Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Chembiochem ; 25(8): e202400132, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38416537

RESUMEN

A LigE-type beta-etherase enzyme from lignin-degrading Agrobacterium sp. has been identified, which assists degradation of polymeric lignins. Testing against lignin dimer model compounds revealed that it does not catalyse the previously reported reaction of Sphingobium SYK-6 LigE, but instead shows activity for a ß-5 phenylcoumaran lignin dimer. The reaction products did not contain glutathione, indicating a catalytic role for reduced glutathione in this enzyme. Three reaction products were identified: the major product was a cis-stilbene arising from C-C fragmentation involving loss of formaldehyde; two minor products were an alkene arising from elimination of glutathione, and an oxidised ketone, proposed to arise from reaction of an intermediate with molecular oxygen. Testing of the recombinant enzyme against a soda lignin revealed the formation of new signals by two-dimensional NMR analysis, whose chemical shifts are consistent with the formation of a stilbene unit in polymeric lignin.


Asunto(s)
Lignina , Estilbenos , Lignina/metabolismo , Éter , Agrobacterium/metabolismo , Éteres/química , Éteres de Etila , Glutatión/metabolismo
2.
Environ Sci Technol ; 58(4): 1865-1876, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38217500

RESUMEN

Marine organisms are threatened by the presence of pesticides in coastal waters. Among them, the Pacific oyster is one of the most studied invertebrates in marine ecotoxicology where numerous studies highlighted the multiscale impacts of pesticides. In the past few years, a growing body of literature has reported the epigenetic outcomes of xenobiotics. Because DNA methylation is an epigenetic mark implicated in organism development and is meiotically heritable, it raises the question of the multigenerational implications of xenobiotic-induced epigenetic alterations. Therefore, we performed a multigenerational exposure to an environmentally relevant mixture of 18 pesticides (nominal sum concentration: 2.85 µg·L-1) during embryo-larval stages (0-48 hpf) of a second generation (F1) for which parents where already exposed or not in F0. Gene expression, DNA methylation, and physiological end points were assessed throughout the life cycle of individuals. Overall, the multigenerational effect has a greater influence on the phenotype than the exposure itself. Thus, multigenerational phenotypic effects were observed: individuals descending from exposed parents exhibited lower epinephrine-induced metamorphosis and field survival rates. At the molecular level, RNA-seq and Methyl-seq data analyses performed in gastrula embryos and metamorphosis-competent pediveliger (MCP) larvae revealed a clear F0 treatment-dependent discrimination. Some genes implicated into shell secretion and immunity exhibited F1:F0 treatment interaction patterns (e.g., Calm and Myd88). Those results suggest that low chronic environmental pesticide contamination can alter organisms beyond the individual scale level and have long-term adaptive implications.


Asunto(s)
Crassostrea , Plaguicidas , Contaminantes Químicos del Agua , Humanos , Animales , Plaguicidas/toxicidad , Crassostrea/genética , Crassostrea/metabolismo , Metilación de ADN , Fenotipo , Contaminantes Químicos del Agua/toxicidad , Contaminantes Químicos del Agua/metabolismo
3.
Mar Drugs ; 19(8)2021 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-34436291

RESUMEN

The neuropeptides involved in the regulation of reproduction in the Pacific oyster (Crassostrea gigas) are quite diverse. To investigate this diversity, a transcriptomic survey of the visceral ganglia (VG) was carried out over an annual reproductive cycle. RNA-seq data from 26 samples corresponding to VG at different stages of reproduction were de novo assembled to generate a specific reference transcriptome of the oyster nervous system and used to identify differentially expressed transcripts. Transcriptome mining led to the identification of novel neuropeptide precursors (NPPs) related to the bilaterian Eclosion Hormone (EH), crustacean female sex hormone/Interleukin 17, Nesfatin, neuroparsin/IGFBP, prokineticins, and urotensin I; to the protostome GNQQN, pleurin, prohormones 3 and 4, prothoracotropic hormones (PTTH), and QSamide/PXXXamide; to the lophotrochozoan CCWamide, CLCCY, HFAamide, and LXRX; and to the mollusk-specific NPPs CCCGS, clionin, FYFY, GNamide, GRWRN, GSWN, GWE, IWMPxxGYxx, LXRYamide, RTLFamide, SLRFamide, and WGAGamide. Among the complete repertoire of NPPs, no sex-biased expression was observed. However, 25 NPPs displayed reproduction stage-specific expression, supporting their involvement in the control of gametogenesis or associated metabolisms.


Asunto(s)
Ostreidae , Reproducción/fisiología , Animales , Organismos Acuáticos , Perfilación de la Expresión Génica , Humanos , Océano Pacífico , Fitoterapia
4.
PLoS Genet ; 13(6): e1006807, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28594821

RESUMEN

DNA methylation is a critical epigenetic regulator of development in mammals and social insects, but its significance in development outside these groups is not understood. Here we investigated the genome-wide dynamics of DNA methylation in a mollusc model, the oyster Crassostrea gigas, from the egg to the completion of organogenesis. Large-scale methylation maps reveal that the oyster genome displays a succession of methylated and non methylated regions, which persist throughout development. Differentially methylated regions (DMRs) are strongly regulated during cleavage and metamorphosis. The distribution and levels of methylated DNA within genomic features (exons, introns, promoters, repeats and transposons) show different developmental lansdscapes marked by a strong increase in the methylation of exons against introns after metamorphosis. Kinetics of methylation in gene-bodies correlate to their transcription regulation and to distinct functional gene clusters, and DMRs at cleavage and metamorphosis bear the genes functionally related to these steps, respectively. This study shows that DNA methylome dynamics underlie development through transcription regulation in the oyster, a lophotrochozoan species. To our knowledge, this is the first demonstration of such epigenetic regulation outside vertebrates and ecdysozoan models, bringing new insights into the evolution and the epigenetic regulation of developmental processes.


Asunto(s)
Metilación de ADN , Regulación del Desarrollo de la Expresión Génica , Ostreidae/genética , Animales , Genoma , Ostreidae/crecimiento & desarrollo
5.
Biomacromolecules ; 20(2): 693-704, 2019 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-30358992

RESUMEN

Brittleness has hindered commercialization of cellulose nanofibril (CNF) films. The use of synthetic polymers and plasticizers is a known detour that impairs biodegradability and carbon footprint of the product. Herein, we utilize a variety of softwood Kraft lignin morphologies to obtain strong and ductile CNF nanocomposite films. An optimum 10 wt % content of colloidal lignin particles (CLPs) produced films with nearly double the toughness compared to a CNF film without lignin. CLPs rendered the films waterproof, provided antioxidant activity and UV-shielding with better visible light transmittance than obtained with irregular lignin aggregates. We conclude based on electron microscopy, dynamic water sorption analysis, and tp-DSC that homogeneously distributed CLPs act as ball bearing lubricating and stress transferring agents in the CNF matrix. Overall, our results open new avenues for the utilization of lignin nanoparticles in biopolymer composites equipped with versatile functionalities for applications in food packaging, water purification, and biomedicine.


Asunto(s)
Lignina/química , Nanocompuestos/química , Nanofibras/química , Coloides/química , Nanocompuestos/efectos de la radiación , Nanofibras/efectos de la radiación , Luz Solar , Resistencia a la Tracción , Rayos Ultravioleta
6.
Gen Comp Endocrinol ; 271: 15-29, 2019 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-30389328

RESUMEN

Insulin Related Peptides (IRPs) belong to the insulin superfamily and possess a typical structure with two chains, B and A, linked by disulphide bonds. As the sequence conservation is usually low between members, IRPs are classified according to the number and position of their disulphide bonds. In molluscan species, the first IRPs identified, named Molluscan Insulin-related Peptides (MIPs), exhibit four disulphide bonds. The genomic and transcriptomic data screening in the Pacific oyster Crassostrea gigas (Mollusc, Bivalvia) allowed us to identify six IRP sequences belonging to three structural groups. Cg-MIP1 to 4 have the typical structure of MIPs with four disulphide bonds. Cg-ILP has three disulphide bonds like vertebrate Insulin-Like Peptides (ILPs). The last one, Cg-MILP7 has a significant homology with Drosophila ILP7 (DILP7) associated with two additional cysteines allowing the formation of a fourth disulphide bond. The phylogenetic analysis points out that ILPs may be the most ancestral form. Moreover, it appears that ILP7 orthologs are probably anterior to lophotrochozoa and ecdysozoa segregation. In order to investigate the diversity of physiological functions of the oyster IRPs, we combine in silico expression data, qPCR measurements and in situ hybridization. The Cg-ilp transcript, mainly detected in the digestive gland and in the gonadal area, is potentially involved in the control of digestion and gametogenesis. The expression of Cg-mip4 is mainly associated with the larval development. The Cg-mip transcript shared by the Cg-MIP1, 2 and 3, is mainly expressed in visceral ganglia but its expression was also observed in the gonads of mature males. This pattern suggested the key roles of IRPs in the control of sexual reproduction in molluscan species.


Asunto(s)
Crassostrea/genética , Evolución Molecular , Genómica , Insulina/metabolismo , Péptidos/metabolismo , Transcriptoma/genética , Secuencia de Aminoácidos , Animales , Secuencia Conservada , Crassostrea/citología , Regulación de la Expresión Génica , Genoma , Gónadas/citología , Gónadas/metabolismo , Insulina/química , Masculino , Especificidad de Órganos , Péptidos/química , Filogenia , ARN Mensajero/genética , ARN Mensajero/metabolismo
7.
BMC Bioinformatics ; 16: 401, 2015 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-26627443

RESUMEN

BACKGROUND: The Pacific oyster, Crassostrea gigas, is one of the most important aquaculture shellfish resources worldwide. Important efforts have been undertaken towards a better knowledge of its genome and transcriptome, which makes now C. gigas becoming a model organism among lophotrochozoans, the under-described sister clade of ecdysozoans within protostomes. These massive sequencing efforts offer the opportunity to assemble gene expression data and make such resource accessible and exploitable for the scientific community. Therefore, we undertook this assembly into an up-to-date publicly available transcriptome database: the GigaTON (Gigas TranscriptOme pipeliNe) database. DESCRIPTION: We assembled 2204 million sequences obtained from 114 publicly available RNA-seq libraries that were realized using all embryo-larval development stages, adult organs, different environmental stressors including heavy metals, temperature, salinity and exposure to air, which were mostly performed as part of the Crassostrea gigas genome project. This data was analyzed in silico and resulted into 56621 newly assembled contigs that were deposited into a publicly available database, the GigaTON database. This database also provides powerful and user-friendly request tools to browse and retrieve information about annotation, expression level, UTRs, splice and polymorphism, and gene ontology associated to all the contigs into each, and between all libraries. CONCLUSIONS: The GigaTON database provides a convenient, potent and versatile interface to browse, retrieve, confront and compare massive transcriptomic information in an extensive range of conditions, tissues and developmental stages in Crassostrea gigas. To our knowledge, the GigaTON database constitutes the most extensive transcriptomic database to date in marine invertebrates, thereby a new reference transcriptome in the oyster, a highly valuable resource to physiologists and evolutionary biologists.


Asunto(s)
Biología Computacional/métodos , Crassostrea/genética , Bases de Datos Genéticas , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Análisis de Secuencia de ARN/métodos , Programas Informáticos , Transcriptoma , Animales , Secuencia de Bases , Biblioteca de Genes , Ontología de Genes , Genoma , Datos de Secuencia Molecular
8.
Sci Total Environ ; 937: 173569, 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-38810751

RESUMEN

Pesticides threat marine organisms worldwide. Among them, the Pacific oyster is a bivalve mollusc model in marine ecotoxicology. A large body of literature already stated on the multiple-scale effects pesticides can trigger in the Pacific oyster, throughout its life cycle and in a delayed manner. In particular, reproductive toxicity is of major concern because of its influence on population dynamics. However, past studies mostly investigated pesticide reprotoxicity as a direct effect of exposure during gametogenesis or directly on gametes and little is known about the influence of an early embryo exposure on the breed capacity. Therefore, we studied delayed and multigenerational consequences through gametogenesis features (i.e. sex ratio, glycogen content, gene expression) and reproductive success in two consecutive oyster generations (F0 and F1) exposed to an environmentally-relevant pesticide mixture (sum nominal concentration: 2.85 µg.L-1) during embryo-larval development (0-48 h post fertilization, hpf). In the first generation, glycogen content increased in exposed individuals and the expression of some gametogenesis target genes was modified. The reproductive success measured 48 hpf was higher in exposed individuals. A multigenerational influence was observed in the second generation, with feminisation, acceleration of gametogenesis processes and the sex-specific modification of glycogen metabolism in individuals from exposed parents. This study is the first to highlight the delayed effects on reproduction induced by an early exposure to pesticides, and its multigenerational implications in the Pacific oyster. It suggests that environmental pesticide contamination can have impacts on the recruitment and the dynamics of natural oyster populations exposed during their embryo-larval phase.


Asunto(s)
Plaguicidas , Reproducción , Contaminantes Químicos del Agua , Animales , Reproducción/efectos de los fármacos , Contaminantes Químicos del Agua/toxicidad , Plaguicidas/toxicidad , Crassostrea/efectos de los fármacos , Crassostrea/fisiología , Gametogénesis/efectos de los fármacos , Femenino , Masculino , Glucógeno/metabolismo
9.
Environ Pollut ; 326: 121472, 2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-36965683

RESUMEN

Early life stages are crucial for organism development, especially for those displaying external fertilization, whose gametes and early stages face environmental stressors such as xenobiotics. The pacific oyster, Crassostrea gigas, is considered a model species in ecotoxicology because of its ecological characteristics (benthic, sessile, filter feeding). So far studies have investigated the impact of xenobiotics at embryotoxic, genotoxic and physiological endpoints, sometimes at the multigenerational scale, highlighting the role of epigenetic mechanisms in transmitting alterations induced by exposure to single xenobiotics. However, to date, little is known about the impact of environmentally-mimicking contaminants cocktails. Thus, we examined the impact of an early exposure to environmentally relevant mixture on the Pacific oyster life history. We studied transcriptomic, epigenetic and physiological alterations induced in oysters exposed to 18 pesticides and metals at environmental concentration (nominal sum concentration: 2.85 µg.L-1, measured sum concentration: 3.74 ± 0.013 µg.L-1) during embryo-larval stage (0-48 h post fertilization, hpf). No significant differences in embryo-larval abnormalities at 24 hpf were observed during larval and spat rearing; the swimming behaviour of exposed individuals was disturbed, while they were longer and heavier at specific time points, and exhibited a lower epinephrine-induced metamorphosis rate as well as a higher survival rate in the field. In addition, RNA-seq analyses of gastrula embryos revealed the differential expression of development-related genes (e.g. Hox orthologues and cell cycle regulators) between control and exposed oysters. Whole-genome DNA methylation analyses demonstrated a significant modification of DNA methylation in exposed larvae marked by a demethylation trend. Those findings suggest that early exposure to an environmentally relevant pesticide mixture induces multi-scale latent effects possibly affecting life history traits in the Pacific oyster.


Asunto(s)
Crassostrea , Plaguicidas , Contaminantes Químicos del Agua , Animales , Humanos , Crassostrea/fisiología , Metilación de ADN , Epigénesis Genética , Células Germinativas , Plaguicidas/metabolismo , Plaguicidas/toxicidad , Contaminantes Químicos del Agua/metabolismo , Contaminantes Químicos del Agua/toxicidad
10.
Artículo en Inglés | MEDLINE | ID: mdl-36496129

RESUMEN

The N6-methylation of RNA adenosines (N6-methyladenosine, m6A) is an important regulator of gene expression with critical implications in vertebrate and insect development. However, the developmental significance of epitranscriptomes in lophotrochozoan organisms remains unknown. Using methylated RNA immunoprecipitation sequencing (MeRIP-seq), we generated transcriptome-wide m6A-RNA methylomes covering the whole development of the oyster from oocytes to juveniles. Oyster RNA classes display specific m6A signatures, with messenger RNAs (mRNAs) and long non-coding RNAs (lncRNAs) exhibiting distinct profiles and being highly methylated compared to transposable element (TE) transcripts. Epitranscriptomes are dynamic and correspond to the chronological steps of development (cleavage, gastrulation, organogenesis, and metamorphosis), with minimal mRNA and lncRNA methylation at the morula stage followed by a global increase. mRNA m6A levels are correlated to transcript levels, and shifts in methylation profiles correspond to expression kinetics. Differentially methylated transcripts cluster according to embryo-larval stages and bear the corresponding developmental functions (cell division, signal transduction, morphogenesis, and cell differentiation). The m6A level of TE transcripts is also regulated and peaks during the gastrulation. We demonstrate that m6A-RNA methylomes are dynamic and associated with gene expression regulation during oyster development. The putative epitranscriptome implication in the cleavage, maternal-to-zygotic transition, and cell differentiation in a lophotrochozoan model brings new insights into the control and evolution of developmental processes.

11.
Appl Opt ; 50(9): C329-39, 2011 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-21460960

RESUMEN

A review on the use of photonic structures enabling a better absorption of solar radiation within solar cells is proposed. Specific geometric configurations, such as folded solar cells or fiber-based architectures, are shown to be promising solutions to reach better light absorption. Electromagnetic optimization of thin-film solar cells and the use of angular thin-film filters, proposed by several research groups, also provide solutions to better concentrate solar radiation within the active layers of solar cells. Finally, results on "photonized" solar cells comprising gratings or more advanced photonic components, such as photonic crystals or plasmonic structures, and their effects on light-matter interaction in solar cells are highlighted.

12.
FEBS J ; 288(5): 1696-1711, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-32743927

RESUMEN

N6 -methyladenosine (m6 A) is a prevalent epitranscriptomic mark in eukaryotic RNA, with crucial roles for mammalian and ecdysozoan development. Indeed, m6 A-RNA and the related protein machinery are important for splicing, translation, maternal-to-zygotic transition and cell differentiation. However, to date, the presence of an m6 A-RNA pathway remains unknown in more distant animals, questioning the evolution and significance of the epitranscriptomic regulation. Therefore, we investigated the m6 A-RNA pathway in the oyster Crassostrea gigas, a lophotrochozoan model whose development was demonstrated under strong epigenetic influence. Using mass spectrometry and dot blot assays, we demonstrated that m6 A-RNA is actually present in the oyster and displays variations throughout early oyster development, with the lowest levels at the end of cleavage. In parallel, by in silico analyses, we were able to characterize at the molecular level a complete and conserved putative m6 A machinery. The expression levels of the identified putative m6 A writers, erasers and readers were strongly regulated across oyster development. Finally, RNA pull-down coupled to LC-MS/MS allowed us to prove the actual presence of readers able to bind m6 A-RNA and exhibiting specific developmental patterns. Altogether, our results demonstrate the conservation of a complete m6 A-RNA pathway in the oyster and strongly suggest its implication in early developmental processes including MZT. This first demonstration and characterization of an epitranscriptomic regulation in a lophotrochozoan model, potentially involved in the embryogenesis, bring new insights into our understanding of developmental epigenetic processes and their evolution.


Asunto(s)
Adenosina/análogos & derivados , Crassostrea/genética , Desarrollo Embrionario/genética , Epigénesis Genética , ARN/genética , Adenosina/genética , Adenosina/metabolismo , Animales , Evolución Biológica , Crassostrea/crecimiento & desarrollo , Crassostrea/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/crecimiento & desarrollo , Drosophila melanogaster/metabolismo , Embrión no Mamífero , Ontología de Genes , Humanos , Anotación de Secuencia Molecular , ARN/metabolismo
13.
ACS Appl Mater Interfaces ; 12(23): 26293-26300, 2020 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-32436688

RESUMEN

Over the last two decades, organic photovoltaic (OPV) devices have seen their efficiency increase, while long-term stability and upscaling have been demonstrated for first-generation modules. Since the maturity level of this technology has now improved, techniques for rapid quality control have become relevant. Imaging techniques such as photo- and electroluminescence have already been used for this purpose. However, defects could only be localized either in the active layer or in interface layers, without being able to distinguish between defects located in the ETL from those within the HTL. Here, we present a simple method to unambiguously discriminate between ETL and HTL defects. Furthermore, we demonstrate the strong impact of HTL thickness on the detected photoluminescence signal. Our approach will help avoid misinterpretations in luminescence experiments and gain an understanding of device failure during processing or aging.

