Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Genes Chromosomes Cancer ; 58(6): 341-356, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30474255

RESUMEN

Immortalizing primary cells with human telomerase reverse transcriptase (hTERT) has been common practice to enable primary cells to be of extended use in the laboratory because they avoid replicative senescence. Studying exogenously expressed hTERT in cells also affords scientists models of early carcinogenesis and telomere behavior. Control and the premature ageing disease-Hutchinson-Gilford progeria syndrome (HGPS) primary dermal fibroblasts, with and without the classical G608G mutation have been immortalized with exogenous hTERT. However, hTERT immortalization surprisingly elicits genome reorganization not only in disease cells but also in the normal control cells, such that whole chromosome territories normally located at the nuclear periphery in proliferating fibroblasts become mislocalized in the nuclear interior. This includes chromosome 18 in the control fibroblasts and both chromosomes 18 and X in HGPS cells, which physically express an isoform of the LINC complex protein SUN1 that has previously only been theoretical. Additionally, this HGPS cell line has also become genomically unstable and has a tetraploid karyotype, which could be due to the novel SUN1 isoform. Long-term treatment with the hTERT inhibitor BIBR1532 enabled the reduction of telomere length in the immortalized cells and resulted that these mislocalized internal chromosomes to be located at the nuclear periphery, as assessed in actively proliferating cells. Taken together, these findings reveal that elongated telomeres lead to dramatic chromosome mislocalization, which can be restored with a drug treatment that results in telomere reshortening and that a novel SUN1 isoform combined with elongated telomeres leads to genomic instability. Thus, care should be taken when interpreting data from genomic studies in hTERT-immortalized cell lines.


Asunto(s)
Cariotipo Anormal , Inestabilidad Genómica , Proteínas de la Membrana/genética , Proteínas Asociadas a Microtúbulos/genética , Proteínas Nucleares/genética , Progeria/genética , Telomerasa/genética , Homeostasis del Telómero , Línea Celular , Células Cultivadas , Fibroblastos/citología , Fibroblastos/metabolismo , Humanos , Proteínas de la Membrana/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas Nucleares/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Telomerasa/metabolismo
2.
Front Cell Dev Biol ; 9: 640200, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34113611

RESUMEN

This study demonstrates, and confirms, that chromosome territory positioning is altered in primary senescent human dermal fibroblasts (HDFs). The chromosome territory positioning pattern is very similar to that found in HDFs made quiescent either by serum starvation or confluence; but not completely. A few chromosomes are found in different locations. One chromosome in particular stands out, chromosome 10, which is located in an intermediate location in young proliferating HDFs, but is found at the nuclear periphery in quiescent cells and in an opposing location of the nuclear interior in senescent HDFs. We have previously demonstrated that individual chromosome territories can be actively and rapidly relocated, with 15 min, after removal of serum from the culture media. These chromosome relocations require nuclear motor activity through the presence of nuclear myosin 1ß (NM1ß). We now also demonstrate rapid chromosome movement in HDFs after heat-shock at 42°C. Others have shown that heat shock genes are actively relocated using nuclear motor protein activity via actin or NM1ß (Khanna et al., 2014; Pradhan et al., 2020). However, this current study reveals, that in senescent HDFs, chromosomes can no longer be relocated to expected nuclear locations upon these two types of stimuli. This coincides with a entirely different organisation and distribution of NM1ß within senescent HDFs.

3.
Comp Biochem Physiol B Biochem Mol Biol ; 147(3): 347-57, 2007 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-17493858

RESUMEN

Several animal lineages, including the vertebrates, have evolved sophisticated eyes with lenses that refract light to generate an image. The nearest invertebrate relatives of the vertebrates, such as the ascidians (sea squirts) and amphioxus, have only basic light detecting organs, leading to the widely-held view that the vertebrate lens is an innovation that evolved in early vertebrates. From an embryological perspective the lens is different from the rest of the eye, in that the eye is primarily of neural origin while the lens derives from a non-neural ectodermal placode which invaginates into the developing eye. How such an organ could have evolved has attracted much speculation. Recently, however, molecular developmental studies of sea squirts have started to suggest a possible evolutionary origin for the lens. First, studies of the Pax, Six, Eya and other gene families have indicated that sea squirts have areas of non-neural ectoderm homologous to placodes, suggesting an origin for the embryological characteristics of the lens. Second, the evolution and regulation of the betagamma-crystallins has been studied. These form one of the key crystallin gene families responsible for the transparency of the lens, and regulatory conservation between the betagamma-crystallin gene in the sea squirt Ciona intestinalis and the vertebrate visual system has been experimentally demonstrated. These data, together with knowledge of the morphological, physiological and gene expression similarities between the C. intestinalis ocellus and vertebrate retina, have led us to propose a hypothesis for the evolution of the vertebrate lens and integrated vertebrate eye via the co-option and combination of ancient gene regulatory networks; one controlling morphogenetic aspects of lens development and one controlling the expression of a gene family responsible for the biophysical properties of the lens, with the components of the retina having evolved from an ancestral photoreceptive organ derived from the anterior central nervous system.


Asunto(s)
Evolución Molecular , Cristalino/embriología , Vertebrados/embriología , Vertebrados/genética , beta-Cristalinas/genética , gamma-Cristalinas/genética , Animales , Humanos , beta-Cristalinas/metabolismo , gamma-Cristalinas/metabolismo
4.
Mech Ageing Dev ; 127(4): 356-70, 2006 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-16442589

RESUMEN

We used the fruit fly Drosophila melanogaster to test the effects of feeding the superoxide dismutase (SOD) mimetic drugs Euk-8 and -134 and the mitochondria-targeted mitoquinone (MitoQ) on lifespan and oxidative stress resistance of wild type and SOD-deficient flies. Our results reaffirm the findings by other workers that exogenous antioxidant can rescue pathology associated with compromised defences to oxidative stress, but fail to extend the lifespan of normal, wild type animals. All three drugs showed a dose-dependent increase in toxicity in wild type flies, an effect that was exacerbated in the presence of the redox-cycling drug paraquat. However, important findings from this study were that in SOD-deficient flies, where the antioxidant drugs increased lifespan, the effects were sex-specific and, for either sex, the effects were also variable depending on (1) the stage of development from which the drugs were given, and (2) the magnitude of the dose. These findings place significant constraints on the role of oxidative stress in normal ageing.


Asunto(s)
Antioxidantes/farmacología , Estrés Oxidativo , Envejecimiento , Animales , Animales Modificados Genéticamente , Antioxidantes/metabolismo , Relación Dosis-Respuesta a Droga , Drosophila melanogaster , Femenino , Radicales Libres , Genes de Insecto , Homocigoto , Longevidad , Masculino , Modelos Estadísticos , Compuestos Onio/farmacología , Compuestos Organofosforados/farmacología , Paraquat/farmacología , Interferencia de ARN , Factores Sexuales , Superóxido Dismutasa/metabolismo , Temperatura , Factores de Tiempo , Compuestos de Tritilo/farmacología , Ubiquinona/análogos & derivados , Ubiquinona/farmacología
5.
Ann N Y Acad Sci ; 1019: 388-91, 2004 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-15247051

RESUMEN

The free radical theory of aging proposes that mitochondrial production of reactive oxygen species (ROS) determines the rate of aging. Supporting this hypothesis, longer-lived species produce fewer ROS than shorter-lived ones, and calorically restricted rodents live longer and produce fewer ROS than controls. We studied such correlation in Drosophila melanogaster in caloric restriction and in mutant flies overexpressing the mitochondrial adenine nucleotide translocase (ANT). Caloric restriction extended life span, but there was no significant difference in mitochondrial ROS production compared with controls. ANT overexpressers had significantly lower ROS production (because they had lower membrane potential), but their life span was not extended compared to wild type. Our results show two examples in which mitochondrial ROS production and life span are not correlated.


Asunto(s)
Envejecimiento , Longevidad , Mitocondrias/patología , Especies Reactivas de Oxígeno , Animales , Animales Modificados Genéticamente , Drosophila melanogaster , Mutación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA