thresholds of the electroencephalogram slope, high-frequency power (25-90 Hz or 45-90 Hz) and residuals of adaptive autoregressive models. Artefacts in electroencephalogram data can be reliably excluded by simple algorithms with good performance, and average electroencephalogram power density spectra with artefact exclusion based on algorithms and manual scoring are very similar in the frequency range relevant for most applications in sleep research and sleep medicine, allowing application to large datasets as needed to address questions related to genetics, epidemiology or precision medicine.
Asunto(s)
Artefactos , Electroencefalografía/métodos , Sueño/fisiología , Adulto , Algoritmos , Humanos , Masculino , Estudios Retrospectivos , Adulto JovenRESUMEN
BACKGROUND: We present a robot-assisted telerehabilitation system that allows for haptic interaction between therapist and patient over distance. It consists of two arm therapy robots. Attached to one robot the therapists can feel on their own arm the limitations of the patient's arm which is attached to the other robot. Due to the exoskeleton structure of the robot, movements can be performed in the three-dimensional space. METHODS: Fifteen physical and occupational therapists tested this strategy, named "Beam-Me-In", while using an exoskeleton robot connected to a second exoskeleton robot in the same room used by the study experimenter. Furthermore, the therapists assessed the level of impairment of recorded and simulated arm movements. They quantified four typical impairments of stroke patients: reduced range of motion (active and passive), resistance to passive movement, a lack of ability to fractionate a movement, and disturbed quality of movement. RESULTS: On a Likert Scale (0 to 5 points) therapists rated the "Beam-Me-In" strategy as a very useful medium (mode: 4 points) to evaluate a patient's progress over time. The passive range of motion of the elbow joint was assessed with a mean absolute error of 4.9∘ (absolute precision error: 6.4∘). The active range of motion of the elbow was assessed with a mean absolute error of 4.9∘ (absolute precision error: 6.5∘). The resistance to passive movement (i.e. modified Tardieu Scale) and the lack of ability to fractionate a movement (i.e. quantification of pathological muscle synergies) was assessed with an inter-rater reliability of 0.930 and 0.948, respectively. CONCLUSIONS: The "Beam-Me-In" strategy is a promising approach to complement robot-assisted movement training. It can serve as a platform to assess and identify abnormal movement patterns in patients. This is the first application of remote three-dimensional haptic assessmen t applied to telerehabilitation. Furthermore, the "Beam-Me-In" strategy has a potential to overcome barriers for therapists regarding robot-assisted telerehabilitation.
Asunto(s)
Dispositivo Exoesqueleto , Robótica/métodos , Rehabilitación de Accidente Cerebrovascular/métodos , Telerrehabilitación/métodos , Humanos , Reproducibilidad de los Resultados , Robótica/instrumentación , Rehabilitación de Accidente Cerebrovascular/instrumentación , Telerrehabilitación/instrumentaciónRESUMEN
BACKGROUND: Physical and functional losses due to aging and diseases decrease human mobility, independence, and quality of life. This study is aimed at summarizing and quantifying these losses in order to motivate solutions to overcome them with a special focus on the possibilities by using lower limb exoskeletons. METHODS: A narrative literature review was performed to determine a broad range of mobility-related physical and functional measures that are affected by aging and selected cardiovascular, respiratory, musculoskeletal, and neurological diseases. RESULTS: The study identified that decreases in limb maximum muscle force and power (33% and 49%, respectively, 25-75 yrs) and in maximum oxygen consumption (40%, 20-80 yrs) occur for older adults compared to young adults. Reaction times more than double (18-90 yrs) and losses in the visual, vestibular, and somatosensory systems were reported. Additionally, we found decreases in steps per day (75%, 60-85 yrs), maximum walking speed (24% 25-75 yrs), and maximum six-minute and self-selected walking speed (38% and 21%, respectively, 20-85 yrs), while we found increases in the number of falls relative to the number of steps per day (800%), injuries due to falls (472%, 30-90 yrs) and deaths caused by fall (4000%, 65-90 yrs). Measures were identified to be worse for individuals with impaired mobility. Additional detrimental effects identified for them were the loss of upright standing and locomotion, freezing in movement, joint stress, pain, and changes in gait patterns. DISCUSSION: This review shows that aging and chronic conditions result in wide-ranging losses in physical and sensory capabilities. While the impact of these losses are relatively modest for level walking, they become limiting during more demanding tasks such as walking on inclined ground, climbing stairs, or walking over longer periods, and especially when coupled with a debilitating disease. As the physical and functional parameters are closely related, we believe that lost functional capabilities can be indirectly improved by training of the physical capabilities. However, assistive devices can supplement the lost functional capabilities directly by compensating for losses with propulsion, weight support, and balance support. CONCLUSIONS: Exoskeletons are a new generation of assistive devices that have the potential to provide both, training capabilities and functional compensation, to enhance human mobility.
Asunto(s)
Dispositivo Exoesqueleto , Actividad Motora , Calidad de Vida , Adulto , Anciano , Anciano de 80 o más Años , Envejecimiento/patología , Enfermedades Cardiovasculares/fisiopatología , Femenino , Humanos , Extremidad Inferior , Enfermedades Pulmonares/fisiopatología , Masculino , Persona de Mediana Edad , Enfermedades Neuromusculares/fisiopatología , Adulto JovenRESUMEN
INTRODUCTION: Tremor is the most common movement disorder, affecting 5.6% of the population with Parkinson's disease or essential tremor over the age of 65. Conventionally, tremor diseases like Parkinson's are treated with medication. An alternative non-invasive symptom treatment is the mechanical suppression of the oscillation movement. The purpose of this review is to identify the weaknesses of past wearable tremor-suppression orthoses for the upper limb and identify the need for further research and developments. METHOD: A systematic literature search was conducted by performing a keyword combination search of the title, abstract and keyword sections in the four databases Web of Science, MedLine, Scopus, and ProQuest. Initially, the retrieved articles were selected by title and abstract using selection criteria. The same criteria were then applied to the full publication text. After the selection process, relevant information on the retrieved orthoses was isolated, sorted and analysed systematically. RESULTS: Forty-six papers, representing 21 orthoses, were identified and analysed according to the mechanical and ergonomic properties. The identified orthoses can be divided into 5 concepts and 16 functional prototypes, then subdivided further based upon their use of passive, semi-active, or active suppression mechanisms. Most of the orthoses concentrate on the wrist and elbow flexion and extension. They mainly rely on rigid structures and actuators while having tremor-suppression efficacies for tremorous subjects from 30 to 98% using power spectral density or other methods. CONCLUSION: The comparison of tremor-suppression orthoses considered and mapped their various mechanical and ergonomic properties, including the degrees of freedom, weight, suppression characteristics, and efficacies. This review shows that most of the orthoses are bulky and heavy, with a non-adapted human-machine interface which can cause rejection by the user. The main challenge of the design of an effective, minimally intrusive and portable tremor-suppressing orthosis is the integration of compact, powerful, lightweight, and non-cumbersome suppression mechanisms. None of the existing prototypes combine all the desired characteristics. Future research should focus on novel suppression orthoses and mechanisms with compact dimensions and light weight in order to be less cumbersome while giving a good tremor-suppression performance.