14.
ACS Sustain Chem Eng ; 8(10): 4167-4177, 2020 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-32296616

RESUMEN

Virus contamination of water is a threat to human health in many countries. Current solutions for inactivation of viruses mainly rely on environmentally burdensome chemical oxidation or energy-intensive ultraviolet irradiation, which may create toxic secondary products. Here, we show that renewable plant biomass-sourced colloidal lignin particles (CLPs) can be used as agglomeration agents to facilitate removal of viruses from water. We used dynamic light scattering (DLS), electrophoretic mobility shift assay (EMSA), atomic force microscopy and transmission electron microscopy (AFM, TEM), and UV spectrophotometry to quantify and visualize adherence of cowpea chlorotic mottle viruses (CCMVs) on CLPs. Our results show that CCMVs form agglomerated complexes with CLPs that, unlike pristine virus particles, can be easily removed from water either by filtration or centrifugation. Additionally, cationic particles formed by adsorption of quaternary amine-modified softwood kraft lignin on the CLPs were also evaluated to improve the binding interactions with these anionic viruses. We foresee that due to their moderate production cost, and high availability of lignin as a side-stream from biorefineries, CLPs could be an alternative water pretreatment material in a large variety of systems such as filters, packed columns, or flocculants.

15.
Genes (Basel) ; 10(9)2019 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-31509985

RESUMEN

Histone methylation patterns are important epigenetic regulators of mammalian development, notably through stem cell identity maintenance by chromatin remodeling and transcriptional control of pluripotency genes. But, the implications of histone marks are poorly understood in distant groups outside vertebrates and ecdysozoan models. However, the development of the Pacific oyster Crassostrea gigas is under the strong epigenetic influence of DNA methylation, and Jumonji histone-demethylase orthologues are highly expressed during C. gigas early life. This suggests a physiological relevance of histone methylation regulation in oyster development, raising the question of functional conservation of this epigenetic pathway in lophotrochozoan. Quantification of histone methylation using fluorescent ELISAs during oyster early life indicated significant variations in monomethyl histone H3 lysine 4 (H3K4me), an overall decrease in H3K9 mono- and tri-methylations, and in H3K36 methylations, respectively, whereas no significant modification could be detected in H3K27 methylation. Early in vivo treatment with the JmjC-specific inhibitor Methylstat induced hypermethylation of all the examined histone H3 lysines and developmental alterations as revealed by scanning electronic microscopy. Using microarrays, we identified 376 genes that were differentially expressed under methylstat treatment, which expression patterns could discriminate between samples as indicated by principal component analysis. Furthermore, Gene Ontology revealed that these genes were related to processes potentially important for embryonic stages such as binding, cell differentiation and development. These results suggest an important physiological significance of histone methylation in the oyster embryonic and larval life, providing, to our knowledge, the first insights into epigenetic regulation by histone methylation in lophotrochozoan development.


Asunto(s)
Crassostrea/genética , Regulación del Desarrollo de la Expresión Génica , Histonas/metabolismo , Procesamiento Proteico-Postraduccional , Animales , Crassostrea/crecimiento & desarrollo , Embrión no Mamífero/metabolismo , Embrión no Mamífero/ultraestructura , Epigénesis Genética , Código de Histonas , Histonas/genética , Metilación
16.
Data Brief ; 22: 546-550, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30627605

RESUMEN

In bilaterian species, the amino acid sequence conservation between Insulin related peptides is relatively low except for the cysteine residues involved in the disulphide bonds. In the A chain, the conserved cystein residues are included in a signature motif. Investigating the variations in this motif would give insight into the phylogenetic history of the family. The table presented in this paper contains a large set of insulin-related peptides in bilateral phylogenetic groups (deuterostomian, ecdysozoan, lophotrochozoan). NCBI databases in silico wide screening combined with bibliographic researches provided a framework for identifying and categorising the structural characteristics of these insulin related peptides. The dataset includes NCBI IDs of each sequence with hyperlinks to FASTA format. Moreover, the structural type (α, ß or γ), the A chain motif, the total number of cysteins, the C peptide cleavage mode and the potential additional domains (D or E) are specified for each sequence. The data are associated with the research article "Molecular evolution and functional characterisation of insulin-related peptides in molluscs: contributions of Crassostrea gigas genomic and transcriptomic-wide screening" [1]. The table presented here can be found at http://dx.doi.org/10.17632/w4gr8zcpk5.4#file-21c0f6a5-a3e3-4a15-86e0-e5a696458866.

17.
Aquat Toxicol ; 196: 70-78, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29353135

RESUMEN

Copper contamination is widespread along coastal areas and exerts adverse effects on marine organisms such as mollusks. In the Pacific oyster, copper induces severe developmental abnormalities during early life stages; however, the underlying molecular mechanisms are largely unknown. This study aims to better understand whether the embryotoxic effects of copper in Crassostrea gigas could be mediated by alterations in gene expression, and the putative role of DNA methylation, which is known to contribute to gene regulation in early embryo development. For that purpose, oyster embryos were exposed to 4 nominal copper concentrations (0.1, 1, 10 and 20 µg L-1 Cu2+) during early development assays. Embryotoxicity was monitored through the oyster embryo-larval bioassay at the D-larva stage 24 h post fertilization (hpf) and genotoxicity at gastrulation 7 hpf. In parallel, the relative expression of 15 genes encoding putative homeotic, biomineralization and DNA methylation proteins was measured at three developmental stages (3 hpf morula stage, 7 hpf gastrula stage, 24 hpf D-larvae stage) using RT-qPCR. Global DNA content in methylcytosine and hydroxymethylcytosine were measured by HPLC and gene-specific DNA methylation levels were monitored using MeDIP-qPCR. A significant increase in larval abnormalities was observed from copper concentrations of 10 µg L-1, while significant genotoxic effects were detected at 1 µg L-1 and above. All the selected genes presented a stage-dependent expression pattern, which was impaired for some homeobox and DNA methylation genes (Notochord, HOXA1, HOX2, Lox5, DNMT3b and CXXC-1) after copper exposure. While global DNA methylation (5-methylcytosine) at gastrula stage didn't show significant changes between experimental conditions, 5-hydroxymethylcytosine, its degradation product, decreased upon copper treatment. The DNA methylation of exons and the transcript levels were correlated in control samples for HOXA1 but such a correlation was diminished following copper exposure. The methylation level of some specific gene regions (HoxA1, Hox2, Engrailed2 and Notochord) displayed changes upon copper exposure. Such changes were gene and exon-specific and no obvious global trends could be identified. Our study suggests that the embryotoxic effects of copper in oysters could involve homeotic gene expression impairment possibly by changing DNA methylation levels.


Asunto(s)
Cobre/toxicidad , Crassostrea/efectos de los fármacos , Metilación de ADN/efectos de los fármacos , Expresión Génica/efectos de los fármacos , Contaminantes Químicos del Agua/toxicidad , 5-Metilcitosina/análogos & derivados , 5-Metilcitosina/química , 5-Metilcitosina/metabolismo , Animales , Ensayo Cometa , Crassostrea/crecimiento & desarrollo , Embrión no Mamífero/efectos de los fármacos , Embrión no Mamífero/metabolismo , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Larva/efectos de los fármacos , Análisis de Componente Principal , ARN/aislamiento & purificación , ARN/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa
18.
Dalton Trans ; 47(43): 15338-15343, 2018 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-30276377

RESUMEN

A new series of cationic gold(i) pyrazole complexes were prepared in excellent yields as their perchlorate salts. Results of cell viability assays show that these novel complexes have good cytotoxic properties against the human HepG2 cancer cell line. These complexes showed promising anti-cancer activities and to our knowledge, pyrazoles have never been tested against this cell line. The regioselectivity of the complexation is also discussed in regards to the substitution pattern of the pyrazoles.


Asunto(s)
Antineoplásicos/síntesis química , Antineoplásicos/farmacología , Oro/química , Compuestos Orgánicos de Oro/síntesis química , Compuestos Orgánicos de Oro/farmacología , Pirazoles/química , Antineoplásicos/química , Supervivencia Celular/efectos de los fármacos , Técnicas de Química Sintética , Diseño de Fármacos , Células Hep G2 , Humanos , Compuestos Orgánicos de Oro/química
19.
J Am Anim Hosp Assoc ; 54(5): 267-275, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30040441

RESUMEN

The objective of this study was to compare the clinical, biological, macroscopic, and histologic outcomes after resection of the soft palate by plasma-mediated bipolar radiofrequency ablation (PBRA) or traditional incisional techniques (incisional soft palate resection [INC]) in dogs. Ten dogs were divided in two groups. In the INC group, the soft palate was incised with scissors and the wound was sutured in a continuous pattern. In the PBRA group, a wand was used to ablate the desired portion of the soft palate, without suture. Clinical, biological, macroscopic, and histologic assessments were scheduled over 14 days. The duration of surgery was significantly shorter for the PBRA group. The C-reactive protein concentrations were significantly higher in the PBRA group at 6 hr and on day 3 (P < .05) but with values very close to the baseline. C-reactive protein concentrations were maximal, but with low values (<25 mg/L), at day 1 for both techniques. The irregularity scores for the soft palate caudal border on days 1, 3, and 14 were significantly higher in the INC group than in the PBRA group (P < .05). The main histopathologic changes were the presence of superficial granulomas and a significantly greater depth of tissue damage in the INC group (2.5 ± 0.3 mm) compared with the PBRA group (1.5 ± 0.1 mm; P < .05). PBRA compared favorably with the traditional technique in terms of ease, duration of surgery, and depth of tissue damage. Future studies are warranted to validate its effectiveness for treating brachycephalic airway obstruction syndrome in dogs.


Asunto(s)
Obstrucción de las Vías Aéreas/veterinaria , Ablación por Catéter/veterinaria , Enfermedades de los Perros/cirugía , Paladar Blando/anomalías , Obstrucción de las Vías Aéreas/cirugía , Animales , Ablación por Catéter/instrumentación , Ablación por Catéter/métodos , Perros , Electrocirugia/métodos , Electrocirugia/veterinaria , Paladar Blando/cirugía , Proyectos Piloto , Procedimientos de Cirugía Plástica/veterinaria
20.
Enzyme Microb Technol ; 111: 48-56, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29421036

RESUMEN

Cross-linked and decolorized lignin nanoparticles (LNPs) were prepared enzymatically and chemically from softwood Kraft lignin. Colloidal lignin particles (CLPs, ca. 200 nm) in a non-malodorous aqueous dispersion could be dried and redispersed in tetrahydrofuran (THF) or in water retaining their stability i.e. spherical shape and size. Two fungal laccases, Trametes hirsuta (ThL) and Melanocarpus albomyces (MaL) were used in the cross-linking reactions. Reactivity of ThL and MaL on Lignoboost™ lignin and LNPs was confirmed by high performance size exclusion chromatography (HPSEC) and oxygen consumption measurements with simultaneous detection of red-brown color due to the formation of quinones. Zeta potential measurements verified oxidation of LNPs via formation of surface-oriented carboxylic acid groups. Dynamic light scattering (DLS) revealed minor changes in the particle size distributions of LNPs after laccase catalyzed radicalization, indicating preferably covalent intraparticular cross-linking over polymerization. Changes in the surface morphology of laccase treated LNPs were imaged by atomic force (AFM) and transmission emission (TEM) microscopy. Furthermore, decolorization of LNPs without degradation was obtained using ultrasonication with H2O2 in alkaline reaction conditions. The research results have high impact for the utilization of Kraft lignin as nanosized colloidal particles in advanced bionanomaterial applications in medicine, foods and cosmetics including different sectors from chemical industry.


Asunto(s)
Materiales Biocompatibles/metabolismo , Lignina/metabolismo , Nanopartículas/química , Nanopartículas/metabolismo , Ascomicetos/enzimología , Materiales Biocompatibles/química , Coloides , Color , Reactivos de Enlaces Cruzados , Proteínas Fúngicas/metabolismo , Lacasa/metabolismo , Lignina/química , Nanopartículas/ultraestructura , Nanotecnología , Oxidación-Reducción , Trametes/enzimología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA