Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Nat Prod ; 85(10): 2302-2311, 2022 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-36121920

RESUMEN

The stereoselective synthesis of C40-all-trans-carotenoids with the formal hexahydrobenzofuran skeletons aurochrome, auroxanthin, and equinenone-5',8'-epoxide is reported. The synthesis is based on a one-pot or stepwise double Horner-Wadsworth-Emmons (HWE) reaction of a terminal enantiopure C15-5,6-epoxycyclohexadienylphosphonate and a central C10-trienedial. The ring expansion of the epoxycyclohexadienylphosphonate, generated by a Stille cross-coupling reaction, to the hexahydrobenzofuran skeleton was promoted by the reaction conditions of the HWE reaction prior to double-bond formation.


Asunto(s)
Carotenoides , Compuestos Epoxi , Carotenoides/química , Estereoisomerismo
2.
Chemistry ; 26(60): 13543-13567, 2020 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-32267574

RESUMEN

Bifunctional unsaturated reagents designed to undergo palladium-catalyzed cross-coupling reactions with complementary polyenyl connective fragments are highly useful for the undoubtedly challenging synthesis of polyenes. The current toolkit of building blocks for the bidirectional formation of Csp2 -Csp2 single bonds of polyenes includes homo-bisfunctionalized reagents with equal or unequal reactivity (due to steric and/or electronic factors), and hetero-bisfunctionalized counterparts containing either two different nucleophiles, two electrophiles or one of these functionalities and a latent nucleophile that can be unmasked when desired. The combination of these bifunctional linchpin reagents using tactics that modulate the reactivity of each terminus in order to achieve the required connection have streamlined the synthesis of polyenes of great complexity using (iterative) cross-coupling methods for Csp2 -Csp2 bond formation. Reaction conditions for the Pd-catalyzed cross-coupling reactions are mild and functional-group-tolerant, and therefore these protocols allow to construct the polyene structures using shorter unsaturated reactants with the desired geometries, since in general the products preserve the stereochemical information of the connected cross-coupling partners.

3.
Org Biomol Chem ; 18(25): 4788-4801, 2020 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-32530010

RESUMEN

Human aldo-keto reductases (AKRs) are enzymes involved in the reduction, among other substrates, of all-trans-retinal to all-trans-retinol (vitamin A), thus contributing to the control of the levels of retinoids in organisms. Structure-activity relationship studies of a series of C11-to-C14 methyl-shifted (relative to natural C13-methyl) all-trans-retinal analogues as putative substrates of AKRs have been reported. The synthesis of these retinoids was based on the formation of a C10-C11 single bond of the pentaene skeleton starting from a trienyl iodide and the corresponding dienylstannanes and dienylsilanes, using the Stille-Kosugi-Migita and Hiyama-Denmark cross-coupling reactions, respectively. Since these reagents differ by the location and presence of methyl groups at the dienylorganometallic fragment, the study also provided insights into the ability of the different positional isomers to undergo cross-coupling and the sensitivity of these processes to steric hindrance. The resulting C11-to-C14 methyl-shifted all-trans-retinal analogues were found to be active substrates when tested with AKR1B1 and AKR1B10 enzymes, although relevant differences in substrate specificities were noted. For AKR1B1, all analogues exhibited higher catalytic efficiency (kcat/Km) than parent all-trans-retinal. In addition, only all-trans-11-methylretinal, the most hydrophobic derivative, showed a higher value of kcat/Km = 106 000 ± 23 200 mM-1 min-1 for AKR1B10, which is in fact the highest value from all known retinoid substrates of this enzyme. The novel structures, identified as efficient AKR substrates, may serve in the design of selective inhibitors with potential pharmacological interest.


Asunto(s)
Aldo-Ceto Reductasas/antagonistas & inhibidores , Tretinoina/farmacología , Aldo-Ceto Reductasas/metabolismo , Humanos , Estructura Molecular , Tretinoina/síntesis química , Tretinoina/química
4.
Chemistry ; 25(63): 14399-14407, 2019 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-31456273

RESUMEN

The construction of the carotenoid skeleton by Pd-catalyzed Csp2 -Csp2 cross-coupling reactions of symmetrical and non-symmetrical 1,10-bissilyldeca-1,3,5,7,9-pentaenes and the corresponding complementary alkenyl iodides has been developed. Reaction conditions for these bidirectional and orthogonal Hiyama-Denmark cross-coupling reactions of bisfunctionalized pentaenes are mild and the carotenoid products preserve the stereochemical information of the corresponding oligoene partners. The carotenoids synthesized in this manner include ß,ß-carotene and (3R,3'R)-zeaxanthin (symmetrical) as well as 9-cis-ß,ß-carotene, 7,8-dihydro-ß,ß-carotene and ß-cryptoxanthin (non-symmetrical).

5.
Nutrients ; 13(3)2021 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-33809241

RESUMEN

Vitamin A is a family of derivatives synthesized from carotenoids acquired from the diet and can be converted in animals to bioactive forms essential for life. Vitamin A1 (all-trans-retinol/ATROL) and provitamin A1 (all-trans-ß,ß-carotene/ATBC) are precursors of all-trans-retinoic acid acting as a ligand for the retinoic acid receptors. The contribution of ATROL and ATBC to formation of 9-cis-13,14-dihydroretinoic acid (9CDHRA), the only endogenous retinoid acting as retinoid X receptor (RXR) ligand, remains unknown. To address this point novel and already known retinoids and carotenoids were stereoselectively synthesized and administered in vitro to oligodendrocyte cell culture and supplemented in vivo (orally) to mice with a following high-performance liquid chromatography-mass spectrometry (HPLC-MS)/UV-Vis based metabolic profiling. In this study, we show that ATROL and ATBC are at best only weak and non-selective precursors of 9CDHRA. Instead, we identify 9-cis-13,14-dihydroretinol (9CDHROL) and 9-cis-13,14-dihydro-ß,ß-carotene (9CDHBC) as novel direct nutritional precursors of 9CDHRA, which are present endogenously in humans and the human food chain matrix. Furthermore, 9CDHROL displayed RXR-dependent promnemonic activity in working memory test similar to that reported for 9CDHRA. We also propose that the endogenous carotenoid 9-cis-ß,ß-carotene (9CBC) can act as weak, indirect precursor of 9CDHRA via hydrogenation to 9CDHBC and further metabolism to 9CDHROL and/or 9CDHRA. In summary, since classical vitamin A1 is not an efficient 9CDHRA precursor, we conclude that this group of molecules constitutes a new class of vitamin or a new independent member of the vitamin A family, named "Vitamin A5/X".


Asunto(s)
Receptores X Retinoide/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Tretinoina/análogos & derivados , Vitaminas/farmacología , Animales , Células Cultivadas , Cromatografía de Gases y Espectrometría de Masas , Humanos , Masculino , Memoria a Corto Plazo/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Oligodendroglía/efectos de los fármacos , Provitaminas/análisis , Provitaminas/síntesis química , Provitaminas/farmacología , Tretinoina/farmacología , Vitamina A/análogos & derivados , Vitamina A/metabolismo , Vitaminas/análisis , Vitaminas/síntesis química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA