Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
Cell Reprogram ; 12(2): 151-60, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20677930

RESUMEN

The goals of the current study were to (1) improve culture conditions and (2) chemical passaging of bovine embryonic stem cell-like (bESC-like) cells. Specifically, the effects of human leukemia inhibitory factor (hLIF), two types of feeders, mouse embryonic fibroblast (MEF) and bovine embryonic fibroblast (BEF), as well as three different enzymatic treatments including Trypsin-EDTA, TrypLE, and Liberase Blendzymes 3 were investigated. The addition of hLIF at 1000 U/mL to the culture medium (41.2 and 36.9%), and the use of either MEF or BEF feeders (40.3 and 38.1%) had no significant effect on the ability of inner cell masses (ICMs) to form primary cell colonies compared to controls. All bESC-like cells were first dissociated mechanically for three passages followed by enzymatic dissociation. The ability to maintain ESC morphology to passage 10 was compared among the three enzymes above. More bESC-like cell lines survived beyond passage 10 when treated with TrypLE compared to Trypson-EDTA (28.8 and 12.6%; p < 0.05), and bESC-like cells differentiated quickly when treated with Liberase Blendzyme 3. The bESC-like cells generated in our study displayed typical stem cell morphology and expressed specific markers such as SSEA-1, AP, OCT-4, and Nanog. When removed from feeders, these bESC-like cells formed embryoid bodies (EBs) in a suspension culture. When EBs were cultured on tissue culture plates, they differentiated into various cell types. In summary, we were able to culture bESC-like cells more than 10 passages by enzymatic dissociation, which is important in gene targeting, maintenance, and banking of bESC lines.


Asunto(s)
Técnicas de Cultivo de Célula , Técnicas de Cultivo de Embriones/métodos , Células Madre Embrionarias/citología , Animales , Bovinos , Diferenciación Celular , Células Cultivadas/citología , Medios de Cultivo/farmacología , Femenino , Fertilización In Vitro , Humanos , Factor Inhibidor de Leucemia/metabolismo , Ratones , Transducción de Señal , Factores de Tiempo
2.
J Immunol ; 176(5): 3141-8, 2006 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-16493073

RESUMEN

We previously described the in vitro characteristics of the potent and selective CCR1 antagonist, CP-481,715. In addition to being selective for CCR1 vs other chemokine receptors, CP-481,715 is also specific for human CCR1 (hCCR1), preventing its evaluation in classical animal models. To address this, we generated mice whereby murine CCR1 was replaced by hCCR1 (knockin) and used these animals to assess the anti-inflammatory properties of CP-481,715. Cells isolated from hCCR1 knockin mice were shown to express hCCR1 and migrate in response to both murine CCR1 and hCCR1 ligands. Furthermore, this migration is inhibited by CP-481,715 at dose levels comparable to those obtained with human cells. In animal models of cell infiltration, CP-481,715 inhibited CCL3-induced neutrophil infiltration into skin or into an air pouch with an ED50 of 0.2 mg/kg. CP-481,715 did not inhibit cell infiltration in wild-type animals expressing murine CCR1. In a more generalized model of inflammation, delayed-type hypersensitivity, CP-481,715 significantly inhibited footpad swelling and decreased the amount of IFN-gamma and IL-2 produced by isolated spleen cells from sensitized animals. It did not, however, induce tolerance to a subsequent challenge. These studies illustrate the utility of hCCR1 knockin animals to assess the activity of human specific CCR1 antagonists; demonstrate the ability of the CCR1 antagonist CP-481,715 to inhibit cell infiltration, inflammation, and Th1 cytokine responses in these animals; and suggest that CP-481,715 may be useful to modulate inflammatory responses in human disease.


Asunto(s)
Antiinflamatorios no Esteroideos/farmacología , Inhibición de Migración Celular , Quimiotaxis de Leucocito/efectos de los fármacos , Hipersensibilidad Tardía/patología , Quinoxalinas/farmacología , Receptores de Quimiocina/antagonistas & inhibidores , Receptores de Quimiocina/genética , Actinas/metabolismo , Animales , Células Cultivadas , Quimiocina CCL3 , Quimiocina CCL4 , Quimiocinas CC/fisiología , Quimiotaxis de Leucocito/inmunología , Citocinas/metabolismo , Humanos , Hipersensibilidad Tardía/tratamiento farmacológico , Hipersensibilidad Tardía/genética , Proteínas Inflamatorias de Macrófagos/fisiología , Ratones , Ratones Endogámicos DBA , Ratones Transgénicos , Receptores CCR1 , Células Madre/inmunología , Células Madre/patología , Células TH1/efectos de los fármacos , Células TH1/metabolismo
3.
Proc Natl Acad Sci U S A ; 100(15): 9044-9, 2003 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-12835414

RESUMEN

Prostaglandin (PG)E2 is a potent mediator of pain and inflammation, and high levels of this lipid mediator are observed in numerous disease states. The inhibition of PGE2 production to control pain and to treat diseases such as rheumatoid arthritis to date has depended on nonsteroidal antiinflammatory agents such as aspirin. However, these agents inhibit the synthesis of all prostanoids. To produce biologically active PGE2, PGE synthases catalyze the isomerization of PGH2 into PGE2. Recently, several PGE synthases have been identified and cloned, but their role in inflammation is not clear. To study the physiological role of the individual PGE synthases, we have generated by targeted homologous recombination a mouse line deficient in microsomal PGE synthase 1 (mPGES1) on the inbred DBA/1lacJ background. mPGES1-deficient (mPGES1-/-) mice are viable and fertile and develop normally compared with wild-type controls. However, mPGES1-/- mice displayed a marked reduction in inflammatory responses compared with mPGES1+/+ mice in multiple assays. Here, we identify mPGES1 as the PGE synthase that contributes to the pathogenesis of collagen-induced arthritis, a disease model of human rheumatoid arthritis. We also show that mPGES1 is responsible for the production of PGE2 that mediates acute pain during an inflammatory response. These findings suggest that mPGES1 provides a target for the treatment of inflammatory diseases and pain associated with inflammatory states.


Asunto(s)
Inflamación/fisiopatología , Oxidorreductasas Intramoleculares/deficiencia , Dolor/fisiopatología , Animales , Artritis Experimental/etiología , Artritis Experimental/patología , Artritis Experimental/fisiopatología , Artritis Reumatoide/etiología , Artritis Reumatoide/patología , Artritis Reumatoide/fisiopatología , Dinoprostona/biosíntesis , Femenino , Humanos , Hipersensibilidad Tardía , Mediadores de Inflamación/metabolismo , Oxidorreductasas Intramoleculares/genética , Oxidorreductasas Intramoleculares/fisiología , Macrófagos/enzimología , Masculino , Ratones , Ratones Endogámicos DBA , Ratones Noqueados , Dolor/tratamiento farmacológico , Prostaglandina-E Sintasas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA