Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Genet Med ; 21(4): 987-993, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30181607

RESUMEN

The Clinical Genome Resource (ClinGen) is supported by the National Institutes of Health (NIH) to develop expertly curated and freely accessible resources defining the clinical relevance of genes and variants for use in precision medicine and research. To facilitate expert input, ClinGen has formed Clinical Domain Working Groups (CDWGs) to leverage the collective knowledge of clinicians, laboratory diagnosticians, and researchers. In the initial phase of ClinGen, CDWGs were launched in the cardiovascular, hereditary cancer, and inborn errors of metabolism clinical fields. These early CDWGs established the infrastructure necessary to implement standardized processes developed or adopted by ClinGen working groups for the interpretation of gene-disease associations and variant pathogenicity, and provided a sustainable model for the formation of future disease-focused curation groups. The establishment of CDWGs requires recruitment of international experts to broadly represent the interests of their field and ensure that assertions made are reliable and widely accepted. Building on the successes, challenges, and trade-offs made in establishing the original CDWGs, ClinGen has developed standard operating procedures for the development of CDWGs in new clinical domains, while maximizing efforts to scale up curation and facilitate involvement of external groups who wish to utilize ClinGen methods and infrastructure for expert curation.


Asunto(s)
Bases de Datos Genéticas , Genética Médica/tendencias , Genoma Humano/genética , Genómica/tendencias , Variación Genética/genética , Humanos , Difusión de la Información , Medicina de Precisión
2.
Hum Mutat ; 39(11): 1531-1541, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30095857

RESUMEN

Additional variant interpretation tools are required to effectively harness genomic sequencing for clinical applications. The American College of Medical Genetics and Genomics (ACMG) and Association for Molecular Pathology (AMP) published guidelines for clinical sequence variant interpretation, incorporating different types of data that lend varying levels of support towards a benign or pathogenic interpretation. Variants of uncertain significance (VUS) are those with either contradictory or insufficient evidence, and their uncertainty complicates patient counseling and management. Functional assays may provide a solution to evidence gaps relegating variants to the VUS category, but the impact of functional evidence in this framework has not been assessed. We employ an algorithmic analysis of the ACMG/AMP combining rules to assess how the availability of strong functional evidence could theoretically improve the ability to make a benign or pathogenic assertion. We follow this with analysis of actual evidence combinations met by variants through expert curations as part of the Clinical Genome Resource (ClinGen). We also examine the impact of functional evidence in a Bayesian adaptation of the ACMG/AMP framework. This lays the groundwork for an evidence-based prioritization of assay development and variant assessment by identifying genes and variants that may benefit the most from functional data.


Asunto(s)
Teorema de Bayes , Genoma Humano/genética , Genómica/métodos , Biología Computacional/métodos , Pruebas Genéticas/métodos , Variación Genética/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Mutación/genética , Análisis de Secuencia de ADN/métodos , Sociedades Médicas , Programas Informáticos , Estados Unidos
3.
Hum Mutat ; 39(11): 1614-1622, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30311389

RESUMEN

Genome-scale sequencing creates vast amounts of genomic data, increasing the challenge of clinical sequence variant interpretation. The demand for high-quality interpretation requires multiple specialties to join forces to accelerate the interpretation of sequence variant pathogenicity. With over 600 international members including clinicians, researchers, and laboratory diagnosticians, the Clinical Genome Resource (ClinGen), funded by the National Institutes of Health, is forming expert groups to systematically evaluate variants in clinically relevant genes. Here, we describe the first ClinGen variant curation expert panels (VCEPs), development of consistent and streamlined processes for establishing new VCEPs, and creation of standard operating procedures for VCEPs to define application of the ACMG/AMP guidelines for sequence variant interpretation in specific genes or diseases. Additionally, ClinGen has created user interfaces to enhance reliability of curation and a Sequence Variant Interpretation Working Group (SVI WG) to harmonize guideline specifications and ensure consistency between groups. The expansion of VCEPs represents the primary mechanism by which curation of a substantial fraction of genomic variants can be accelerated and ultimately undertaken systematically and comprehensively. We welcome groups to utilize our resources and become involved in our effort to create a publicly accessible, centralized resource for clinically relevant genes and variants.


Asunto(s)
Variación Genética/genética , Genoma Humano/genética , Biología Computacional , Bases de Datos Genéticas , Genómica , Humanos , Mutación/genética , Sociedades Médicas , Programas Informáticos , Estados Unidos
4.
Circ Cardiovasc Genet ; 10(3)2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28611029

RESUMEN

BACKGROUND: The genetic variation underlying many heritable forms of cardiovascular disease is incompletely understood, even in patients with strong family history or early age at onset. METHODS AND RESULTS: We used whole exome sequencing to detect pathogenic variants in 55 patients with suspected monogenic forms of cardiovascular disease. Diagnostic analysis of established disease genes identified pathogenic variants in 21.8% of cases and variants of uncertain significance in 34.5% of cases. Three patients harbored heterozygous nonsense or splice-site variants in the nucleoporin genes NUP37, NUP43, and NUP188, which have not been implicated previously in cardiac disease. We also identified a heterozygous splice site variant in the nuclear envelope gene SYNE1 in a child with severe dilated cardiomyopathy that underwent transplant, as well as in his affected father. To confirm a cardiovascular role for these candidate genes in vivo, we used morpholinos to reduce SYNE1, NUP37, and NUP43 gene expression in zebrafish. Morphant embryos displayed cardiac abnormalities, including pericardial edema and heart failure. Furthermore, lymphoblasts from the patient carrying a SYNE1 splice-site variant displayed changes in nuclear morphology and protein localization that are consistent with disruption of the nuclear envelope. CONCLUSIONS: These data expand the repertoire of pathogenic variants associated with cardiovascular disease and validate the diagnostic and research use of whole exome sequencing. We identify NUP37, NUP43, and NUP188 as novel candidate genes for cardiovascular disease, and suggest that dysfunction of the nuclear envelope may be an under-recognized component of inherited cardiac disease in some cases.


Asunto(s)
Enfermedades Cardiovasculares/diagnóstico , Proteínas de Complejo Poro Nuclear/genética , Animales , Enfermedades Cardiovasculares/genética , Enfermedades Cardiovasculares/patología , Proteínas del Citoesqueleto , Bases de Datos Genéticas , Embrión no Mamífero/metabolismo , Variación Genética , Heterocigoto , Humanos , Lamina Tipo A/metabolismo , Morfolinos/metabolismo , Mutación Missense , Proteínas del Tejido Nervioso/metabolismo , Proteínas de Complejo Poro Nuclear/antagonistas & inhibidores , Proteínas de Complejo Poro Nuclear/metabolismo , Proteínas Nucleares/metabolismo , Fenotipo , Interferencia de ARN , Sitios de Empalme de ARN/genética , Análisis de Secuencia de ADN , Secuenciación del Exoma , Pez Cebra
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA