Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Cochrane Database Syst Rev ; 6: CD013881, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37260086

RESUMEN

BACKGROUND: It has been reported that people with COVID-19 and pre-existing autoantibodies against type I interferons are likely to develop an inflammatory cytokine storm responsible for severe respiratory symptoms. Since interleukin 6 (IL-6) is one of the cytokines released during this inflammatory process, IL-6 blocking agents have been used for treating people with severe COVID-19. OBJECTIVES: To update the evidence on the effectiveness and safety of IL-6 blocking agents compared to standard care alone or to a placebo for people with COVID-19. SEARCH METHODS: We searched the World Health Organization (WHO) International Clinical Trials Registry Platform, the Living OVerview of Evidence (L·OVE) platform, and the Cochrane COVID-19 Study Register to identify studies on 7 June 2022. SELECTION CRITERIA: We included randomized controlled trials (RCTs) evaluating IL-6 blocking agents compared to standard care alone or to placebo for people with COVID-19, regardless of disease severity. DATA COLLECTION AND ANALYSIS: Pairs of researchers independently conducted study selection, extracted data and assessed risk of bias. We assessed the certainty of evidence using the GRADE approach for all critical and important outcomes. In this update we amended our protocol to update the methods used for grading evidence by establishing minimal important differences for the critical outcomes. MAIN RESULTS: This update includes 22 additional trials, for a total of 32 trials including 12,160 randomized participants all hospitalized for COVID-19 disease. We identified a further 17 registered RCTs evaluating IL-6 blocking agents without results available as of 7 June 2022.  The mean age range varied from 56 to 75 years; 66.2% (8051/12,160) of enrolled participants were men. One-third (11/32) of included trials were placebo-controlled. Twenty-two were published in peer-reviewed journals, three were reported as preprints, two trials had results posted only on registries, and results from five trials were retrieved from another meta-analysis. Eight were funded by pharmaceutical companies.  Twenty-six included studies were multicenter trials; four were multinational and 22 took place in single countries. Recruitment of participants occurred between February 2020 and June 2021, with a mean enrollment duration of 21 weeks (range 1 to 54 weeks). Nineteen trials (60%) had a follow-up of 60 days or more. Disease severity ranged from mild to critical disease. The proportion of participants who were intubated at study inclusion also varied from 5% to 95%. Only six trials reported vaccination status; there were no vaccinated participants included in these trials, and 17 trials were conducted before vaccination was rolled out. We assessed a total of six treatments, each compared to placebo or standard care. Twenty trials assessed tocilizumab, nine assessed sarilumab, and two assessed clazakizumab. Only one trial was included for each of the other IL-6 blocking agents (siltuximab, olokizumab, and levilimab). Two trials assessed more than one treatment. Efficacy and safety of tocilizumab and sarilumab compared to standard care or placebo for treating COVID-19 At day (D) 28, tocilizumab and sarilumab probably result in little or no increase in clinical improvement (tocilizumab: risk ratio (RR) 1.05, 95% confidence interval (CI) 1.00 to 1.11; 15 RCTs, 6116 participants; moderate-certainty evidence; sarilumab: RR 0.99, 95% CI 0.94 to 1.05; 7 RCTs, 2425 participants; moderate-certainty evidence). For clinical improvement at ≥ D60, the certainty of evidence is very low for both tocilizumab (RR 1.10, 95% CI 0.81 to 1.48; 1 RCT, 97 participants; very low-certainty evidence) and sarilumab (RR 1.22, 95% CI 0.91 to 1.63; 2 RCTs, 239 participants; very low-certainty evidence). The effect of tocilizumab on the proportion of participants with a WHO Clinical Progression Score (WHO-CPS) of level 7 or above remains uncertain at D28 (RR 0.90, 95% CI 0.72 to 1.12; 13 RCTs, 2117 participants; low-certainty evidence) and that for sarilumab very uncertain (RR 1.10, 95% CI 0.90 to 1.33; 5 RCTs, 886 participants; very low-certainty evidence). Tocilizumab reduces all cause-mortality at D28 compared to standard care/placebo (RR 0.88, 95% CI 0.81 to 0.94; 18 RCTs, 7428 participants; high-certainty evidence). The evidence about the effect of sarilumab on this outcome is very uncertain (RR 1.06, 95% CI 0.86 to 1.30; 9 RCTs, 3305 participants; very low-certainty evidence). The evidence is uncertain for all cause-mortality at ≥ D60 for tocilizumab (RR 0.91, 95% CI 0.80 to 1.04; 9 RCTs, 2775 participants; low-certainty evidence) and very uncertain for sarilumab (RR 0.95, 95% CI 0.84 to 1.07; 6 RCTs, 3379 participants; very low-certainty evidence). Tocilizumab probably results in little to no difference in the risk of adverse events (RR 1.03, 95% CI 0.95 to 1.12; 9 RCTs, 1811 participants; moderate-certainty evidence). The evidence about adverse events for sarilumab is uncertain (RR 1.12, 95% CI 0.97 to 1.28; 4 RCT, 860 participants; low-certainty evidence).  The evidence about serious adverse events is very uncertain for tocilizumab (RR 0.93, 95% CI 0.81 to 1.07; 16 RCTs; 2974 participants; very low-certainty evidence) and uncertain for sarilumab (RR 1.09, 95% CI 0.97 to 1.21; 6 RCTs; 2936 participants; low-certainty evidence). Efficacy and safety of clazakizumab, olokizumab, siltuximab and levilimab compared to standard care or placebo for treating COVID-19 The evidence about the effects of clazakizumab, olokizumab, siltuximab, and levilimab comes from only one or two studies for each blocking agent, and is uncertain or very uncertain. AUTHORS' CONCLUSIONS: In hospitalized people with COVID-19, results show a beneficial effect of tocilizumab on all-cause mortality in the short term and probably little or no difference in the risk of adverse events compared to standard care alone or placebo. Nevertheless, both tocilizumab and sarilumab probably result in little or no increase in clinical improvement at D28. Evidence for an effect of sarilumab and the other IL-6 blocking agents on critical outcomes is uncertain or very uncertain. Most of the trials included in our review were done before the waves of different variants of concern and before vaccination was rolled out on a large scale. An additional 17 RCTs of IL-6 blocking agents are currently registered with no results yet reported. The number of pending studies and the number of participants planned is low. Consequently, we will not publish further updates of this review.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , COVID-19 , Interleucina-6 , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Sesgo , Citocinas , Interleucina-6/antagonistas & inhibidores
2.
Rev Med Chil ; 151(4): 478-488, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38687523

RESUMEN

BACKGROUND: The immigrant population in Chile is growing significantly, challenging the health care system's capacity to provide sensitive and effective care. AIM: To assess the cultural competence of Chilean primary health workers. MATERIAL AND METHODS: This mixed-methods study used a quantitative scale and semi-structured interviews to examine the cultural competence of a Chilean primary health care team in their care for the international migrant population. The study pointed to specific variables that were associated with increased cultural competence, including age, intercultural life experiences, and having received relevant training. RESULTS: The two approaches produced largely convergent results. The dimensions of cultural competence with the highest scores on the quantitative scale were also the theoretical dimensions with the greatest discursive density in the qualitative analysis. CONCLUSIONS: The analysis provides a starting point for policies aimed at the development of cultural competence in the national scenario, suggesting a general direction to foster transcultural competence in health, such as formal training and the promotion of informal spaces ofsensibilization.


Asunto(s)
Competencia Cultural , Atención Primaria de Salud , Humanos , Chile , Competencia Cultural/educación , Femenino , Masculino , Adulto , Persona de Mediana Edad , Investigación Cualitativa , Emigrantes e Inmigrantes , Personal de Salud , Entrevistas como Asunto , Encuestas y Cuestionarios
3.
Clin Infect Dis ; 74(2): 278-287, 2022 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-33912905

RESUMEN

BACKGROUND: To develop and validate patient-reported instruments, based on patients' lived experiences, for monitoring the symptoms and impact of long coronavirus disease (covid). METHODS: The long covid Symptom and Impact Tools (ST and IT) were constructed from the answers to a survey with open-ended questions to 492 patients with long COVID. Validation of the tools involved adult patients with suspected or confirmed coronavirus disease 2019 (COVID-19) and symptoms extending over 3 weeks after onset. Construct validity was assessed by examining the relations of the ST and IT scores with health-related quality of life (EQ-5D-5L), function (PCFS, post-COVID functional scale), and perceived health (MYMOP2, Measure yourself medical outcome profile 2). Reliability was determined by a test-retest. The "patient acceptable symptomatic state" (PASS) was determined by the percentile method. RESULTS: Validation involved 1022 participants (55% with confirmed COVID-19, 79% female, and 12.5% hospitalized for COVID-19). The long COVID ST and IT scores were strongly correlated with the EQ-5D-5L (rs = -0.45 and rs = -0.59, respectively), the PCFS (rs = -0.39 and rs = -0.55), and the MYMOP2 (rs = -0.40 and rs = -0.59). Reproducibility was excellent with an interclass correlation coefficient of 0.83 (95% confidence interval .80 to .86) for the ST score and 0.84 (.80 to .87) for the IT score. In total, 793 (77.5%) patients reported an unacceptable symptomatic state, thereby setting the PASS for the long covid IT score at 30 (28 to 33). CONCLUSIONS: The long covid ST and IT tools, constructed from patients' lived experiences, provide the first validated and reliable instruments for monitoring the symptoms and impact of long covid.


Asunto(s)
COVID-19 , Adulto , COVID-19/complicaciones , Femenino , Humanos , Masculino , Medición de Resultados Informados por el Paciente , Psicometría , Calidad de Vida , Reproducibilidad de los Resultados , SARS-CoV-2 , Encuestas y Cuestionarios , Síndrome Post Agudo de COVID-19
4.
Cochrane Database Syst Rev ; 1: CD015308, 2022 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-35080773

RESUMEN

BACKGROUND: Interleukin-1 (IL-1) blocking agents have been used for treating severe coronavirus disease 2019 (COVID-19), on the premise that their immunomodulatory effect might be beneficial in people with COVID-19. OBJECTIVES: To assess the effects of IL-1 blocking agents compared with standard care alone or with placebo on effectiveness and safety outcomes in people with COVID-19. We will update this assessment regularly. SEARCH METHODS: We searched the Cochrane COVID-19 Study Register and the COVID-19 L-OVE Platform (search date 5 November 2021). These sources are maintained through regular searches of MEDLINE, Embase, CENTRAL, trial registers and other sources. We also checked the World Health Organization International Clinical Trials Registry Platform, regulatory agency websites, Retraction Watch (search date 3 November 2021). SELECTION CRITERIA: We included randomised controlled trials (RCTs) evaluating IL-1 blocking agents compared with standard care alone or with placebo for people with COVID-19, regardless of disease severity. DATA COLLECTION AND ANALYSIS: We followed Cochrane methodology. The protocol was amended to reduce the number of outcomes considered. Two researchers independently screened and extracted data and assessed the risk of bias with the Cochrane Risk of Bias 2 tool. We rated the certainty of evidence using the GRADE approach for the critical outcomes of clinical improvement (Day 28; ≥ D60); WHO Clinical Progression Score of level 7 or above (i.e. the proportion of participants with mechanical ventilation +/- additional organ support OR death) (D28; ≥ D60); all-cause mortality (D28; ≥ D60); incidence of any adverse events; and incidence of serious adverse events. MAIN RESULTS: We identified four RCTs of anakinra (three published in peer-reviewed journals, one reported as a preprint) and two RCTs of canakinumab (published in peer-reviewed journals). All trials were multicentre (2 to 133 centres). Two trials stopped early (one due to futility and one as the trigger for inferiority was met). The median/mean age range varied from 58 to 68 years; the proportion of men varied from 58% to 77%. All participants were hospitalised; 67% to 100% were on oxygen at baseline but not intubated; between 0% and 33% were intubated at baseline. We identified a further 16 registered trials with no results available, of which 15 assessed anakinra (four completed, four terminated, five ongoing, three not recruiting) and one (completed) trial assessed canakinumab. Effectiveness of anakinra for people with COVID-19 Anakinra probably results in little or no increase in clinical improvement at D28 (risk ratio (RR) 1.08, 95% confidence interval (CI) 0.97 to 1.20; 3 RCTs, 837 participants; absolute effect: 59 more per 1000 (from 22 fewer to 147 more); moderate-certainty evidence. The evidence is uncertain about an effect of anakinra on 1) the proportion of participants with a WHO Clinical Progression Score of level 7 or above at D28 (RR 0.67, 95% CI 0.36 to 1.22; 2 RCTs, 722 participants; absolute effect: 55 fewer per 1000 (from 107 fewer to 37 more); low-certainty evidence) and ≥ D60 (RR 0.54, 95% CI 0.30 to 0.96; 1 RCT, 606 participants; absolute effect: 47 fewer per 1000 (from 72 fewer to 4 fewer) low-certainty evidence); and 2) all-cause mortality at D28 (RR 0.69, 95% CI 0.34 to 1.39; 2 RCTs, 722 participants; absolute effect: 32 fewer per 1000 (from 68 fewer to 40 more); low-certainty evidence).  The evidence is very uncertain about an effect of anakinra on 1) the proportion of participants with clinical improvement at ≥ D60 (RR 0.93, 95% CI 0.78 to 1.12; 1 RCT, 115 participants; absolute effect: 59 fewer per 1000 (from 186 fewer to 102 more); very low-certainty evidence); and 2) all-cause mortality at ≥ D60 (RR 1.03, 95% CI 0.68 to 1.56; 4 RCTs, 1633 participants; absolute effect: 8 more per 1000 (from 84 fewer to 147 more); very low-certainty evidence). Safety of anakinra for people with COVID-19 Anakinra probably results in little or no increase in adverse events (RR 1.02, 95% CI 0.94 to 1.11; 2 RCTs, 722 participants; absolute effect: 14 more per 1000 (from 43 fewer to 78 more); moderate-certainty evidence).  The evidence is uncertain regarding an effect of anakinra on serious adverse events (RR 0.95, 95% CI 0.58 to 1.56; 2 RCTs, 722 participants; absolute effect: 12 fewer per 1000 (from 104 fewer to 138 more); low-certainty evidence). Effectiveness of canakinumab for people with COVID-19 Canakinumab probably results in little or no increase in clinical improvement at D28 (RR 1.05, 95% CI 0.96 to 1.14; 2 RCTs, 499 participants; absolute effect: 42 more per 1000 (from 33 fewer to 116 more); moderate-certainty evidence).  The evidence of an effect of canakinumab is uncertain on 1) the proportion of participants with a WHO Clinical Progression Score of level 7 or above at D28 (RR 0.72, 95% CI 0.44 to 1.20; 2 RCTs, 499 participants; absolute effect: 35 fewer per 1000 (from 69 fewer to 25 more); low-certainty evidence); and 2) all-cause mortality at D28 (RR:0.75; 95% CI 0.39 to 1.42); 2 RCTs, 499 participants; absolute effect: 20 fewer per 1000 (from 48 fewer to 33 more); low-certainty evidence).  The evidence is very uncertain about an effect of canakinumab on all-cause mortality at ≥ D60 (RR 0.55, 95% CI 0.16 to 1.91; 1 RCT, 45 participants; absolute effect: 112 fewer per 1000 (from 210 fewer to 227 more); very low-certainty evidence). Safety of canakinumab for people with COVID-19 Canakinumab probably results in little or no increase in adverse events (RR 1.02; 95% CI 0.86 to 1.21; 1 RCT, 454 participants; absolute effect: 11 more per 1000 (from 74 fewer to 111 more); moderate-certainty evidence). The evidence of an effect of canakinumab on serious adverse events is uncertain (RR 0.80, 95% CI 0.57 to 1.13; 2 RCTs, 499 participants; absolute effect: 44 fewer per 1000 (from 94 fewer to 28 more); low-certainty evidence). AUTHORS' CONCLUSIONS: Overall, we did not find evidence for an important beneficial effect of IL-1 blocking agents. The evidence is uncertain or very uncertain for several outcomes. Sixteen trials of anakinra and canakinumab with no results are currently registered, of which four are completed, and four terminated. The findings of this review are updated on the COVID-NMA platform (covid-nma.com).


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Interleucina-1/antagonistas & inhibidores , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Ensayos Clínicos Controlados Aleatorios como Asunto , Respiración Artificial
5.
Cochrane Database Syst Rev ; 12: CD015477, 2022 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-36473651

RESUMEN

BACKGROUND: Different forms of vaccines have been developed to prevent the SARS-CoV-2 virus and subsequent COVID-19 disease. Several are in widespread use globally.  OBJECTIVES: To assess the efficacy and safety of COVID-19 vaccines (as a full primary vaccination series or a booster dose) against SARS-CoV-2. SEARCH METHODS: We searched the Cochrane COVID-19 Study Register and the COVID-19 L·OVE platform (last search date 5 November 2021). We also searched the WHO International Clinical Trials Registry Platform, regulatory agency websites, and Retraction Watch. SELECTION CRITERIA: We included randomized controlled trials (RCTs) comparing COVID-19 vaccines to placebo, no vaccine, other active vaccines, or other vaccine schedules. DATA COLLECTION AND ANALYSIS: We used standard Cochrane methods. We used GRADE to assess the certainty of evidence for all except immunogenicity outcomes.  We synthesized data for each vaccine separately and presented summary effect estimates with 95% confidence intervals (CIs).  MAIN RESULTS: We included and analyzed 41 RCTs assessing 12 different vaccines, including homologous and heterologous vaccine schedules and the effect of booster doses. Thirty-two RCTs were multicentre and five were multinational. The sample sizes of RCTs were 60 to 44,325 participants. Participants were aged: 18 years or older in 36 RCTs; 12 years or older in one RCT; 12 to 17 years in two RCTs; and three to 17 years in two RCTs. Twenty-nine RCTs provided results for individuals aged over 60 years, and three RCTs included immunocompromized patients. No trials included pregnant women. Sixteen RCTs had two-month follow-up or less, 20 RCTs had two to six months, and five RCTs had greater than six to 12 months or less. Eighteen reports were based on preplanned interim analyses. Overall risk of bias was low for all outcomes in eight RCTs, while 33 had concerns for at least one outcome. We identified 343 registered RCTs with results not yet available.  This abstract reports results for the critical outcomes of confirmed symptomatic COVID-19, severe and critical COVID-19, and serious adverse events only for the 10 WHO-approved vaccines. For remaining outcomes and vaccines, see main text. The evidence for mortality was generally sparse and of low or very low certainty for all WHO-approved vaccines, except AD26.COV2.S (Janssen), which probably reduces the risk of all-cause mortality (risk ratio (RR) 0.25, 95% CI 0.09 to 0.67; 1 RCT, 43,783 participants; high-certainty evidence). Confirmed symptomatic COVID-19 High-certainty evidence found that BNT162b2 (BioNtech/Fosun Pharma/Pfizer), mRNA-1273 (ModernaTx), ChAdOx1 (Oxford/AstraZeneca), Ad26.COV2.S, BBIBP-CorV (Sinopharm-Beijing), and BBV152 (Bharat Biotect) reduce the incidence of symptomatic COVID-19 compared to placebo (vaccine efficacy (VE): BNT162b2: 97.84%, 95% CI 44.25% to 99.92%; 2 RCTs, 44,077 participants; mRNA-1273: 93.20%, 95% CI 91.06% to 94.83%; 2 RCTs, 31,632 participants; ChAdOx1: 70.23%, 95% CI 62.10% to 76.62%; 2 RCTs, 43,390 participants; Ad26.COV2.S: 66.90%, 95% CI 59.10% to 73.40%; 1 RCT, 39,058 participants; BBIBP-CorV: 78.10%, 95% CI 64.80% to 86.30%; 1 RCT, 25,463 participants; BBV152: 77.80%, 95% CI 65.20% to 86.40%; 1 RCT, 16,973 participants). Moderate-certainty evidence found that NVX-CoV2373 (Novavax) probably reduces the incidence of symptomatic COVID-19 compared to placebo (VE 82.91%, 95% CI 50.49% to 94.10%; 3 RCTs, 42,175 participants). There is low-certainty evidence for CoronaVac (Sinovac) for this outcome (VE 69.81%, 95% CI 12.27% to 89.61%; 2 RCTs, 19,852 participants). Severe or critical COVID-19 High-certainty evidence found that BNT162b2, mRNA-1273, Ad26.COV2.S, and BBV152 result in a large reduction in incidence of severe or critical disease due to COVID-19 compared to placebo (VE: BNT162b2: 95.70%, 95% CI 73.90% to 99.90%; 1 RCT, 46,077 participants; mRNA-1273: 98.20%, 95% CI 92.80% to 99.60%; 1 RCT, 28,451 participants; AD26.COV2.S: 76.30%, 95% CI 57.90% to 87.50%; 1 RCT, 39,058 participants; BBV152: 93.40%, 95% CI 57.10% to 99.80%; 1 RCT, 16,976 participants). Moderate-certainty evidence found that NVX-CoV2373 probably reduces the incidence of severe or critical COVID-19 (VE 100.00%, 95% CI 86.99% to 100.00%; 1 RCT, 25,452 participants). Two trials reported high efficacy of CoronaVac for severe or critical disease with wide CIs, but these results could not be pooled. Serious adverse events (SAEs) mRNA-1273, ChAdOx1 (Oxford-AstraZeneca)/SII-ChAdOx1 (Serum Institute of India), Ad26.COV2.S, and BBV152 probably result in little or no difference in SAEs compared to placebo (RR: mRNA-1273: 0.92, 95% CI 0.78 to 1.08; 2 RCTs, 34,072 participants; ChAdOx1/SII-ChAdOx1: 0.88, 95% CI 0.72 to 1.07; 7 RCTs, 58,182 participants; Ad26.COV2.S: 0.92, 95% CI 0.69 to 1.22; 1 RCT, 43,783 participants); BBV152: 0.65, 95% CI 0.43 to 0.97; 1 RCT, 25,928 participants). In each of these, the likely absolute difference in effects was fewer than 5/1000 participants. Evidence for SAEs is uncertain for BNT162b2, CoronaVac, BBIBP-CorV, and NVX-CoV2373 compared to placebo (RR: BNT162b2: 1.30, 95% CI 0.55 to 3.07; 2 RCTs, 46,107 participants; CoronaVac: 0.97, 95% CI 0.62 to 1.51; 4 RCTs, 23,139 participants; BBIBP-CorV: 0.76, 95% CI 0.54 to 1.06; 1 RCT, 26,924 participants; NVX-CoV2373: 0.92, 95% CI 0.74 to 1.14; 4 RCTs, 38,802 participants). For the evaluation of heterologous schedules, booster doses, and efficacy against variants of concern, see main text of review. AUTHORS' CONCLUSIONS: Compared to placebo, most vaccines reduce, or likely reduce, the proportion of participants with confirmed symptomatic COVID-19, and for some, there is high-certainty evidence that they reduce severe or critical disease. There is probably little or no difference between most vaccines and placebo for serious adverse events. Over 300 registered RCTs are evaluating the efficacy of COVID-19 vaccines, and this review is updated regularly on the COVID-NMA platform (covid-nma.com). Implications for practice Due to the trial exclusions, these results cannot be generalized to pregnant women, individuals with a history of SARS-CoV-2 infection, or immunocompromized people. Most trials had a short follow-up and were conducted before the emergence of variants of concern. Implications for research Future research should evaluate the long-term effect of vaccines, compare different vaccines and vaccine schedules, assess vaccine efficacy and safety in specific populations, and include outcomes such as preventing long COVID-19. Ongoing evaluation of vaccine efficacy and effectiveness against emerging variants of concern is also vital.


Asunto(s)
Vacuna nCoV-2019 mRNA-1273 , COVID-19 , Humanos , Persona de Mediana Edad , Anciano , Adolescente , COVID-19/prevención & control , SARS-CoV-2
6.
Cochrane Database Syst Rev ; 3: CD013881, 2021 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-33734435

RESUMEN

BACKGROUND: Interleukin 6 (IL-6) blocking agents have been used for treating severe coronavirus disease 2019 (COVID-19). Their immunosuppressive effect might be valuable in patients with COVID-19 characterised by substantial immune system dysfunction by controlling inflammation and promoting disease tolerance. OBJECTIVES: To assess the effect of IL-6 blocking agents compared to standard care alone or with placebo on efficacy and safety outcomes in COVID-19. We will update this assessment regularly. SEARCH METHODS: We searched the World Health Organization (WHO) International Clinical Trials Registry Platform (up to 11 February 2021) and the L-OVE platform, and Cochrane COVID-19 Study Register to identify trials up to 26 February 2021. SELECTION CRITERIA: We included randomised controlled trials (RCTs) evaluating IL-6 blocking agents compared with standard care alone or with placebo for people with COVID-19, regardless of disease severity. DATA COLLECTION AND ANALYSIS: We followed standard Cochrane methodology. The protocol was amended to reduce the number of outcomes considered. Two review authors independently collected data and assessed the risk of bias with the Cochrane Risk of Bias 2 tool. We rated the certainty of evidence with the GRADE approach for the critical outcomes such as clinical improvement (defined as hospital discharge or improvement on the scale used by trialists to evaluate clinical progression or recovery) (day (D) 28 / ≥ D60); WHO Clinical Progression Score of level 7 or above (i.e. the proportion of participants with mechanical ventilation +/- additional organ support OR death) (D28 / ≥ D60); all-cause mortality (D28 / ≥ D60); incidence of any adverse events; and incidence of serious adverse events. MAIN RESULTS: We identified 10 RCTs with available data including one platform trial comparing tocilizumab and sarilumab with standard of care. These trials evaluated tocilizumab (nine RCTs including two platform trials; seven were reported as peer-reviewed articles, two as preprints; 6428 randomised participants); and two sarilumab (one platform trial reported as peer reviewed article, one reported as preprint, 880 randomised participants). All trials included were multicentre trials. They were conducted in Brazil, China, France, Italy, UK, USA, and four were multi-country trials. The mean age range of participants ranged from 56 to 65 years; 4572 (66.3%) of trial participants were male. Disease severity ranged from mild to critical disease. The reported proportion of participants on oxygen at baseline but not intubated varied from 56% to 100% where reported. Five trials reported the inclusion of intubated patients at baseline. We identified a further 20 registered RCTs of tocilizumab compared to placebo/standard care (five completed without available results, five terminated without available results, eight ongoing, two not recruiting); 11 RCTs of sarilumab (two completed without results, three terminated without available results, six ongoing); six RCTs of clazakisumab (five ongoing, one not recruiting); two RCTs of olokizumab (one completed, one not recruiting); one of siltuximab (ongoing) and one RCT of levilimab (completed without available results). Of note, three were cancelled (2 tocilizumab, 1 clazakisumab). One multiple-arm RCT evaluated both tocilizumab and sarilumab compared to standard of care, one three-arm RCT evaluated tocilizumab and siltuximab compared to standard of care and consequently they appear in each respective comparison. Tocilizumab versus standard care alone or with placebo a. Effectiveness of tocilizumab for patients with COVID-19 Tocilizumab probably results in little or no increase in the outcome of clinical improvement at D28 (RR 1.06, 95% CI 1.00 to 1.13; I2 = 40.9%; 7 RCTs, 5585 participants; absolute effect: 31 more with clinical improvement per 1000 (from 0 fewer to 67 more); moderate-certainty evidence). However, we cannot exclude that some subgroups of patients could benefit from the treatment. We did not obtain data for longer-term follow-up (≥ D60). The effect of tocilizumab on the proportion of participants with a WHO Clinical Progression Score of level of 7 or above is uncertain at D28 (RR 0.99, 95% CI 0.56 to 1.74; I2 = 64.4%; 3 RCTs, 712 participants; low-certainty evidence). We did not obtain data for longer-term follow-up (≥ D60). Tocilizumab reduces all-cause mortality at D28 compared to standard care alone or placebo (RR 0.89, 95% CI 0.82 to 0.97; I2 = 0.0%; 8 RCTs, 6363 participants; absolute effect: 32 fewer deaths per 1000 (from 52 fewer to 9 fewer); high-certainty evidence). The evidence suggests uncertainty around the effect on mortality at ≥ D60 (RR 0.86, 95% CI 0.53 to 1.40; I2 = 0.0%; 2 RCTs, 519 participants; low-certainty evidence). b. Safety of tocilizumab for patients with COVID-19 The evidence is very uncertain about the effect of tocilizumab on adverse events (RR 1.23, 95% CI 0.87 to 1.72; I2 = 86.4%; 7 RCTs, 1534 participants; very low-certainty evidence). Nevertheless, tocilizumab probably results in slightly fewer serious adverse events than standard care alone or placebo (RR 0.89, 95% CI 0.75 to 1.06; I2 = 0.0%; 8 RCTs, 2312 participants; moderate-certainty evidence). Sarilumab versus standard care alone or with placebo The evidence is uncertain about the effect of sarilumab on all-cause mortality at D28 (RR 0.77, 95% CI 0.43 to 1.36; 2 RCTs, 880 participants; low certainty), on all-cause mortality at ≥ D60 (RR 1.00, 95% CI 0.50 to 2.0; 1 RCT, 420 participants; low certainty), and serious adverse events (RR 1.17, 95% CI 0.77 to 1.77; 2 RCTs, 880 participants; low certainty). It is unlikely that sarilumab results in an important increase of adverse events (RR 1.05, 95% CI 0.88 to 1.25; 1 RCT, 420 participants; moderate certainty). However, an increase cannot be excluded No data were available for other critical outcomes. AUTHORS' CONCLUSIONS: On average, tocilizumab reduces all-cause mortality at D28 compared to standard care alone or placebo and probably results in slightly fewer serious adverse events than standard care alone or placebo. Nevertheless, tocilizumab probably results in little or no increase in the outcome clinical improvement (defined as hospital discharge or improvement measured by trialist-defined scales) at D28. The impact of tocilizumab on other outcomes is uncertain or very uncertain. With the data available, we were not able to explore heterogeneity. Individual patient data meta-analyses are needed to be able to identify which patients are more likely to benefit from this treatment. Evidence for an effect of sarilumab is uncertain and evidence for other anti-IL6 agents is unavailable. Thirty-nine RCTs of IL-6 blocking agents with no results are currently registered, of which nine are completed and seven trials were terminated with no results available. The findings of this review will be updated as new data are made available on the COVID-NMA platform (covid-nma.com).


Asunto(s)
Anticuerpos Monoclonales Humanizados/uso terapéutico , Tratamiento Farmacológico de COVID-19 , Interleucina-6/antagonistas & inhibidores , Anciano , Anticuerpos Monoclonales/uso terapéutico , Anticuerpos Monoclonales Humanizados/efectos adversos , Sesgo , COVID-19/mortalidad , Progresión de la Enfermedad , Femenino , Humanos , Masculino , Persona de Mediana Edad , Estudios Multicéntricos como Asunto , Ensayos Clínicos Controlados Aleatorios como Asunto
7.
BMC Med ; 17(1): 205, 2019 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-31744489

RESUMEN

BACKGROUND: The peer review process has been questioned as it may fail to allow the publication of high-quality articles. This study aimed to evaluate the accuracy in identifying inadequate reporting in RCT reports by early career researchers (ECRs) using an online CONSORT-based peer-review tool (COBPeer) versus the usual peer-review process. METHODS: We performed a cross-sectional diagnostic study of 119 manuscripts, from BMC series medical journals, BMJ, BMJ Open, and Annals of Emergency Medicine reporting the results of two-arm parallel-group RCTs. One hundred and nineteen ECRs who had never reviewed an RCT manuscript were recruited from December 2017 to January 2018. Each ECR assessed one manuscript. To assess accuracy in identifying inadequate reporting, we used two tests: (1) ECRs assessing a manuscript using the COBPeer tool (after completing an online training module) and (2) the usual peer-review process. The reference standard was the assessment of the manuscript by two systematic reviewers. Inadequate reporting was defined as incomplete reporting or a switch in primary outcome and considered nine domains: the eight most important CONSORT domains and a switch in primary outcome(s). The primary outcome was the mean number of domains accurately classified (scale from 0 to 9). RESULTS: The mean (SD) number of domains (0 to 9) accurately classified per manuscript was 6.39 (1.49) for ECRs using COBPeer versus 5.03 (1.84) for the journal's usual peer-review process, with a mean difference [95% CI] of 1.36 [0.88-1.84] (p < 0.001). Concerning secondary outcomes, the sensitivity of ECRs using COBPeer versus the usual peer-review process in detecting incompletely reported CONSORT items was 86% [95% CI 82-89] versus 20% [16-24] and in identifying a switch in primary outcome 61% [44-77] versus 11% [3-26]. The specificity of ECRs using COBPeer versus the usual process to detect incompletely reported CONSORT domains was 61% [57-65] versus 77% [74-81] and to identify a switch in primary outcome 77% [67-86] versus 98% [92-100]. CONCLUSIONS: Trained ECRs using the COBPeer tool were more likely to detect inadequate reporting in RCTs than the usual peer review processes used by journals. Implementing a two-step peer-review process could help improve the quality of reporting. TRIAL REGISTRATION: Clinical.Trials.gov NCT03119376 (Registered April, 18, 2017).


Asunto(s)
Revisión por Pares/normas , Informe de Investigación/normas , Estudios Transversales , Humanos , Revisión por Pares/métodos , Publicaciones Periódicas como Asunto/normas , Edición/normas
8.
Ann Rheum Dis ; 78(4): 562-569, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30755417

RESUMEN

OBJECTIVE: To assess to what extent time-dependent biases (ie, immortal time bias (ITB) and time-lag bias (TLB)) occur in the latest rheumatology observational studies, describe their main mechanisms and increase the awareness on this topic. METHODS: We searched PubMed for observational studies on rheumatic diseases published in leading medical journals in the last 5 years. Only studies with a time-to-event analysis exploring the association of one or more interventional strategies with an outcome were included. Each study was labelled as free from bias, at risk of TLB, at risk of misclassified ITB if the period of immortal time was incorrectly attributed to an intervention group, or at risk of excluded ITB if the immortal time was discarded from the analysis. RESULTS: We included 78 papers. Most studies were performed in Europe or North America (46% each), were not industry funded (62%) and had a safety primary outcome (59%). In total, 13 (17%) studies were considered at risk of time-dependent biases. Among the studies at risk of ITB (n=8; 10%), in 5 (6%), waiting time to receive treatment was wrongly attributed to the treatment exposure group, which indicated misclassified ITB. Five (6%) studies were at risk of TLB: patients on conventional synthetic disease-modifying antirheumatic drugs (DMARD; first-line drugs) were compared with patients on biologic DMARDs (second or third-line drugs) without accounting for disease duration or prior medication use. CONCLUSIONS: One in six comparative effectiveness observational studies published in leading rheumatology journals is potentially flawed by time-dependent biases.


Asunto(s)
Investigación sobre la Eficacia Comparativa/métodos , Estudios Observacionales como Asunto/métodos , Enfermedades Reumáticas/terapia , Antirreumáticos/uso terapéutico , Sesgo , Productos Biológicos/uso terapéutico , Investigación sobre la Eficacia Comparativa/normas , Humanos , Estudios Observacionales como Asunto/normas , Proyectos de Investigación , Factores de Tiempo
9.
Ann Intern Med ; 169(4): 240-247, 2018 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-30014150

RESUMEN

Background: Probiotics, prebiotics, and synbiotics are used increasingly, although the safety and potential harms of these interventions are poorly understood. Purpose: To examine how harms-related information is reported in publications of randomized controlled trials (RCTs) of probiotics, prebiotics, and synbiotics. Data Sources: Cochrane Central Register of Controlled Trials, PubMed, EMBASE, and Web of Science (without language restrictions) from 1 January 2015 to 20 March 2018. Study Selection: RCTs assessing the safety or efficacy of at least 1 intervention involving probiotics, prebiotics, or synbiotics alone or in combination with another intervention compared with any control (such as a placebo or an antibiotic) for any clinical condition. Data Extraction: 4 reviewers independently assessed study characteristics, the reporting of harms, and the presentation of safety results. Data Synthesis: Of 384 trials conducted in healthy volunteers (n = 136) or patients with any of several medical conditions (n = 248), 339 (88%) were published in specialty journals. Trials most often evaluated probiotics (n = 265 [69%]). Studies in persons with medical conditions enrolled outpatients (n = 195) and high-risk patients (n = 53). No harms-related data were reported for 106 trials (28%), safety results were not reported for 142 (37%), and the number of serious adverse events (SAEs) per study group was not given for 309 (80%). Of 242 studies mentioning harms-related results, 37% (n = 89) used only generic statements to describe AEs and 16% (n = 38) used inadequate metrics. Overall, 375 trials (98%) did not give a definition for AEs or SAEs, the number of participant withdrawals due to harms, or the number of AEs and SAEs per study group with denominators. Limitation: Journal publication processes may have affected the completeness of reporting; only English-language publications were examined. Conclusion: Harms reporting in published reports of RCTs assessing probiotics, prebiotics, and synbiotics often is lacking or inadequate. We cannot broadly conclude that these interventions are safe without reporting safety data. Primary Funding Source: No specific funding.


Asunto(s)
Microbiota/efectos de los fármacos , Prebióticos/efectos adversos , Probióticos/efectos adversos , Edición/normas , Ensayos Clínicos Controlados Aleatorios como Asunto/normas , Simbióticos/efectos adversos , Humanos , Proyectos de Investigación
10.
Ann Intern Med ; 169(6): 385-393, 2018 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-30140933

RESUMEN

Background: Evidence about the effect on meta-analysis results of including unpublished trials or those published in languages other than English is unclear or discordant. Purpose: To compare treatment effects between published and unpublished randomized controlled trials (RCTs) and between trials published in English and other languages using a meta-epidemiologic approach. Data Sources: Cochrane reviews published between March 2011 and January 2017 and trial references cited in the reviews. Study Selection: RCTs included in meta-analyses of 3 or more trials with a binary efficacy outcome. Data Extraction: Trial characteristics were extracted by original review authors. A single reviewer assessed publication status and language, with quality assurance by another investigator. Data Synthesis: Among 5659 RCTs included in 698 meta-analyses, 5303 (93.7%) were published in journal articles and 356 (6.3%) were unpublished. Of journal articles, 92.6% (4910 of 5303) were published in English and 7.4% (393 of 5303) in another language. Treatment effects were larger in published than unpublished trials (combined ratio of odds ratios [ROR] for 174 meta-analyses, 0.90 [95% CI, 0.82 to 0.98]; I2 = 19.3%; τ2 = 0.0492). Treatment effects were also larger for trials published in a language other than English than in English (combined ROR for 147 meta-analyses, 0.86 [CI, 0.78 to 0.95]; I2 = 0%; τ2 = 0.0000). Limitation: Reliance on the primary reference cited by review authors as the record of interest. Conclusion: In meta-analyses, treatment effects were larger in published than unpublished trials and, for published trials, in those published in a language other than English than in English. Primary Funding Source: Cochrane France.


Asunto(s)
Sesgo de Publicación , Publicaciones , Ensayos Clínicos Controlados Aleatorios como Asunto/normas , Resultado del Tratamiento , Diseño de Investigaciones Epidemiológicas , Humanos , Lenguaje , Metaanálisis como Asunto
11.
Rev Med Chil ; 147(11): 1407-1414, 2019 Nov.
Artículo en Español | MEDLINE | ID: mdl-32186601

RESUMEN

Background Self-reported health is subjective and depends on external factors such as socioeconomic status, presence of chronic diseases and working status, among others. Aim To determine which factors influence self-reported health among older people in Chile. Material and Methods A secondary analysis of the National Socioeconomic Characterization survey done in 2015. A dichotomous response model was used classifying health status as good or bad. A logit regression model was carried out. Results The model had a good calibration and correctly classified 72 and 68% of men and women, respectively. The main factors that influenced health status self-perception were: not having health problems; having undergone a mental health interview, to receive supplemental nutrition, education, to have a productive work; and to having a social network. Conclusions There are health, cultural, economic and environmental factors that influence self-perceived health status.


Asunto(s)
Autoimagen , Autoinforme/estadística & datos numéricos , Anciano , Chile , Femenino , Estado de Salud , Encuestas Epidemiológicas , Humanos , Masculino , Factores Socioeconómicos
12.
Ann Intern Med ; 167(1): 34-39, 2017 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-28531908

RESUMEN

BACKGROUND: Fecal microbiota transplantation (FMT) could be a novel treatment option for several chronic diseases associated with altered gut microbiota. PURPOSE: To examine the conduct and reporting of studies assessing FMT. DATA SOURCES: Cochrane Central Register of Controlled Trials, PubMed, EMBASE, and Web of Science from inception to 31 January 2017. STUDY SELECTION: Two reviewers independently examined titles and abstracts to identify all English-language reports of human clinical studies assessing the safety or efficacy of FMT. DATA EXTRACTION: Three reviewers independently assessed study types and characteristics and the reporting of important methodological components of the FMT intervention. DATA SYNTHESIS: Most (84%) of the 85 published reports found addressed the use of FMTs for Clostridium difficile infection or inflammatory bowel disease, and most (87%) were non-randomized controlled trials. Important methodological components that were not reported in published studies included the following: eligibility criteria for donors (47%), materials used for collecting stools and the period of collection (96%), methods used for conservation of stools (76%), the amount and type of stools used (for example, fresh or frozen), and duration of stool conservation (67%). Many (58%) did not report an analysis of microbiota composition. LIMITATIONS: Lack of universal consensus regarding the most important methodological components of FMT and inability to assess the actual conduct of studies and whether the publication process affected the completeness of reporting. CONCLUSION: Key components of FMT interventions, which are necessary to replicate and understand study findings about efficacy and safety, are poorly reported. PRIMARY FUNDING SOURCE: No specific funding.


Asunto(s)
Trasplante de Microbiota Fecal , Proyectos de Investigación , Clostridioides difficile , Infecciones por Clostridium/terapia , Humanos , Enfermedades Inflamatorias del Intestino/terapia
13.
BMC Cell Biol ; 17 Suppl 1: 17, 2016 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-27228968

RESUMEN

Mutations in human connexin (Cx) genes have been related to diseases, which we termed connexinopathies. Such hereditary disorders include nonsyndromic or syndromic deafness (Cx26, Cx30), Charcot Marie Tooth disease (Cx32), occulodentodigital dysplasia and cardiopathies (Cx43), and cataracts (Cx46, Cx50). Despite the clinical phenotypes of connexinopathies have been well documented, their pathogenic molecular determinants remain elusive. The purpose of this work is to identify common/uncommon patterns in channels function among Cx mutations linked to human diseases. To this end, we compiled and discussed the effect of mutations associated to Cx26, Cx32, Cx43, and Cx50 over gap junction channels and hemichannels, highlighting the function of the structural channel domains in which mutations are located and their possible role affecting oligomerization, gating and perm/selectivity processes.


Asunto(s)
Canalopatías/metabolismo , Conexinas/química , Conexinas/metabolismo , Animales , Canalopatías/genética , Conexinas/genética , Uniones Comunicantes/metabolismo , Humanos , Activación del Canal Iónico , Modelos Moleculares , Mutación/genética
14.
BMC Med ; 14(1): 100, 2016 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-27377062

RESUMEN

BACKGROUND: To increase transparency in research, the International Committee of Medical Journal Editors required, in 2005, prospective registration of clinical trials as a condition to publication. However, many trials remain unregistered or retrospectively registered. We aimed to assess the association between trial prospective registration and treatment effect estimates. METHODS: This is a meta-epidemiological study based on all Cochrane reviews published between March 2011 and September 2014 with meta-analyses of a binary outcome including three or more randomised controlled trials published after 2006. We extracted trial general characteristics and results from the Cochrane reviews. For each trial, we searched for registration in the report's full text, contacted the corresponding author if not reported and searched ClinicalTrials.gov and the International Clinical Trials Registry Platform in case of no response. We classified each trial as prospectively registered (i.e. registered before the start date); retrospectively registered, distinguishing trials registered before and after the primary completion date; and not registered. Treatment effect estimates of prospectively registered and other trials were compared by the ratio of odds ratio (ROR) (ROR <1 indicates larger effects in trials not prospectively registered). RESULTS: We identified 67 meta-analyses (322 trials). Overall, 225/322 trials (70 %) were registered, 74 (33 %) prospectively and 142 (63 %) retrospectively; 88 were registered before the primary completion date and 54 after. Unregistered or retrospectively registered trials tended to show larger treatment effect estimates than prospectively registered trials (combined ROR = 0.81, 95 % CI 0.65-1.02, based on 32 contributing meta-analyses). Trials unregistered or registered after the primary completion date tended to show larger treatment effect estimates than those registered before this date (combined ROR = 0.84, 95 % CI 0.71-1.01, based on 43 contributing meta-analyses). CONCLUSIONS: Lack of trial prospective registration may be associated with larger treatment effect estimates.


Asunto(s)
Investigación Biomédica , Ensayos Clínicos como Asunto , Proyectos de Investigación/normas , Sesgo , Investigación Biomédica/métodos , Investigación Biomédica/organización & administración , Protocolos Clínicos/normas , Ensayos Clínicos como Asunto/métodos , Ensayos Clínicos como Asunto/organización & administración , Humanos , Metaanálisis como Asunto , Publicaciones/normas , Resultado del Tratamiento
15.
BMC Med ; 14(1): 192, 2016 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-27899150

RESUMEN

BACKGROUND: Publication bias and other reporting bias have been well documented for journal articles, but no study has evaluated the nature of results posted at ClinicalTrials.gov. We aimed to assess how many randomized controlled trials (RCTs) with results posted at ClinicalTrials.gov report statistically significant results and whether the proportion of trials with significant results differs when no treatment effect estimate or p-value is posted. METHODS: We searched ClinicalTrials.gov in June 2015 for all studies with results posted. We included completed RCTs with a superiority hypothesis and considered results for the first primary outcome with results posted. For each trial, we assessed whether a treatment effect estimate and/or p-value was reported at ClinicalTrials.gov and if yes, whether results were statistically significant. If no treatment effect estimate or p-value was reported, we calculated the treatment effect and corresponding p-value using results per arm posted at ClinicalTrials.gov when sufficient data were reported. RESULTS: From the 17,536 studies with results posted at ClinicalTrials.gov, we identified 2823 completed phase 3 or 4 randomized trials with a superiority hypothesis. Of these, 1400 (50%) reported a treatment effect estimate and/or p-value. Results were statistically significant for 844 trials (60%), with a median p-value of 0.01 (Q1-Q3: 0.001-0.26). For the 1423 trials with no treatment effect estimate or p-value posted, we could calculate the treatment effect and corresponding p-value using results reported per arm for 929 (65%). For 494 trials (35%), p-values could not be calculated mainly because of insufficient reporting, censored data, or repeated measurements over time. For the 929 trials we could calculate p-values, we found statistically significant results for 342 (37%), with a median p-value of 0.19 (Q1-Q3: 0.005-0.59). CONCLUSIONS: Half of the trials with results posted at ClinicalTrials.gov reported a treatment effect estimate and/or p-value, with significant results for 60% of these. p-values could be calculated from results reported per arm at ClinicalTrials.gov for only 65% of the other trials. The proportion of significant results was much lower for these trials, which suggests a selective posting of treatment effect estimates and/or p-values when results are statistically significant.


Asunto(s)
Sesgo , Bases de Datos Factuales , Ensayos Clínicos Controlados Aleatorios como Asunto/normas , Humanos , Internet , Proyectos de Investigación
16.
BMC Med Res Methodol ; 16: 35, 2016 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-27004721

RESUMEN

BACKGROUND: There is an increasing number of meta-analyses including data from non-randomized studies for therapeutic evaluation. We aimed to systematically assess the methods used in meta-analyses including non-randomized studies evaluating therapeutic interventions. METHODS: For this methodological review, we searched MEDLINE via PubMed, from January 1, 2013 to December 31, 2013 for meta-analyses including at least one non-randomized study evaluating therapeutic interventions. Etiological assessments and meta-analyses with no comparison group were excluded. Two reviewers independently assessed the general characteristics and key methodological components of the systematic review process and meta-analysis methods. RESULTS: One hundred eighty eight meta-analyses were selected: 119 included both randomized controlled trials (RCTs) and non-randomized studies of interventions (NRSI) and 69 only NRSI. Half of the meta-analyses (n = 92, 49%) evaluated non-pharmacological interventions. "Grey literature" was searched for 72 meta-analyses (38%). An assessment of methodological quality or risk of bias was reported in 135 meta-analyses (72%) but this assessment considered the risk of confounding bias in only 33 meta-analyses (18%). In 130 meta-analyses (69%), the design of each NRSI was not clearly specified. In 131 (70%), whether crude or adjusted estimates of treatment effect for NRSI were combined was unclear or not reported. Heterogeneity across studies was assessed in 182 meta-analyses (97%) and further explored in 157 (84%). Reporting bias was assessed in 127 (68%). CONCLUSIONS: Some key methodological components of the systematic review process-search for grey literature, description of the type of NRSI included, assessment of risk of confounding bias and reporting of whether crude or adjusted estimates were combined-are not adequately carried out or reported in meta-analyses including NRSI.


Asunto(s)
Ensayos Clínicos Controlados como Asunto/métodos , Estudios de Evaluación como Asunto , Evaluación del Resultado de la Atención al Paciente , Ensayos Clínicos Controlados Aleatorios como Asunto/métodos , Femenino , Humanos , Masculino , Control de Calidad , Informe de Investigación
17.
BMC Med ; 13: 189, 2015 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-26269118

RESUMEN

BACKGROUND: The reporting of serious adverse events (SAEs) in clinical trials is crucial to assess the balance between benefits and risks. For trials with serious adverse events posted at ClinicalTrials.gov, we assessed the consistency between SAEs posted at ClinicalTrials.gov and those published in corresponding journal articles. METHODS: All records from ClinicalTrials.gov up to February 2014 were automatically exported in XML format. Among these, we identified all phase III or IV randomized controlled trials with at least one SAE posted. For a random sample of 300 of these trials, we searched for corresponding publications using MEDLINE via PubMed and extracted safety results from the articles. RESULTS: Among the sample of 300 trials with SAEs posted at ClinicalTrials.gov, 78 (26%) did not have a corresponding publication, and 20 (7%) had a publication that did not match the ClinicalTrials.gov record. For the 202 remaining trials, 26 published articles (13%) did not mention SAEs, 4 (2%) reported no SAEs, and 33 (16%) did not report the total number of SAEs per treatment group. Among the remaining 139 trials, for 44 (32%), the number of SAEs per group published did not match those posted at ClinicalTrials.gov. For 31 trials, the number of SAEs was greater at ClinicalTrials.gov than in the published article, with a difference ≥30 % for at least one group for 21. Only 33 trials (11%) had a publication reporting matching numbers of SAE and describing the type of SAE. CONCLUSIONS: Many trials with SAEs posted at ClinicalTrials.gov are not yet published, omit the reporting of these SAEs in corresponding publications, or report a discrepant number of SAEs as compared with ClinicalTrials.gov. These results underline the need to consult ClinicalTrials.gov for more information on serious harms.


Asunto(s)
Sistemas de Registro de Reacción Adversa a Medicamentos/estadística & datos numéricos , Ensayos Clínicos como Asunto , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Publicaciones , Edición , Proyectos de Investigación/normas , Acceso a la Información , Ensayos Clínicos como Asunto/métodos , Ensayos Clínicos como Asunto/estadística & datos numéricos , Humanos , Publicaciones/normas , Publicaciones/estadística & datos numéricos , Edición/normas , Edición/estadística & datos numéricos , Índice de Severidad de la Enfermedad
19.
J Neurophysiol ; 112(9): 2102-13, 2014 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-25080573

RESUMEN

In contrast to the knowledge of chemical synapses, little is known regarding the properties of gap junction-mediated electrical synapses in developing zebrafish, which provide a valuable model to study neural function at the systems level. Identifiable "mixed" (electrical and chemical) auditory synaptic contacts known as "club endings" on Mauthner cells (2 large reticulospinal neurons involved in tail-flip escape responses) allow exploration of electrical transmission in fish. Here, we show that paralleling the development of auditory responses, electrical synapses at these contacts become anatomically identifiable at day 3 postfertilization, reaching a number of ∼6 between days 4 and 9. Furthermore, each terminal contains ∼18 gap junctions, representing between 2,000 and 3,000 connexon channels formed by the teleost homologs of mammalian connexin 36. Electrophysiological recordings revealed that gap junctions at each of these contacts are functional and that synaptic transmission has properties that are comparable with those of adult fish. Thus a surprisingly small number of mixed synapses are responsible for the acquisition of auditory responses by the Mauthner cells, and these are likely sufficient to support escape behaviors at early developmental stages.


Asunto(s)
Sinapsis Eléctricas/fisiología , Uniones Comunicantes/fisiología , Rombencéfalo/fisiología , Transmisión Sináptica , Animales , Vías Auditivas/crecimiento & desarrollo , Vías Auditivas/fisiología , Conexinas/genética , Conexinas/metabolismo , Uniones Comunicantes/metabolismo , Larva/crecimiento & desarrollo , Larva/fisiología , Rombencéfalo/crecimiento & desarrollo , Pez Cebra , Proteína delta-6 de Union Comunicante
20.
PLoS Med ; 10(12): e1001566; discussion e1001566, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24311990

RESUMEN

BACKGROUND: The US Food and Drug Administration Amendments Act requires results from clinical trials of Food and Drug Administration-approved drugs to be posted at ClinicalTrials.gov within 1 y after trial completion. We compared the timing and completeness of results of drug trials posted at ClinicalTrials.gov and published in journals. METHODS AND FINDINGS: We searched ClinicalTrials.gov on March 27, 2012, for randomized controlled trials of drugs with posted results. For a random sample of these trials, we searched PubMed for corresponding publications. Data were extracted independently from ClinicalTrials.gov and from the published articles for trials with results both posted and published. We assessed the time to first public posting or publishing of results and compared the completeness of results posted at ClinicalTrials.gov versus published in journal articles. Completeness was defined as the reporting of all key elements, according to three experts, for the flow of participants, efficacy results, adverse events, and serious adverse events (e.g., for adverse events, reporting of the number of adverse events per arm, without restriction to statistically significant differences between arms for all randomized patients or for those who received at least one treatment dose). From the 600 trials with results posted at ClinicalTrials.gov, we randomly sampled 50% (n = 297) had no corresponding published article. For trials with both posted and published results (n = 202), the median time between primary completion date and first results publicly posted was 19 mo (first quartile = 14, third quartile = 30 mo), and the median time between primary completion date and journal publication was 21 mo (first quartile = 14, third quartile = 28 mo). Reporting was significantly more complete at ClinicalTrials.gov than in the published article for the flow of participants (64% versus 48% of trials, p<0.001), efficacy results (79% versus 69%, p = 0.02), adverse events (73% versus 45%, p<0.001), and serious adverse events (99% versus 63%, p<0.001). The main study limitation was that we considered only the publication describing the results for the primary outcomes. CONCLUSIONS: Our results highlight the need to search ClinicalTrials.gov for both unpublished and published trials. Trial results, especially serious adverse events, are more completely reported at ClinicalTrials.gov than in the published article.


Asunto(s)
Ensayos Clínicos como Asunto , Edición/estadística & datos numéricos , Bases de Datos Factuales , Humanos , Factores de Tiempo , Estados Unidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA