Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Ann Hum Genet ; 88(3): 183-193, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38018226

RESUMEN

BACKGROUD: Neurofibromatosis type 1 (NF1) is a heterogeneous neurocutaneous disorder. Spinal neurofibromatosis (SNF) is a distinct clinical entity of NF1, characterized by bilateral neurofibromas involving all spinal nerve roots. Although both forms are caused by intragenic heterozygous variants of NF1, missense variants have been associated with SNF, according to a dominant inheritance model causing haploinsufficiency. Most patients carry pathogenic variants in one of the NF1 alleles; nevertheless, patients with both NF1-mutated copies have been described. Interestingly, all NF1 variants carried by the known SNF compound heterozygotes were missense/splicing variants or in-frame insertion-deletions. AIMS: To investigate whether there is a differential expression of NF1 variant alleles in an NF1 compound heterozygous SNF patient possibly contributing to clinical phenotype. MATERIALS & METHODS: We performed an allele-specific expression study, by chip-based digital PCR, in an SNF family carrying two NF1 missense variants. We evaluated the expression levels of the two NF1-mutated alleles both carried by the compound heterozygous SNF patient and his relatives. RESULTS: Both alleles were expressed at comparable levels in the patient and hyper-expressed compared to the wild-type alleles of healthy controls. DISCUSSION: Here we provide new insights into expression studies of NF1-mutated transcripts suggesting that a novel pathogenetic mechanism, caused by gain-of-function variants, could be associated with SNF. CONCLUSIONS: Further studies should be performed in larger cohorts, opening new perspectives in the NF1 pathogenesis comprehension.


Asunto(s)
Neurofibromatosis 1 , Humanos , Neurofibromatosis 1/genética , Alelos , Fenotipo , Mutación Missense , Reacción en Cadena de la Polimerasa , Genes de Neurofibromatosis 1
2.
Hum Genet ; 143(6): 775-795, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38874808

RESUMEN

NF1 microdeletion syndrome, accounting for 5-11% of NF1 patients, is caused by a deletion in the NF1 region and it is generally characterized by a severe phenotype. Although 70% of NF1 microdeletion patients presents the same 1.4 Mb type-I deletion, some patients may show additional clinical features. Therefore, the contribution of several pathogenic mechanisms, besides haploinsufficiency of some genes within the deletion interval, is expected and needs to be defined. We investigated an altered expression of deletion flanking genes by qPCR in patients with type-1 NF1 deletion, compared to healthy donors, possibly contributing to the clinical traits of NF1 microdeletion syndrome. In addition, the 1.4-Mb deletion leads to changes in the 3D chromatin structure in the 17q11.2 region. Specifically, this deletion alters DNA-DNA interactions in the regions flanking the breakpoints, as demonstrated by our 4C-seq analysis. This alteration likely causes position effect on the expression of deletion flanking genes.Interestingly, 4C-seq analysis revealed that in microdeletion patients, an interaction was established between the RHOT1 promoter and the SLC6A4 gene, which showed increased expression. We performed NGS on putative modifier genes, and identified two "likely pathogenic" rare variants in RAS pathway, possibly contributing to incidental phenotypic features.This study provides new insights into understanding the pathogenesis of NF1 microdeletion syndrome and suggests a novel pathomechanism that contributes to the expression phenotype in addition to haploinsufficiency of genes located within the deletion.This is a pivotal approach that can be applied to unravel microdeletion syndromes, improving precision medicine, prognosis and patients' follow-up.


Asunto(s)
Deleción Cromosómica , Epigénesis Genética , Haploinsuficiencia , Neurofibromatosis 1 , Humanos , Neurofibromatosis 1/genética , Femenino , Masculino , Neurofibromina 1/genética , Cromosomas Humanos Par 17/genética , Fenotipo , Niño , Regiones Promotoras Genéticas
3.
Neurogenetics ; 24(3): 181-188, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37145209

RESUMEN

Neurofibromatosis type I (NF1) microdeletion syndrome, accounting for 5-11% of NF1 patients, is caused by the heterozygous deletion of NF1 and a variable number of flanking genes in the 17q11.2 region. This syndrome is characterized by more severe symptoms than those shown by patients with intragenic NF1 mutation and by variable expressivity, which is not fully explained by the haploinsufficiency of the genes included in the deletions. We here reevaluate an 8-year-old NF1 patient, who carries an atypical deletion generating the RNF135-SUZ12 chimeric gene, previously described when he was 3 years old. As the patient has developed multiple cutaneous/subcutaneous neurofibromas over the past 5 years, we hypothesized a role of RNF135-SUZ12 chimeric gene in the onset of the patient's tumor phenotype. Interestingly, SUZ12 is generally lost or disrupted in NF1 microdeletion syndrome and frequently associated to cancer as RNF135. Expression analysis confirmed the presence of the chimeric gene transcript and revealed hypo-expression of five out of the seven analyzed target genes of the polycomb repressive complex 2 (PRC2), to which SUZ12 belongs, in the patient's peripheral blood, indicating a higher transcriptional repression activity mediated by PRC2. Furthermore, decreased expression of tumor suppressor gene TP53, which is targeted by RNF135, was detected. These results suggest that RNF135-SUZ12 chimera may acquire a gain of function, compared with SUZ12 wild type in the PRC2 complex, and a loss of function relative to RNF135 wild type. Both events may have a role in the early onset of the patient's neurofibromas.


Asunto(s)
Neurofibroma , Neurofibromatosis 1 , Masculino , Humanos , Neurofibromatosis 1/genética , Complejo Represivo Polycomb 2/genética , Neurofibroma/genética , Fenotipo , Mutación , Ubiquitina-Proteína Ligasas/genética
4.
Int J Mol Sci ; 24(4)2023 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-36835447

RESUMEN

Noonan syndrome (NS) is an autosomal dominant multisystem disorder, characterized by variable expressivity and locus heterogeneity, being caused by mutations in one of a subset of RAS pathway genes. Nevertheless, for 20-30% of patients it is not possible to provide molecular diagnosis, suggesting that further unknown genes or mechanisms are involved in NS pathogenesis. Recently, we proposed a digenic inheritance of subclinical variants as an alternative NS pathogenic model in two NS patients negative for molecular diagnosis. They showed hypomorphic variants of RAS pathway genes co-inherited from both their healthy parents that we hypothesized to generate an additive effect. Here, we report on the phosphoproteome and proteome analysis by liquid chromatography tandem mass spectrometry (LC-MS/MS) performed on the immortalized peripheral blood mononuclear cells (PBMCs) from the two above trios. Our results indicate that the two unrelated patients show overlapped profiles in both protein abundances and their phosphorylation levels not reached by their parents. IPA software predicted RAS-related pathways as significantly activated in the two patients. Interestingly, they remained unchanged or only slightly activated in both patients' parents. These findings suggest that the presence of one subclinical variant can activate the RAS pathway below the pathological threshold, which can instead be exceeded by the additive effect due to the co-presence of two subclinical variants causing NS, supporting our digenic inheritance hypothesis.


Asunto(s)
Síndrome de Noonan , Proteínas ras , Humanos , Línea Celular , Cromatografía Liquida , Leucocitos Mononucleares , Mutación , Síndrome de Noonan/genética , Fenotipo , Fosforilación , Espectrometría de Masas en Tándem , Proteínas ras/metabolismo
5.
Int J Mol Sci ; 23(17)2022 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-36077416

RESUMEN

Neurofibromatosis type 2 is an autosomal dominant tumor-prone disorder mainly caused by NF2 point mutations or intragenic deletions. Few individuals with a complex phenotype and 22q12 microdeletions have been described. The 22q12 microdeletions' pathogenic effects at the genetic and epigenetic levels are currently unknown. We here report on 22q12 microdeletions' characterization in three NF2 patients with different phenotype complexities. A possible effect of the position was investigated by in silico analysis of 22q12 topologically associated domains (TADs) and regulatory elements, and by expression analysis of 12 genes flanking patients' deletions. A 147 Kb microdeletion was identified in the patient with the mildest phenotype, while two large deletions of 561 Kb and 1.8 Mb were found in the other two patients, showing a more severe symptomatology. The last two patients displayed intellectual disability, possibly related to AP1B1 gene deletion. The microdeletions change from one to five TADs, and the 22q12 chromatin regulatory landscape, according to the altered expression levels of four deletion-flanking genes, including PIK3IP1, are likely associated with an early ischemic event occurring in the patient with the largest deletion. Our results suggest that the identification of the deletion extent can provide prognostic markers, predictive of NF2 phenotypes, and potential therapeutic targets, thus overall improving patient management.


Asunto(s)
Discapacidad Intelectual , Neurofibromatosis 2 , Complejo 1 de Proteína Adaptadora/genética , Subunidades beta de Complejo de Proteína Adaptadora , Humanos , Discapacidad Intelectual/genética , Neurofibromatosis 2/genética , Fenotipo
6.
Int J Mol Sci ; 22(11)2021 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-34073228

RESUMEN

The presence of thousands of repetitive sequences makes the centromere a fragile region subject to breakage. In this study we collected 31 cases of rearrangements of chromosome 18, of which 16 involved an acrocentric chromosome, during genetic screening done in three centers. We noticed a significant enrichment of reciprocal translocations between the centromere of chromosome 18 and the centromeric or pericentromeric regions of the acrocentrics. We describe five cases with translocation between chromosome 18 and an acrocentric chromosome, and one case involving the common telomere regions of chromosomes 18p and 22p. In addition, we bring evidence to support the hypothesis that chromosome 18 preferentially recombines with acrocentrics: (i) the presence on 18p11.21 of segmental duplications highly homologous to acrocentrics, that can justify a NAHR mechanism; (ii) the observation by 2D-FISH of the behavior of the centromeric regions of 18 respect to the centromeric regions of acrocentrics in the nuclei of normal subjects; (iii) the contact analysis among these regions on published Hi-C data from the human lymphoblastoid cell line (GM12878).


Asunto(s)
Cromosomas Humanos Par 18/genética , Translocación Genética , Adulto , Línea Celular Tumoral , Femenino , Humanos , Lactante , Masculino , Embarazo
7.
Int J Mol Sci ; 21(10)2020 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-32413994

RESUMEN

Satellited non-acrocentric autosomal chromosomes (ps-qs-chromosomes) are the result of an interchange between sub- or telomeric regions of autosomes and the p arm of acrocentrics. The sequence homology at the rearrangement breakpoints appears to be, among others, the most frequent mechanism generating these variant chromosomes. The unbalanced carriers of this type of translocation may or may not display phenotypic abnormalities. With the aim to understand the causative mechanism, we revised all the ps-qs-chromosomes identified in five medical genetics laboratories, which used the same procedures for karyotype analysis, reporting 24 unrelated cases involving eight chromosomes. In conclusion, we observed three different scenarios: true translocation, benign variant and complex rearrangement. The detection of translocation partners is essential to evaluate possible euchromatic unbalances and to infer their effect on phenotype. Moreover, we emphasize the importance to perform both, molecular and conventional cytogenetics methods, to better understand the behavior of our genome.


Asunto(s)
Aberraciones Cromosómicas , Cromosomas/genética , ADN Satélite/genética , Translocación Genética , Análisis Citogenético , Humanos , Hibridación Fluorescente in Situ , Cariotipificación
8.
J Cell Physiol ; 234(5): 6067-6076, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30246374

RESUMEN

Histone deacetylase 8 (HDAC8) is a class 1 histone deacetylase and a member of the cohesin complex. HDAC8 is expressed in smooth muscles, but its expression in skeletal muscle has not been described. We have shown for the first time that HDAC8 is expressed in human and zebrafish skeletal muscles. Using RD/12 and RD/18 rhabdomyosarcoma cells with low and high differentiation potency, respectively, we highlighted a specific correlation with HDAC8 expression and an advanced stage of muscle differentiation. We inhibited HDAC8 activity through a specific PCI-34051 inhibitor in murine C2C12 myoblasts and zebrafish embryos, and we observed skeletal muscles differentiation impairment. We also found a positive regulation of the canonical Wnt signaling by HDAC8 that might explain muscle differentiation defects. These findings suggest a novel mechanism through which HDAC8 expression, in a specific time window of skeletal muscle development, positively regulates canonical Wnt pathway that is necessary for muscle differentiation.


Asunto(s)
Histona Desacetilasas/metabolismo , Desarrollo de Músculos/fisiología , Músculo Esquelético/metabolismo , Proteínas Represoras/metabolismo , Vía de Señalización Wnt/fisiología , Animales , Diferenciación Celular/fisiología , Humanos , Ratones , Músculo Esquelético/citología , Mioblastos/metabolismo , Pez Cebra
9.
Haematologica ; 104(7): 1332-1341, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30630974

RESUMEN

The nucleophosmin 1 gene (NPM1) is the most frequently mutated gene in acute myeloid leukemia. Notably, NPM1 mutations are always accompanied by additional mutations such as those in cohesin genes RAD21, SMC1A, SMC3, and STAG2 but not in the cohesin regulator, nipped B-like (NIPBL). In this work, we analyzed a cohort of adult patients with acute myeloid leukemia and NPM1 mutation and observed a specific reduction in the expression of NIPBL but not in other cohesin genes. In our zebrafish model, overexpression of the mutated form of NPM1 also induced downregulation of nipblb, the zebrafish ortholog of human NIPBL To investigate the hematopoietic phenotype and the interaction between mutated NPM1 and nipblb, we generated a zebrafish model with nipblb downregulation which showed an increased number of myeloid progenitors. This phenotype was due to hyper-activation of the canonical Wnt pathway: myeloid cells blocked in an undifferentiated state could be rescued when the Wnt pathway was inhibited by dkk1b mRNA injection or indomethacin administration. Our results reveal, for the first time, a role for NIPBL during zebrafish hematopoiesis and suggest that an interplay between NIPBL/NPM1 may regulate myeloid differentiation in zebrafish and humans through the canonical Wnt pathway and that dysregulation of these interactions may drive leukemic transformation.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Diferenciación Celular , Proteínas Cromosómicas no Histona/metabolismo , Regulación Neoplásica de la Expresión Génica , Leucemia Mieloide Aguda/patología , Mutación , Proteínas Nucleares/genética , Adulto , Animales , Proteínas de Ciclo Celular/genética , Proteínas Cromosómicas no Histona/genética , Embrión no Mamífero/metabolismo , Embrión no Mamífero/patología , Hematopoyesis , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Nucleofosmina , Fenotipo , Vía de Señalización Wnt , Pez Cebra , Cohesinas
10.
Int J Mol Sci ; 20(17)2019 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-31450727

RESUMEN

The abnormal deposition of proteins in brain tissue is a common feature of neurodegenerative diseases (NDs) often accompanied by the spread of mutated proteins, causing neuronal toxicity. Exosomes play a fundamental role on their releasing in extracellular space after endosomal pathway activation, allowing to remove protein aggregates by lysosomal degradation or their inclusion into multivesicular bodies (MVBs), besides promoting cellular cross-talk. The emerging evidence of pathogenic mutations associated to ND susceptibility, leading to impairment of exosome production and secretion, opens a new perspective on the mechanisms involved in neurodegeneration. Recent findings suggest to investigate the genetic mechanisms regulating the different exosome functions in central nervous system (CNS), to understand their role in the pathogenesis of NDs, addressing the identification of diagnostic and pharmacological targets. This review aims to summarize the mechanisms underlying exosome biogenesis, their molecular composition and functions in CNS, with a specific focus on the recent findings invoking a defective exosome biogenesis as a common biological feature of the major NDs, caused by genetic alterations. Further definition of the consequences of specific genetic mutations on exosome biogenesis and release will improve diagnostic and pharmacological studies in NDs.


Asunto(s)
Susceptibilidad a Enfermedades , Exosomas/metabolismo , Variación Genética , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/metabolismo , Animales , Biomarcadores , Sistema Nervioso Central/metabolismo , Sistema Nervioso Central/fisiopatología , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Vesículas Extracelulares/metabolismo , Humanos , Enfermedades Neurodegenerativas/patología
11.
Hum Genet ; 136(10): 1329-1339, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28776093

RESUMEN

Neurofibromatosis type I (NF1) microdeletion syndrome, which is present in 4-11% of NF1 patients, is associated with a severe phenotype as it is caused by the deletion of NF1 and other genes in the 17q11.2 region. The variable expressivity of the disease makes it challenging to establish genotype-phenotype correlations, which also affects prognosis and counselling. We here describe a 3-year-old NF1 patient with an atypical deletion and a complex phenotype. The patient showed overgrowth, café au lait spots, inguinal freckling, and neurological abnormalities. The extent of the deletion was determined by means of array comparative genomic hybridisation, and its breakpoints were isolated by means of long-range polymerase chain reaction. Sequence analysis of the deletion junction fragment revealed the occurrence of an Alu-mediated recombination that led to the generation of a chimeric gene consisting of three exons of RNF135 and eleven exons of SUZ12. Interestingly, the deletion shares a common RNF135-centred region with another deletion described in a non-NF1 patient with overgrowth. In comparison with the normal RNF135 allele, the chimeric transcript was 350-fold over-expressed in peripheral blood, and the ADAP2 gene located upstream of RNF135 was also up-regulated. In line with this, the deletion causes the loss of a chromatin TD boundary, which entails the aberrant adoption of distal cis-acting regulatory elements. These findings suggest that RNF135 haploinsufficiency is related to overgrowth in patients with NF1 microdeletion syndrome and, for the first time, strongly indicate a position effect that warrants further genotype-phenotype correlation studies to investigate the possible existence of previously unknown pathogenic mechanisms.


Asunto(s)
Efectos de la Posición Cromosómica , Deleción Cromosómica , Proteínas Activadoras de GTPasa , Regulación Neoplásica de la Expresión Génica , Neurofibromatosis 1 , Complejo Represivo Polycomb 2 , Recombinación Genética , Ubiquitina-Proteína Ligasas , Alelos , Preescolar , Proteínas Activadoras de GTPasa/biosíntesis , Proteínas Activadoras de GTPasa/genética , Humanos , Masculino , Proteínas de Neoplasias , Neurofibromatosis 1/genética , Neurofibromatosis 1/metabolismo , Proteínas de Fusión Oncogénica , Complejo Represivo Polycomb 2/genética , Complejo Represivo Polycomb 2/metabolismo , Factores de Transcripción , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
12.
J Hum Genet ; 61(4): 283-93, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26657932

RESUMEN

Cyclin-dependent kinase 5 (CDK5) and cyclin-dependent kinase 5, regulatory subunit 1 (CDK5R1), encoding CDK5 activator p35, have a fundamental role in central nervous system (CNS) development and function, and are involved in the pathogenesis of several neurodegenerative disorders, thus constituting strong candidate genes for the onset of intellectual disability (ID). We carried out a mutation screening of CDK5 and CDK5R1 coding regions and CDK5R1 3'-UTR on a cohort of 360 patients with non-syndromic ID (NS-ID) using denaturing high performance liquid chromatography (DHPLC) and direct sequencing. We found one novel silent mutation in CDK5 and one novel silent mutation in CDK5R1 coding regions, three novel intronic variations in CDK5, not causing any splicing defect, and four novel heterozygous variations in CDK5R1 3'-UTR. None of these variations was present in 450 healthy controls and single-nucleotide polymorphism (SNP) databases. The functional study of CDK5R1 p.A108V mutation evidenced an impaired p35 cleavage by the calcium-dependent protease calpain. Moreover, luciferase constructs containing the CDK5R1 3'-UTR mutations showed altered gene expression levels. Eight known polymorphisms were also identified displaying different frequencies in NS-ID patients compared with the controls. In particular, the minor allele of CDK5R1 3'-UTR rs735555 polymorphism was associated with increased risk for NS-ID. In conclusion, our data suggest that mutations and polymorphisms in CDK5 and CDK5R1 genes may contribute to the onset of the NS-ID phenotype.


Asunto(s)
Quinasa 5 Dependiente de la Ciclina/genética , Discapacidad Intelectual/genética , Trastornos del Desarrollo del Lenguaje/genética , Proteínas del Tejido Nervioso/genética , Regiones no Traducidas 3' , Adolescente , Niño , Cromatografía Líquida de Alta Presión , Femenino , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Discapacidad Intelectual/patología , Intrones , Trastornos del Desarrollo del Lenguaje/patología , Masculino , Mutación
13.
Biochim Biophys Acta ; 1839(6): 506-16, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24792867

RESUMEN

Cyclin-dependent kinase 5 regulatory subunit 1 (CDK5R1) encodes p35, a specific activator of cyclin-dependent kinase 5 (CDK5). CDK5 and p35 have a fundamental role in neuronal migration and differentiation during CNS development. Both the CDK5R1 3'-UTR's remarkable size and its conservation during evolution strongly indicate an important role in post-transcriptional regulation. We previously validated different regulatory elements in the 3'-UTR of CDK5R1, which affect transcript stability, p35 levels and cellular migration through the binding with nELAV proteins and miR-103/7 miRNAs. Interestingly, a 138 bp-long region, named C2.1, was identified as the most mRNA destabilizing portion within CDK5R1 3'-UTR. This feature was maintained by a shorter region of 73 bp, characterized by two poly-U stretches. UV-CL experiments showed that this region interacts with protein factors. UV-CLIP assays and pull-down experiments followed by mass spectrometry analysis demonstrated that nELAV and hnRNPA2/B1 proteins bind to the same U-rich element. These RNA-binding proteins (RBPs) were shown to oppositely control CDK5R1 mRNA stability and p35 protein content at post-trascriptional level. While nELAV proteins have a positive regulatory effect, hnRNPA2/B1 has a negative action that is responsible for the mRNA destabilizing activity both of the C2.1 region and of the full-length 3'-UTR. In co-expression experiments of hnRNPA2/B1 and nELAV RBPs we observed an overall decrease of p35 content. We also demonstrated that hnRNPA2/B1 can downregulate nELAV protein content but not vice versa. This study, by providing new insights on the combined action of different regulatory factors, contributes to clarify the complex post-transcriptional control of CDK5R1 gene expression.


Asunto(s)
Regiones no Traducidas 3'/genética , Proteínas ELAV/metabolismo , Regulación Neoplásica de la Expresión Génica , Ribonucleoproteína Heterogénea-Nuclear Grupo A-B/metabolismo , Proteínas del Tejido Nervioso/genética , Secuencias Reguladoras de Ácido Ribonucleico/genética , Western Blotting , Diferenciación Celular , Proteínas ELAV/genética , Ribonucleoproteína Heterogénea-Nuclear Grupo A-B/genética , Humanos , Inmunoprecipitación , Luciferasas/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neuroblastoma/genética , Neuroblastoma/metabolismo , Estabilidad del ARN , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Células Tumorales Cultivadas
14.
J Med Genet ; 51(7): 436-43, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24711647

RESUMEN

BACKGROUND: Cardiovascular malformations have a higher incidence in patients with NF1 microdeletion syndrome compared to NF1 patients with intragenic mutation, presumably owing to haploinsufficiency of one or more genes included in the deletion interval and involved in heart development. In order to identify which genes could be responsible for cardiovascular malformations in the deleted patients, we carried out expression studies in mouse embryos and functional studies in zebrafish. METHODS AND RESULTS: The expression analysis of three candidate genes included in the NF1 deletion interval, ADAP2, SUZ12 and UTP6, performed by in situ hybridisation, showed the expression of ADAP2 murine ortholog in heart during fundamental phases of cardiac morphogenesis. In order to investigate the role of ADAP2 in cardiac development, we performed loss-of-function experiments of zebrafish ADAP2 ortholog, adap2, by injecting two different morpholino oligos (adap2-MO and UTR-adap2-MO). adap2-MOs-injected embryos (morphants) displayed in vivo circulatory and heart shape defects. The molecular characterisation of morphants with cardiac specific markers showed that the injection of adap2-MOs causes defects in heart jogging and looping. Additionally, morphological and molecular analysis of adap2 morphants demonstrated that the loss of adap2 function leads to defective valvulogenesis, suggesting a correlation between ADAP2 haploinsufficiency and the occurrence of valve defects in NF1-microdeleted patients. CONCLUSIONS: Overall, our findings indicate that ADAP2 has a role in heart development, and might be a reliable candidate gene for the occurrence of cardiovascular malformations in patients with NF1 microdeletion and, more generally, for the occurrence of a subset of congenital heart defects.


Asunto(s)
Anomalías Cardiovasculares/genética , Anomalías Craneofaciales/genética , Proteínas Activadoras de GTPasa/genética , Discapacidad Intelectual/genética , Discapacidades para el Aprendizaje/genética , Neurofibromatosis/genética , Animales , Deleción Cromosómica , Cromosomas Humanos Par 17/genética , Modelos Animales de Enfermedad , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Corazón/embriología , Humanos , Ratones , Morfogénesis , Pez Cebra
15.
Nucleic Acids Res ; 41(5): 3201-16, 2013 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-23376935

RESUMEN

Little is known regarding the post-transcriptional networks that control gene expression in eukaryotes. Additionally, we still need to understand how these networks evolve, and the relative role played in them by their sequence-dependent regulatory factors, non-coding RNAs (ncRNAs) and RNA-binding proteins (RBPs). Here, we used an approach that relied on both phylogenetic sequence sharing and conservation in the whole mapped 3'-untranslated regions (3'-UTRs) of vertebrate species to gain knowledge on core post-transcriptional networks. The identified human hyper conserved elements (HCEs) were predicted to be preferred binding sites for RBPs and not for ncRNAs, namely microRNAs and long ncRNAs. We found that the HCE map identified a well-known network that post-transcriptionally regulates histone mRNAs. We were then able to discover and experimentally confirm a translational network composed of RNA Recognition Motif (RRM)-type RBP mRNAs that are positively controlled by HuR, another RRM-type RBP. HuR shows a preference for these RBP mRNAs bound in stem-loop motifs, confirming its role as a 'regulator of regulators'. Analysis of the transcriptome-wide HCE distribution revealed a profile of prevalently small clusters separated by unconserved intercluster RNA stretches, which predicts the formation of discrete small ribonucleoprotein complexes in the 3'-UTRs.


Asunto(s)
Regiones no Traducidas 3' , Proteínas ELAV/fisiología , ARN Mensajero/genética , Proteínas de Unión al ARN/genética , Animales , Secuencia de Bases , Sitios de Unión , Secuencia Conservada , Proteínas ELAV/genética , Proteínas ELAV/metabolismo , Histonas/genética , Humanos , Secuencias Invertidas Repetidas , Células MCF-7 , Biosíntesis de Proteínas , Alineación de Secuencia , Vertebrados
16.
HGG Adv ; 5(2): 100261, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38160254

RESUMEN

The largest multi-gene family in metazoans is the family of olfactory receptor (OR) genes. Human ORs are organized in clusters over most chromosomes and seem to include >0.1% the human genome. Because 369 out of 856 OR genes are mapped on chromosome 11 (HSA11), we sought to determine whether they mediate structural rearrangements involving this chromosome. To this aim, we analyzed 220 specimens collected during diagnostic procedures involving structural rearrangements of chromosome 11. A total of 222 chromosomal abnormalities were included, consisting of inversions, deletions, translocations, duplications, and one insertion, detected by conventional chromosome analysis and/or fluorescence in situ hybridization (FISH) and array comparative genomic hybridization (array-CGH). We verified by bioinformatics and statistical approaches the occurrence of breakpoints in cytobands with or without OR genes. We found that OR genes are not involved in chromosome 11 reciprocal translocations, suggesting that different DNA motifs and mechanisms based on homology or non-homology recombination can cause chromosome 11 structural alterations. We also considered the proximity between the chromosomal territories of chromosome 11 and its partner chromosomes involved in the translocations by using the deposited Hi-C data concerning the possible occurrence of chromosome interactions. Interestingly, most of the breakpoints are located in regions highly involved in chromosome interactions. Further studies should be carried out to confirm the potential role of chromosome territories' proximity in promoting genome structural variation, so fundamental in our understanding of the molecular basis of medical genetics and evolutionary genetics.


Asunto(s)
Cromosomas Humanos Par 11 , Receptores Odorantes , Humanos , Hibridación Genómica Comparativa , Hibridación Fluorescente in Situ , Aberraciones Cromosómicas , Translocación Genética/genética , Receptores Odorantes/genética
17.
Eur J Hum Genet ; 31(8): 931-938, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37217626

RESUMEN

Spinal neurofibromatosis (SNF) is a form of neurofibromatosis type 1 (NF1) characterized by bilateral neurofibromas involving all spinal roots. The pathogenic mechanisms determining the SNF form are currently unknown. To verify the presence of genetic variants possibly related to SNF or classic NF1, we studied 106 sporadic NF1 and 75 SNF patients using an NGS panel of 286 genes encoding RAS pathway effectors and neurofibromin interactors and evaluated the expression of syndecans (SDC1, SDC2, SDC3, SDC4), the NF1 3' tertile interactors, by quantitative real-time PCR. We previously identified 75 and 106 NF1 variants in SNF and NF1 cohorts, respectively. The analysis of the distribution of pathogenic NF1 variants in the three NF1 tertiles showed a significantly higher prevalence of NF1 3' tertile mutations in SNF than in the NF1 cohort. We hypothesized a potential pathogenic significance of the 3' tertile NF1 variants in SNF. The analysis of syndecan expression on PBMCs RNAs from 16 SNF, 16 classic NF1 patients and 16 healthy controls showed that the expression levels of SDC2 and SDC3 were higher in SNF and NF1 patients than in controls; moreover, SDC2, SDC3 and SDC4 were significantly over expressed in patients mutated in the 3' tertile compared to controls. Two different mutational NF1 spectra seem to characterize SNF and classic NF1, suggesting a pathogenic role of NF1 3' tertile and its interactors, syndecans, in SNF. Our study, providing new insights on a possible role of neurofibromin C-terminal in SNF, could address effective personalized patient management and treatments.


Asunto(s)
Neurofibromatosis , Neurofibromatosis 1 , Humanos , Neurofibromatosis 1/genética , Neurofibromina 1/genética , Mutación , Sindecanos/genética , Genes de Neurofibromatosis 1
18.
Neurosurg Rev ; 35(1): 1-13; discussion 13-4, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22006091

RESUMEN

Chordomas are extremely rare tumours. They arise in the spheno-occipital region in 35% of cases. Chordomas usually present benign histopathological features but often exhibit a malignant clinical behaviour. Radical surgical removal and high-dose radiation therapy seem to be effective in tumour control and to improve survival rate. Despite the advancements in microsurgical techniques and the development of radiation therapies, clival chordomas still represent a challenge. Nevertheless it appears that chordomas that have been resected to the same extent and that received post-operative radiotherapy might exhibit different rates of regrowth. This result supports the hypothesis that the recurrence rate of chordomas might be dependent on biological variables other than the extent of resection and the post-operative radiotherapy. Genetic and molecular studies on oncogenesis of chordomas are still limited, but they represent the basis for the development of molecular targeted therapies. We present a review of the current knowledge about skull base chordomas biology, therapeutic options and related clinical outcome.


Asunto(s)
Cordoma/terapia , Neoplasias de la Base del Cráneo/terapia , Biomarcadores de Tumor/análisis , Quimioterapia Adyuvante , Cordoma/radioterapia , Cordoma/cirugía , Femenino , Humanos , Masculino , Recurrencia Local de Neoplasia/diagnóstico , Recurrencia Local de Neoplasia/cirugía , Pronóstico , Radioterapia Adyuvante , Neoplasias de la Base del Cráneo/radioterapia , Neoplasias de la Base del Cráneo/cirugía , Tasa de Supervivencia , Resultado del Tratamiento
19.
Cancers (Basel) ; 15(1)2022 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-36612057

RESUMEN

Spinal neurofibromatosis (SNF), a phenotypic subclass of neurofibromatosis 1 (NF1), is characterized by bilateral neurofibromas involving all spinal roots. In order to deepen the understanding of SNF's clinical and genetic features, we identified 81 patients with SNF, 55 from unrelated families, and 26 belonging to 19 families with at least 1 member affected by SNF, and 106 NF1 patients aged >30 years without spinal tumors. A comprehensive NF1 mutation screening was performed using NGS panels, including NF1 and several RAS pathway genes. The main features of the SNF subjects were a higher number of internal neurofibromas (p < 0.001), nerve root swelling (p < 0.001), and subcutaneous neurofibromas (p = 0.03), while hyperpigmentation signs were significantly less frequent compared with the classical NF1-affected cohorts (p = 0.012). Fifteen patients underwent neurosurgical intervention. The histological findings revealed neurofibromas in 13 patients and ganglioneuromas in 2 patients. Phenotypic variability within SNF families was observed. The proportion of missense mutations was higher in the SNF cases than in the classical NF1 group (21.40% vs. 7.5%, p = 0.007), conferring an odds ratio (OR) of 3.34 (CI = 1.33−10.78). Two unrelated familial SNF cases harbored in trans double NF1 mutations that seemed to have a subclinical worsening effect on the clinical phenotype. Our study, with the largest series of SNF patients reported to date, better defines the clinical and genetic features of SNF, which could improve the management and genetic counseling of NF1.

20.
Am J Med Genet A ; 152A(9): 2176-84, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20683980

RESUMEN

Noonan syndrome is a genetic condition characterized by congenital heart defects, short stature, and characteristic facial features. Familial or de novo mutations in PTPN11, RAF1, SOS1, KRAS, and NRAS are responsible for 60-75% of the cases, thus, additional genes are expected to be involved in the pathogenesis. In addition, the genotype-phenotype correlation has been hindered by the highly variable expressivity of the disease. For all these reasons, expanding the genotyped and clinically evaluated case numbers will benefit the clinical community. A mutation analysis has been performed on RAF1, SOS1, and GRB2, in 24 patients previously found to be negative for PTPN11 and KRAS mutations. We identified four mutations in SOS1 and one in RAF1, while no GRB2 variants have been found. Interestingly, the RAF1 mutation was present in a patient also carrying a newly identified p.R497Q familial SOS1 mutation, segregating with a typical Noonan Syndrome SOS1 cutaneous phenotype. Functional analysis demonstrated that the R497Q SOS1 mutation leads to Jnk activation, but has no effect on the Ras effector Erk1. We propose that this variant might contribute to the onset of the peculiar ectodermal traits displayed by the propositus amidst the more classical Noonan syndrome presentation. To our knowledge, this is the first reported case of a patient harboring mutations in two genes, with an involvement of both Ras and Rac1 pathways, indicating that SOS1 may have a role of modifier gene that might contribute the variable expressivity of the disease, evidencing a genotype-phenotype correlation in the family.


Asunto(s)
Proteína Adaptadora GRB2/genética , Mutación Missense , Síndrome de Noonan/genética , Proteínas Proto-Oncogénicas c-raf/genética , Proteína SOS1/genética , Análisis Mutacional de ADN , Familia , Genotipo , Humanos , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Proteína de Unión al GTP rac1 , Proteínas ras
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA