Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 115(9): E2085-E2094, 2018 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-29440403

RESUMEN

Regulator of G protein signaling z1 (RGSz1), a member of the RGS family of proteins, is present in several networks expressing mu opioid receptors (MOPRs). By using genetic mouse models for global or brain region-targeted manipulations of RGSz1 expression, we demonstrated that the suppression of RGSz1 function increases the analgesic efficacy of MOPR agonists in male and female mice and delays the development of morphine tolerance while decreasing the sensitivity to rewarding and locomotor activating effects. Using biochemical assays and next-generation RNA sequencing, we identified a key role of RGSz1 in the periaqueductal gray (PAG) in morphine tolerance. Chronic morphine administration promotes RGSz1 activity in the PAG, which in turn modulates transcription mediated by the Wnt/ß-catenin signaling pathway to promote analgesic tolerance to morphine. Conversely, the suppression of RGSz1 function stabilizes Axin2-Gαz complexes near the membrane and promotes ß-catenin activation, thereby delaying the development of analgesic tolerance. These data show that the regulation of RGS complexes, particularly those involving RGSz1-Gαz, represents a promising target for optimizing the analgesic actions of opioids without increasing the risk of dependence or addiction.


Asunto(s)
Analgésicos Opioides/farmacología , Proteínas RGS/antagonistas & inhibidores , Vía de Señalización Wnt , Analgesia , Animales , Condicionamiento Psicológico , Femenino , Proteínas de Unión al GTP/metabolismo , Inflamación , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Morfina/farmacología , Neuronas/metabolismo , Sustancia Gris Periacueductal/metabolismo , Proteínas RGS/metabolismo , Análisis de Secuencia de ARN , Proteínas Wnt/metabolismo , beta Catenina/metabolismo
2.
Am J Hum Genet ; 93(2): 249-63, 2013 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-23849776

RESUMEN

Autism Spectrum Disorder (ASD) demonstrates high heritability and familial clustering, yet the genetic causes remain only partially understood as a result of extensive clinical and genomic heterogeneity. Whole-genome sequencing (WGS) shows promise as a tool for identifying ASD risk genes as well as unreported mutations in known loci, but an assessment of its full utility in an ASD group has not been performed. We used WGS to examine 32 families with ASD to detect de novo or rare inherited genetic variants predicted to be deleterious (loss-of-function and damaging missense mutations). Among ASD probands, we identified deleterious de novo mutations in six of 32 (19%) families and X-linked or autosomal inherited alterations in ten of 32 (31%) families (some had combinations of mutations). The proportion of families identified with such putative mutations was larger than has been previously reported; this yield was in part due to the comprehensive and uniform coverage afforded by WGS. Deleterious variants were found in four unrecognized, nine known, and eight candidate ASD risk genes. Examples include CAPRIN1 and AFF2 (both linked to FMR1, which is involved in fragile X syndrome), VIP (involved in social-cognitive deficits), and other genes such as SCN2A and KCNQ2 (linked to epilepsy), NRXN1, and CHD7, which causes ASD-associated CHARGE syndrome. Taken together, these results suggest that WGS and thorough bioinformatic analyses for de novo and rare inherited mutations will improve the detection of genetic variants likely to be associated with ASD or its accompanying clinical symptoms.


Asunto(s)
Trastornos Generalizados del Desarrollo Infantil/genética , Predisposición Genética a la Enfermedad , Genoma , Mutación , Adulto , Niño , Femenino , Heterogeneidad Genética , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Masculino , Linaje
3.
Cell Mol Neurobiol ; 32(7): 1159-74, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22491991

RESUMEN

Wnt/ß-catenin signaling has a well-established role in the development of the central nervous system (CNS), and recent evidence is extending this role to include the regulation of adult hippocampal function, including neurogenesis within the dentate gyrus. While the neuroanatomical expression pattern of many canonical Wnt signaling components have been investigated, the sites of signal integration and functional downstream ß-catenin activation remain comparatively less characterized in the adult CNS. Using two independent transgenic ß-catenin-activated LacZ reporter mouse lines (BatGal and ins-TopGal), we demonstrate that Wnt/ß-catenin signaling is active in discrete regions of the adult mouse CNS. Intriguingly, BatGal mice exhibit a broad pattern of reporter expression in the CNS, while expression in ins-TopGal mice is more restricted. Further investigation of these two lines reveals temporal differences in ß-catenin-activated reporter expression during neurogenesis within the adult hippocampus. Ins-TopGal mice display peaks of Wnt/ß-catenin-activated reporter expression during early and later stages of neurogenesis suggesting Wnt/ß-catenin signaling plays an important role during both progenitor cell amplification as well as neuronal maturation, integration, and/or maintenance; however, results from BatGal mice are not as convincing. Thus our data using ins-TopGal mice are consistent with the idea that Wnt signaling plays diverse roles during adult hippocampal neurogenesis and support the idea that multiple transgenic reporter lines must be rigorously compared during scientific investigations.


Asunto(s)
Hipocampo/citología , Hipocampo/fisiología , Neurogénesis/fisiología , Vía de Señalización Wnt/fisiología , beta Catenina/fisiología , Factores de Edad , Animales , Sistema Nervioso Central/citología , Sistema Nervioso Central/fisiología , Humanos , Masculino , Ratones , Ratones Transgénicos , Transducción de Señal/fisiología , beta Catenina/genética
4.
J Med Case Rep ; 16(1): 180, 2022 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-35509069

RESUMEN

BACKGROUND: Mutations in the genes encoding the large-conductance calcium-activated potassium channel, especially KCNMA1 encoding its α-subunit, have been linked to several neurological features, including intellectual disability or autism. Associated with neurodevelopmental phenotypes, sensory function disturbances are considered to be important clinical features contributing to a variety of behavioral impairments. Large-conductance calcium-activated potassium channels are important in regulating neurotransmission in sensory circuits, including visual pathways. Deficits in visual function can contribute substantially to poor quality of life, while therapeutic approaches aimed at addressing such visual deficits represent opportunities to improve neurocognitive and neurobehavioral outcomes. CASE PRESENTATION: We describe the case of a 25-year-old Caucasian male with autism spectrum disorder and severe intellectual disability presenting large-conductance calcium-activated potassium channel haploinsufficiency due to a de novo balanced translocation (46, XY, t [9; 10] [q23;q22]) disrupting the KCNMA1 gene. The visual processing pathway of the subject was evaluated using both electroretinography and visual contrast sensitivity, indicating that both retinal bipolar cell function and contrast discrimination performance were reduced by approximately 60% compared with normative control values. These findings imply a direct link between KCNMA1 gene disruption and visual dysfunction in humans. In addition, the subject reported photophobia but did not exhibit strabismus, nystagmus, or other visual findings on physical examination. CONCLUSIONS: This case study of a subject with large-conductance calcium-activated potassium channel haploinsufficiency and photophobia revealed a visual pathway deficit at least at the retinal level, with diminished retinal light capture likely due to bipolar cell dysfunction and an associated loss of contrast sensitivity. The data suggest that large-conductance calcium-activated potassium channels play an important role in the normal functioning of the visual pathway in humans, and that their disruption may play a role in visual and other sensory system symptomatology in large-conductance calcium-activated potassium channelopathies or conditions where disruption of large-conductance calcium-activated potassium channel function is a relevant feature of the pathophysiology, such as fragile X syndrome. This work suggests that the combined use of physiological (electroretinography) and functional (contrast sensitivity) approaches may have utility as a biomarker strategy for identifying and characterizing visual processing deficits in individuals with large-conductance calcium-activated potassium channelopathy. Trial registration ID-RCB number 2019-A01015-52, registered 17/05/2019.


Asunto(s)
Trastorno del Espectro Autista , Discapacidad Intelectual , Calcio , Haploinsuficiencia , Humanos , Discapacidad Intelectual/complicaciones , Discapacidad Intelectual/genética , Subunidades alfa de los Canales de Potasio de Gran Conductancia Activados por Calcio/genética , Canales de Potasio de Gran Conductancia Activados por el Calcio/genética , Masculino , Fotofobia , Potasio , Calidad de Vida , Órganos de los Sentidos
5.
Proteomics ; 11(21): 4189-201, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22002935

RESUMEN

Information storage in the brain depends on the ability of neurons to alter synaptic connectivity within key circuitries such as the hippocampus. Memory-associated synaptic plasticity is mediated by a temporal cascade of de novo protein synthesis and altered protein processing. Here, we have used two-dimensional difference in gel electrophoresis (2-D DIGE) to investigate memory-specific protein changes in the hippocampal dentate gyrus at increasing times following spatial learning. We identified 42 proteins that were significantly regulated in the first 24 h of spatial memory consolidation. Two distinct waves of protein expression regulation were evident, at 3 and 12 h post-learning and this is in agreement with studies employing inhibitors of global translation. Functional classification of the memory-associated proteins revealed that the majority of regulated proteins contributed either to cellular structure or cellular metabolism. For example, actins, tubulins and intermediate filament proteins, core proteins of the three major cytoskeletal components, were dynamically regulated at times that suggest a role in memory-associated synaptic reorganization. Increased proteasome-mediated protein degradation was evident in the early post-training period including the down-regulation of phosphoprotein enriched in astrocytes 15 kDa, a key inhibitor of extracellular signal-regulated kinase signaling. Some of the most substantial protein expression changes were observed for secreted carrier proteins including transthyretin and serum albumin at 6-12 h post-learning, regulations that could serve an important role in increasing the supply of retinoic acid and thyroid hormone, key synaptic plasticity-promoting signals in the adult brain. Together these observations provide further insight into protein level regulations occurring in the hippocampus during spatial memory consolidation.


Asunto(s)
Giro Dentado/metabolismo , Aprendizaje por Laberinto , Proteoma/metabolismo , Proteómica , Animales , Proteínas Reguladoras de la Apoptosis , Regulación de la Expresión Génica , Masculino , Memoria , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Prealbúmina/genética , Prealbúmina/metabolismo , Proteoma/genética , Ratas , Ratas Wistar , Albúmina Sérica/genética , Albúmina Sérica/metabolismo , Electroforesis Bidimensional Diferencial en Gel
6.
J Neurosci ; 30(6): 2017-24, 2010 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-20147530

RESUMEN

Endocannabinoids (eCBs) function as retrograde signaling molecules at synapses throughout the brain, regulate axonal growth and guidance during development, and drive adult neurogenesis. There remains a lack of genetic evidence as to the identity of the enzyme(s) responsible for the synthesis of eCBs in the brain. Diacylglycerol lipase-alpha (DAGLalpha) and -beta (DAGLbeta) synthesize 2-arachidonoyl-glycerol (2-AG), the most abundant eCB in the brain. However, their respective contribution to this and to eCB signaling has not been tested. In the present study, we show approximately 80% reductions in 2-AG levels in the brain and spinal cord in DAGLalpha(-/-) mice and a 50% reduction in the brain in DAGLbeta(-/-) mice. In contrast, DAGLbeta plays a more important role than DAGLalpha in regulating 2-AG levels in the liver, with a 90% reduction seen in DAGLbeta(-/-) mice. Levels of arachidonic acid decrease in parallel with 2-AG, suggesting that DAGL activity controls the steady-state levels of both lipids. In the hippocampus, the postsynaptic release of an eCB results in the transient suppression of GABA-mediated transmission at inhibitory synapses; we now show that this form of synaptic plasticity is completely lost in DAGLalpha(-/-) animals and relatively unaffected in DAGLbeta(-/-) animals. Finally, we show that the control of adult neurogenesis in the hippocampus and subventricular zone is compromised in the DAGLalpha(-/-) and/or DAGLbeta(-/-) mice. These findings provide the first evidence that DAGLalpha is the major biosynthetic enzyme for 2-AG in the nervous system and reveal an essential role for this enzyme in regulating retrograde synaptic plasticity and adult neurogenesis.


Asunto(s)
Encéfalo/metabolismo , Moduladores de Receptores de Cannabinoides/fisiología , Endocannabinoides , Lipoproteína Lipasa/genética , Animales , Ácidos Araquidónicos/metabolismo , Encéfalo/citología , Glicéridos/metabolismo , Hipocampo/citología , Hipocampo/metabolismo , Hígado/metabolismo , Ratones , Ratones Noqueados , Neurogénesis , Plasticidad Neuronal , Transducción de Señal , Médula Espinal/metabolismo , Sinapsis/fisiología
7.
J Pharmacol Exp Ther ; 338(1): 345-52, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21508084

RESUMEN

Metabotropic glutamate receptor 7 (mGluR7) remains the most elusive of the eight known mGluRs primarily because of the limited availability of tool compounds to interrogate its potential therapeutic utility. The discovery of N,N'-dibenzhydrylethane-1,2-diamine dihydrochloride (AMN082) as the first orally active, brain-penetrable, mGluR7-selective allosteric agonist by Mitsukawa and colleagues (Proc Natl Acad Sci USA 102:18712-18717, 2005) provides a means to investigate this receptor system directly. AMN082 demonstrates mGluR7 agonist activity in vitro and interestingly has a behavioral profile that supports utility across a broad spectrum of psychiatric disorders including anxiety and depression. The present studies were conducted to extend the in vitro and in vivo characterization of AMN082 by evaluating its pharmacokinetic and metabolite profile. Profiling of AMN082 in rat liver microsomes revealed rapid metabolism (t(1/2) < 1 min) to a major metabolite, N-benzhydrylethane-1,2-diamine (Met-1). In vitro selectivity profiling of Met-1 demonstrated physiologically relevant transporter binding affinity at serotonin transporter (SERT), dopamine transporter (DAT), and norepinephrine transporter (NET) (323, 3020, and 3410 nM, respectively); whereas the parent compound AMN082 had appreciable affinity at NET (1385 nM). AMN082 produced antidepressant-like activity and receptor occupancy at SERT up to 4 h postdose, a time point at which AMN082 is significantly reduced in brain and plasma while the concentration of Met-1 continues to increase in brain. Acute Met-1 administration produced antidepressant-like activity as would be expected from its in vitro profile as a mixed SERT, NET, DAT inhibitor. Taken together, these data suggest that the reported in vivo actions of AMN082 should be interpreted with caution, because they may involve other mechanisms in addition to mGluR7.


Asunto(s)
Compuestos de Bencidrilo/farmacología , Monoaminas Biogénicas/farmacología , Receptores de Glutamato Metabotrópico/agonistas , Receptores de Glutamato Metabotrópico/fisiología , Regulación Alostérica/efectos de los fármacos , Regulación Alostérica/fisiología , Animales , Compuestos de Bencidrilo/metabolismo , Monoaminas Biogénicas/fisiología , Células CHO , Cricetinae , Cricetulus , Células HEK293 , Humanos , Masculino , Ratones , Unión Proteica/fisiología , Ratas , Ratas Sprague-Dawley
8.
J Neurodev Disord ; 13(1): 45, 2021 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-34625026

RESUMEN

BACKGROUND: Disturbances in sensory function are an important clinical feature of neurodevelopmental disorders such as fragile X syndrome (FXS). Evidence also directly connects sensory abnormalities with the clinical expression of behavioral impairments in individuals with FXS; thus, positioning sensory function as a potential clinical target for the development of new therapeutics. Using electroretinography (ERG) and contrast sensitivity (CS), we previously reported the presence of sensory deficits in the visual system of the Fmr1-/y genetic mouse model of FXS. The goals of the current study were two-folds: (1) to assess the feasibility of measuring ERG and CS as a biomarker of sensory deficits in individuals with FXS, and (2) to investigate whether the deficits revealed by ERG and CS in Fmr1-/y mice translate to humans with FXS. METHODS: Both ERG and CS were measured in a cohort of male individuals with FXS (n = 20, 18-45 years) and age-matched healthy controls (n = 20, 18-45 years). Under light-adapted conditions, and using both single flash and flicker (repeated train of flashes) stimulation protocols, retinal function was recorded from individual subjects using a portable, handheld, full-field flash ERG device (RETeval®, LKC Technologies Inc., Gaithersburg, MD, USA). CS was assessed in each subject using the LEA SYMBOLS® low-contrast test (Good-Lite, Elgin, IL, USA). RESULTS: Data recording was successfully completed for ERG and assessment of CS in most individuals from both cohorts demonstrating the feasibility of these methods for use in the FXS population. Similar to previously reported findings from the Fmr1-/y genetic mouse model, individuals with FXS were found to exhibit reduced b-wave and flicker amplitude in ERG and an impaired ability to discriminate contrasts compared to healthy controls. CONCLUSIONS: This study demonstrates the feasibility of using ERG and CS for assessing visual deficits in FXS and establishes the translational validity of the Fmr1-/y mice phenotype to individuals with FXS. By including electrophysiological and functional readouts, the results of this study suggest the utility of both ERG and CS (ERG-CS) as complementary translational biomarkers for characterizing sensory abnormalities found in FXS, with potential applications to the clinical development of novel therapeutics that target sensory function abnormalities to treat core symptomatology in FXS. TRIAL REGISTRATION: ID-RCB number 2019-A01015-52 registered on the 17 May 2019.


Asunto(s)
Síndrome del Cromosoma X Frágil , Animales , Biomarcadores , Sensibilidad de Contraste , Electrorretinografía , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/complicaciones , Síndrome del Cromosoma X Frágil/diagnóstico , Síndrome del Cromosoma X Frágil/genética , Masculino , Ratones
9.
Mol Pharmacol ; 78(6): 996-1003, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20855465

RESUMEN

Endocannabinoids are lipid molecules that serve as natural ligands for the cannabinoid receptors CB1 and CB2. They modulate a diverse set of physiological processes such as pain, cognition, appetite, and emotional states, and their levels and functions are tightly regulated by enzymatic biosynthesis and degradation. 2-Arachidonoylglycerol (2-AG) is the most abundant endocannabinoid in the brain and is believed to be hydrolyzed primarily by the serine hydrolase monoacylglycerol lipase (MAGL). Although 2-AG binds and activates cannabinoid receptors in vitro, when administered in vivo, it induces only transient cannabimimetic effects as a result of its rapid catabolism. Here we show using a mouse model with a targeted disruption of the MAGL gene that MAGL is the major modulator of 2-AG hydrolysis in vivo. Mice lacking MAGL exhibit dramatically reduced 2-AG hydrolase activity and highly elevated 2-AG levels in the nervous system. A lack of MAGL activity and subsequent long-term elevation of 2-AG levels lead to desensitization of brain CB1 receptors with a significant reduction of cannabimimetic effects of CB1 agonists. Also consistent with CB1 desensitization, MAGL-deficient mice do not show alterations in neuropathic and inflammatory pain sensitivity. These findings provide the first genetic in vivo evidence that MAGL is the major regulator of 2-AG levels and signaling and reveal a pivotal role for 2-AG in modulating CB1 receptor sensitization and endocannabinoid tone.


Asunto(s)
Moduladores de Receptores de Cannabinoides/fisiología , Endocannabinoides , Monoacilglicerol Lipasas/metabolismo , Receptor Cannabinoide CB1/fisiología , Animales , Activación Enzimática/genética , Activación Enzimática/fisiología , Hidrólisis , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Monoacilglicerol Lipasas/deficiencia , Monoacilglicerol Lipasas/fisiología , Dimensión del Dolor/métodos
10.
J Neurochem ; 113(3): 601-14, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20096092

RESUMEN

The critical sequence of molecular, neurotransmission and synaptic disruptions that underpin the emergence of psychiatric disorders like schizophrenia remain to be established with progress only likely using animal models that capture key features of such disorders. We have related the emergence of behavioural, neurochemical and synapse ultrastructure deficits to transcriptional dysregulation in the medial prefrontal cortex of Wistar rats reared in isolation. Isolation reared animals developed sensorimotor deficits at postnatal day 60 which persisted into adulthood. Analysis of gene expression prior to the emergence of the sensorimotor deficits revealed a significant disruption in transcriptional control, notably of immediate early and interferon-associated genes. At postnatal day 60 many gene transcripts relating particularly to GABA transmission and synapse structure, for example Gabra4, Nsf, Syn2 and Dlgh1, transiently increased expression. A subsequent decrease in genes such as Gria2 and Dlgh2 at postnatal day 80 suggested deficits in glutamatergic transmission and synapse integrity, respectively. Microdialysis studies revealed decreased extracellular glutamate suggesting a state of hypofrontality while ultrastructural analysis showed total and perforated synapse complement in layer III to be significantly reduced in the prefrontal cortex of postnatal day 80 isolated animals. These studies provide a molecular framework to understand the developmental emergence of the structural and behavioural characteristics that may in part define psychiatric illness.


Asunto(s)
Corteza Cerebral/metabolismo , Regulación de la Expresión Génica/fisiología , Aislamiento Social/psicología , Animales , Conducta Animal/fisiología , Corteza Cerebral/química , Corteza Cerebral/ultraestructura , Biología Computacional , ADN/biosíntesis , ADN/genética , Masculino , Microdiálisis , Actividad Motora/fisiología , Familia de Multigenes , Análisis de Secuencia por Matrices de Oligonucleótidos , ARN/biosíntesis , ARN/genética , ARN Complementario/biosíntesis , ARN Complementario/genética , Ratas , Ratas Wistar , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Estrés Psicológico/genética , Estrés Psicológico/psicología , Sinapsis/fisiología , Factores de Transcripción
11.
Psychiatr Clin North Am ; 43(4): 629-645, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33126999

RESUMEN

There are no approved medications for autism spectrum disorder (ASD) core symptoms. However, given the significant clinical need, children and adults with ASD are prescribed medication off label for core or associated conditions, sometimes based on limited evidence for effectiveness. Recent developments in the understanding of biologic basis of ASD have led to novel targets with potential to impact core symptoms, and several clinical trials are underway. Heterogeneity in course of development, co-occurring conditions, and age-related treatment response variability hampers study outcomes. Novel measures and approaches to ASD clinical trial design will help in development of effective pharmacologic treatments.

12.
Child Adolesc Psychiatr Clin N Am ; 29(2): 301-317, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32169264

RESUMEN

There are no approved medications for autism spectrum disorder (ASD) core symptoms. However, given the significant clinical need, children and adults with ASD are prescribed medication off label for core or associated conditions, sometimes based on limited evidence for effectiveness. Recent developments in the understanding of biologic basis of ASD have led to novel targets with potential to impact core symptoms, and several clinical trials are underway. Heterogeneity in course of development, co-occurring conditions, and age-related treatment response variability hampers study outcomes. Novel measures and approaches to ASD clinical trial design will help in development of effective pharmacologic treatments.


Asunto(s)
Trastorno del Espectro Autista/tratamiento farmacológico , Desarrollo de Medicamentos , Adolescente , Adulto , Trastorno del Espectro Autista/inmunología , Trastorno del Espectro Autista/metabolismo , Trastorno del Espectro Autista/fisiopatología , Niño , Preescolar , Humanos , Adulto Joven
13.
Pharmacol Ther ; 113(1): 134-53, 2007 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17010443

RESUMEN

There have been significant advances in the treatment of depression since the serendipitous discovery that modulating monoaminergic neurotransmission may be a pathological underpinning of the disease. Despite these advances, particularly over the last 15years with the introduction of selective serotonin and/or norepinephrine reuptake inhibitors (SNRI), there still remain multiple unmet clinical needs that would represent substantial improvements to current treatment regimens. In terms of efficacy there have been improvements in the percentage of patients achieving remission but this can still be dramatically improved and, in fact, issues still remain with relapse. Furthermore, advances are still required in terms of improving the onset of efficacy as well as addressing the large proportion of patients who remain treatment resistant. While this is not well understood, collective research in the area suggests the disease is heterogeneous in terms of the multiple parameters related to etiology, pathology and response to pharmacological agents. In addition to efficacy further therapeutic advances will also need to address such issues as cognitive impairment, pain, sexual dysfunction, nausea and emesis, weight gain and potential cardiovascular effects. With these unmet needs in mind, the next generation of antidepressants will need to differentiate themselves from the current array of therapeutics for depression. There are multiple strategies for addressing unmet needs that are currently being investigated. These range from combination monoaminergic approaches to subtype selective agents to novel targets that include mechanisms to modulate neuropeptides and excitatory amino acids (EAA). This review will discuss the many facets of differentiation and potential strategies for the development of novel antidepressants.


Asunto(s)
Antidepresivos/farmacología , Antidepresivos/uso terapéutico , Depresión/tratamiento farmacológico , Diseño de Fármacos , Animales , Antidepresivos/efectos adversos , Enfermedades Cardiovasculares/inducido químicamente , Cognición/efectos de los fármacos , Depresión/complicaciones , Evaluación Preclínica de Medicamentos/métodos , Humanos , Dolor/complicaciones , Dolor/tratamiento farmacológico , Cooperación del Paciente , Disfunciones Sexuales Fisiológicas/inducido químicamente , Insuficiencia del Tratamiento , Vómitos/inducido químicamente , Aumento de Peso/efectos de los fármacos
14.
Psychopharmacology (Berl) ; 197(4): 601-11, 2008 May.
Artículo en Inglés | MEDLINE | ID: mdl-18311561

RESUMEN

RATIONALE: Neuropeptide S (NPS) and its receptor (NPSR) comprise a recently deorphaned G protein-coupled receptor system. Recent reports implicate NPS in the mediation of anxiolytic-like activity in rodents. OBJECTIVES: To extend the characterization of NPS, the present studies examined the in vitro pharmacology of mouse NPSR and the in vivo pharmacology of NPS in three preclinical mouse models predictive of anxiolytic action: the four-plate test (FPT), elevated zero maze (EZM), and stress-induced hyperthermia (SIH). The ability of NPS to produce antidepressant-like effects in the tail suspension test (TST) was also investigated. RESULTS: In vitro, mouse NPS 1-20 (mNPS 1-20) and the C-terminal glutamine-truncated mouse NPS 1-19 bound mNPSR with high affinity (Ki = 0.203 +/- 0.060, 0.635 +/- 0.141 nM, respectively) and potently activated intracellular calcium release (EC50 = 3.73 +/- 1.08, 4.10 +/- 1.25 nM). NPS produced effects in vivo consistent with anxiolytic-like activity. In FPT, NPS increased punished crossings (minimal effective dose [MED]: mNPS 1-20 = 0.2 microg, mNPS(1-19) = 0.02 microg), similar to the reference anxiolytic, alprazolam (MED 0.5 microg). NPS increased the percentage of time spent in the open quadrants of EZM (MED: mNPS 1-20 = 0.1 microg, mNPS 1-19 = 1.0 microg), like the reference anxiolytic, chlordiazepoxide (MED 56 microg). In SIH, NPS attenuated stress-induced increases in body temperature similar to alprazolam but with a large potency difference between the NPS peptides (MED: mNPS 1-20 = 2.0 microg, mNPS 1-19 = 0.0002 microg) and mNPS 1-20 increased baseline temperature. Unlike fluoxetine, NPS did not effect immobility time in TST, indicating a lack of antidepressant-like activity. CONCLUSIONS: These data provide an important confirmation and expansion of the anxiolytic-like effects of NPS and implicate the NPS system as a novel target for anxiolytic drug discovery.


Asunto(s)
Ansiolíticos/farmacología , Ansiolíticos/uso terapéutico , Trastornos de Ansiedad/tratamiento farmacológico , Ansiedad/psicología , Modelos Animales de Enfermedad , Neuropéptidos/farmacología , Neuropéptidos/uso terapéutico , Alprazolam/farmacología , Alprazolam/uso terapéutico , Animales , Antidepresivos/farmacología , Antidepresivos/uso terapéutico , Trastornos de Ansiedad/psicología , Nivel de Alerta/efectos de los fármacos , Regulación de la Temperatura Corporal/efectos de los fármacos , Calcio/metabolismo , Línea Celular , Clordiazepóxido/farmacología , Clordiazepóxido/uso terapéutico , Relación Dosis-Respuesta a Droga , Evaluación Preclínica de Medicamentos , Miedo/efectos de los fármacos , Fluoxetina/farmacología , Fluoxetina/uso terapéutico , Humanos , Técnicas In Vitro , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Ratones , Actividad Motora/efectos de los fármacos , Oxitocina , Fragmentos de Péptidos/farmacología , Fragmentos de Péptidos/uso terapéutico , Receptores de Superficie Celular/efectos de los fármacos , Receptores de Superficie Celular/fisiología , Receptores Acoplados a Proteínas G/efectos de los fármacos , Receptores Acoplados a Proteínas G/fisiología , Relación Estructura-Actividad
15.
Brain Res ; 1203: 68-78, 2008 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-18321472

RESUMEN

Two distinct norepinephrine (NE) transporter mechanisms (uptake 1 and uptake 2) regulate extracellular NE concentrations. An association has been observed between the gradual improvement in patients treated with antidepressants that inhibit the NE transporter (NET/uptake 1) and increases in urinary normetanephrine, the O-methylated NE metabolite and potent inhibitor of uptake 2. These observations led to the hypothesis that increased levels of normetanephrine, and consequently inhibition of uptake 2, may partly be responsible for the clinical efficacy of some antidepressants. To investigate this hypothesis, we employed microdialysis techniques in the rat frontal cortex to monitor extracellular changes in normetanephrine following chronic administration of the clinically effective antidepressant, venlafaxine (a serotonin (5-HT) and NE reuptake inhibitor). We evaluated the neurochemical effects of inhibiting uptake 2 alone, or in conjunction with venlafaxine, on extracellular levels of NE and 5-HT. Chronic venlafaxine administration (14 days, 10 mg/kg, s.c.) elicited significant increases in cortical NE and 5-HT while producing a non-significant trend to increase cortical levels of normetanephrine. Additional studies revealed that combining normetanephrine with venlafaxine (10 mg/kg, i.p.), at a dose of normetanephrine (10 mg/kg, i.p.) that did not produce changes in extracellular levels of NE on its own, potentiated antidepressant-induced increases in extracellular NE. We also report mouse behavioral data involving the tail suspension test that complement the neurochemical observations. These preclinical findings, taken together, suggest that inhibiting both uptake 1 and uptake 2 via venlafaxine and normetanephrine, respectively, elicits a greater increase in cortical levels of NE than inhibiting either transporter alone.


Asunto(s)
Química Encefálica/efectos de los fármacos , Ciclohexanoles/farmacología , Normetanefrina/metabolismo , Normetanefrina/farmacología , Inhibidores Selectivos de la Recaptación de Serotonina/farmacología , Animales , Conducta Animal/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Esquema de Medicación , Líquido Extracelular/efectos de los fármacos , Líquido Extracelular/metabolismo , Lóbulo Frontal/efectos de los fármacos , Lóbulo Frontal/metabolismo , Suspensión Trasera/métodos , Pérdida de Tono Postural/efectos de los fármacos , Masculino , Microdiálisis , Norepinefrina/metabolismo , Ratas , Ratas Sprague-Dawley , Serotonina/metabolismo , Clorhidrato de Venlafaxina
16.
Neuropsychopharmacology ; 32(11): 2360-8, 2007 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17342171

RESUMEN

The present studies were conducted to determine if increasing central levels of the neurotrophic factor insulin-like growth factor-1 (IGF-I) either directly or indirectly produces anxiolytic and antidepressant-like effects in the mouse. Central levels of IGF-I can be increased directly, by administering IGF-I, or indirectly by blocking the insulin-like growth factor binding proteins (IGFBPs). The IGFBP family has the unique ability to regulate IGF-I levels by sequestering IGF-I into an inactive complex. Therefore, an IGFBP inhibitor increases the level of IGF-I available to bind to its receptor. Intracerebroventricular (icv) administration of the nonspecific IGFBP inhibitor NBI-31772 (10-30 microg) increases the number of punished crossings in the four-plate test and NBI-31772 (0.3-10 microg) increases time spent in the open quadrant of the elevated zero maze (EZM), indicative of anxiolytic-like effects. NBI-31772 (3-30 microg) also decreases immobility time in the tail suspension test, indicative of antidepressant-like effects. Similarly, icv administration of IGF-I (0.1 microg) produces anxiolytic-like effects in the four-plate test and IGF-1 (0.3-1 microg) produces anxiolytic-like effects in the EZM. IGF-I (10 microg) also produces antidepressant-like effects in the tail suspension test. Coadministration of the IGF-I receptor antagonist JB1 with NBI-31772 or IGF-I blocks the anxiolytic-like and antidepressant-like effects of these compounds. These results suggest that NBI-31772 produces behavioral effects by increasing levels of IGF-I that in turn activate the IGF-I receptor. The present studies demonstrate that an IGFBP inhibitor mimics the behavioral effects of IGF-I and that IGFBP inhibition may represent a novel mechanism by which to increase IGF-I to treat depression and anxiety.


Asunto(s)
Antidepresivos/farmacología , Ansiedad/metabolismo , Catecoles/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Proteínas de Unión a Factor de Crecimiento Similar a la Insulina/metabolismo , Factor I del Crecimiento Similar a la Insulina/metabolismo , Isoquinolinas/farmacología , Análisis de Varianza , Animales , Antidepresivos/uso terapéutico , Ansiedad/tratamiento farmacológico , Reacción de Prevención/efectos de los fármacos , Conducta Animal , Catecoles/uso terapéutico , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Interacciones Farmacológicas , Inhibidores Enzimáticos/farmacología , Suspensión Trasera/métodos , Inyecciones Intraventriculares/métodos , Proteínas de Unión a Factor de Crecimiento Similar a la Insulina/antagonistas & inhibidores , Isoquinolinas/uso terapéutico , Masculino , Ratones , Actividad Motora/efectos de los fármacos
17.
Neuropeptides ; 41(5): 307-20, 2007 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-17637475

RESUMEN

Galanin's influence on monoaminergic neurotransmission, together with its discrete CNS distribution in corticolimbic brain areas, points to a potential role for this neuropeptide in mediating anxiety- and depression-like responses. To evaluate this hypothesis, the non-selective galanin receptor agonist, galnon, was tested in multiple preclinical models of anxiolytic- and antidepressive-like activity. Acute administration of galnon (0.03-1mg/kg, i.p.) dose-dependently increased punished crossings in the four plate test, with magnitude similar to the effects of the endogenous ligand, galanin (0.1-1.0 microg, i.c.v.). Moreover, the effects of galnon and galanin were blocked by central administration of the non-selective galanin receptor antagonist, M35 (10 microg, i.c.v.). Interestingly, the benzodiazepine receptor antagonist, flumazenil (1mg/kg, i.p.), reversed galnon's effect in the four plate test, implicating GABAergic neurotransmission as a potential mechanism underlying this anxiolytic-like response. In the elevated zero maze, galnon (0.3-3.0mg/kg, i.p.) and galanin (0.03-0.3 microg, i.c.v.) increased the time spent in the open arms, while in the stress-induced hyperthermia model, galnon (0.3-30 mg/kg, i.p.) attenuated stress-induced changes in body temperature. Consistent with these anxiolytic-like effects, in vivo microdialysis showed that acute galnon (3mg/kg, i.p.) treatment preferentially elevated levels of GABA in the rat amygdala, a brain area linked to fear and anxiety behaviors. In contrast to the effects in anxiety models, neither galnon (1-5.6 mg/kg, i.p.) nor galanin (0.3-3.0 microg, i.c.v.) demonstrated antidepressant-like effects in the mouse tail suspension test. Galnon (1-10mg/kg, i.p.) also failed to reduce immobility time in the rat forced swim test. In vitro, galnon and galanin showed affinity for human galanin receptors expressed in Bowes melanoma cells (K(i)=5.5 microM and 0.2 nM, respectively). Galanin displayed high affinity and functional potency for membranes expressing rat GALR1 receptors (K(i)=0.85 nM; EC(50)=0.6 nM), while galnon (10 microM) failed to displace radiolabeled galanin or inhibit cAMP production in the same GALR1 cell line. Galnon (10 microM) showed affinity for NPY1, NK2, M5, and somatostatin receptors but no affinity for galanin receptors expressed in rat hippocampal membranes. Taken together, the present series of studies demonstrate novel effects of galnon in various preclinical models of anxiety and highlight the galaninergic system as a novel therapeutic target for the treatment of anxiety-related disorders. Moreover, these data indicate rodent GALR1 receptors do not mediate galnon's in vivo activity.


Asunto(s)
Ansiolíticos/farmacología , Cumarinas/farmacología , Conducta Exploratoria/fisiología , Motivación , Receptores de Galanina/agonistas , Animales , Temperatura Corporal/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Conducta Exploratoria/efectos de los fármacos , Habituación Psicofisiológica , Masculino , Ratones , Ratones Endogámicos BALB C , Microdiálisis , Ratas , Ratas Endogámicas WKY , Ratas Sprague-Dawley , Estrés Psicológico/tratamiento farmacológico , Natación
18.
Psychopharmacology (Berl) ; 185(2): 218-25, 2006 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-16418825

RESUMEN

RATIONALE: Oxytocin (OT) acts as a neuromodulator/neurotransmitter within the central nervous system (CNS) and regulates a diverse range of CNS functions. Notably, evidence from studies in females has revealed an important role for OT in regulating anxiety behavior. OBJECTIVES: The objective of this study was to examine the effects of OT on both behavioral and autonomic parameters of the anxiety response in male mice using three pharmacologically validated preclinical models of anxiety: the four-plate test (FPT), elevated zero maze (EZM), and stress-induced hyperthermia (SIH). RESULTS: In the FPT, both peripherally (3-30 mg/kg i.p.) and centrally (1-10 microg i.c.v.) administered OT produced dose-dependent increases in punished crossings, indicating an anxiolytic-like effect. The effects of centrally administered OT in the FPT were blocked with peripheral administration of a brain-penetrant OT receptor (OTR) antagonist WAY-162720 (30 mg/kg i.p.), and the effects of peripherally administered OT were blocked with central administration of a non-penetrant OTR antagonist L-371,257, suggesting OT acts centrally. In the EZM, centrally administered OT (0.1-1.0 microg, i.c.v.) produced significant increases in the percentage time spent in the open quadrants of the maze, comparable to alprazolam (0.5-1.0 microg, i.c.v.). In SIH, OT (1-10 mg/kg i.p.) dose-dependently attenuated stress-induced increases in core body temperature, comparable to the reference anxiolytic chlordiazepoxide (CDP) (10 mg/kg i.p.). CONCLUSIONS: These results provide specific behavioral and autonomic evidence of anxiolytic-like effects for oxytocin in males and, together with previously reported observations in females, suggest the potential utility of OTR agonism as a therapeutically relevant mechanism of action for novel anxiolytics in both sexes.


Asunto(s)
Ansiolíticos/farmacología , Conducta Animal/efectos de los fármacos , Oxitocina/fisiología , Receptores de Oxitocina/agonistas , Animales , Ansiolíticos/administración & dosificación , Benzoxazinas , Clordiazepóxido/farmacología , Relación Dosis-Respuesta a Droga , Inyecciones Intraperitoneales , Inyecciones Intraventriculares , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Oxazinas/farmacología , Oxitocina/administración & dosificación , Oxitocina/farmacología , Piperidinas/farmacología , Receptores de Oxitocina/antagonistas & inhibidores
19.
NPJ Genom Med ; 1: 160271-1602710, 2016 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-27525107

RESUMEN

De novo mutations (DNMs) are important in Autism Spectrum Disorder (ASD), but so far analyses have mainly been on the ~1.5% of the genome encoding genes. Here, we performed whole genome sequencing (WGS) of 200 ASD parent-child trios and characterized germline and somatic DNMs. We confirmed that the majority of germline DNMs (75.6%) originated from the father, and these increased significantly with paternal age only (p=4.2×10-10). However, when clustered DNMs (those within 20kb) were found in ASD, not only did they mostly originate from the mother (p=7.7×10-13), but they could also be found adjacent to de novo copy number variations (CNVs) where the mutation rate was significantly elevated (p=2.4×10-24). By comparing DNMs detected in controls, we found a significant enrichment of predicted damaging DNMs in ASD cases (p=8.0×10-9; OR=1.84), of which 15.6% (p=4.3×10-3) and 22.5% (p=7.0×10-5) were in the non-coding or genic non-coding, respectively. The non-coding elements most enriched for DNM were untranslated regions of genes, boundaries involved in exon-skipping and DNase I hypersensitive regions. Using microarrays and a novel outlier detection test, we also found aberrant methylation profiles in 2/185 (1.1%) of ASD cases. These same individuals carried independently identified DNMs in the ASD risk- and epigenetic- genes DNMT3A and ADNP. Our data begins to characterize different genome-wide DNMs, and highlight the contribution of non-coding variants, to the etiology of ASD.

20.
Curr Pharm Des ; 11(2): 205-25, 2005.
Artículo en Inglés | MEDLINE | ID: mdl-15638758

RESUMEN

Arginine vasopressin (AVP) is a cyclic nonapeptide synthesized exclusively by neurosecretory cells of the central nervous system (CNS). Two functionally distinct vasopressinergic systems can be defined based on differences in the sites of action and release of AVP. The peripheral vasopressinergic system encompasses the sites of action for AVP released into peripheral circulation (e.g. vascular smooth muscle, liver, kidney) from nerve terminals in the posterior pituitary. Peripherally circulating AVP is responsible for the classic endocrine functions ascribed to this neurohormone (e.g. vasoconstriction, glycogen metabolism, antidiuresis). The central vasopressinergic system, on the other hand, includes the sites of AVP synthesis and release within the CNS, where AVP acts as a neuromodulator/neurotransmitter regulating an array of CNS-mediated functions (e.g. learning and memory, neuroendocrine reactivity, social behaviors, circadian rhythmicity, thermoregulation, and autonomic function). Historically, pharmaceutical interest has focused on drug development efforts that sought to exploit the peripheral effects of AVP. Evidence, however, from clinical studies and animal models of CNS disorders has directly implicated disturbances in vasopressinergic activity in the pathophysiology of a number of human psychiatric disorders (mood, anxiety, and cognitive disorders). This review will examine the available evidence of central vasopressinergic system involvement in psychiatric disorders, and the potential opportunities for development of novel psychopharmaceuticals around this system will be discussed. Specific lines of evidence will be presented which rationalize each AVP receptor subtype (V(1)R or V(1a), V(2)R, V(3)R or V(1b)) as a molecular target for particular psychiatric indications.


Asunto(s)
Arginina Vasopresina/fisiología , Diseño de Fármacos , Hipotálamo Anterior/fisiología , Psicotrópicos/uso terapéutico , Animales , Arginina Vasopresina/química , Ensayos Clínicos como Asunto , Método Doble Ciego , Humanos , Hipotálamo Anterior/anatomía & histología , Trastornos Mentales/clasificación , Trastornos Mentales/diagnóstico , Trastornos Mentales/tratamiento farmacológico , Psicotrópicos/administración & dosificación , Psicotrópicos/farmacocinética , Receptores de Vasopresinas/clasificación , Receptores de Vasopresinas/efectos de los fármacos , Receptores de Vasopresinas/uso terapéutico , Tecnología Farmacéutica/métodos , Tecnología Farmacéutica/tendencias
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA