Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
1.
Molecules ; 29(5)2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38474698

RESUMEN

In this study, we synthesized two coordination complexes based on pyrazole-based ligands, namely 1,5-dimethyl-N-phenyl-1H-pyrazole-3-carboxamide (L1) and 1,5-dimethyl-N-propyl-1H-pyrazole-3-carboxamide (L2), with the aim to investigate bio-inorganic properties. Their crystal structures revealed a mononuclear complex [Ni(L1)2](ClO4)2 (C1) and a dinuclear complex [Cd2(L2)2]Cl4 (C2). Very competitive antifungal and anti-Fusarium activities were found compared to the reference standard cycloheximide. Additionally, L1 and L2 present very weak genotoxicity in contrast to the observed increase in genotoxicity for the coordination complexes C1 and C2.

2.
Inorg Chem ; 62(22): 8576-8588, 2023 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-37221454

RESUMEN

The present study further explores the behavior of polyoxometalate-based hybrid compounds as catalysts for liquid-phase cyclooctene epoxidation with H2O2. Precisely, it unveils the nature of the relevant active species derived from the hybrid based on Keggin polyoxometalate (POM) and bipyridines (bpy) of formula (2,2'-Hbpy)3[PW12O40] (1). Whereas (i) it is generally accepted that the catalytic oxidation of organic substrates by H2O2 involving Keggin HPAs proceeds via an oxygen transfer route from a peroxo intermediate and (ii) the catalytically active peroxo species is commonly postulated to be the polyperoxotungstate {PO4[W(O)(O2)2]4}3- complex (PW4), we show that the studied epoxidation reaction seems to be more sophisticated than commonly reported. During the catalytic epoxidation, 1 underwent a partial transformation into two oxidized species, 2 and 3. Compound 3 corresponding to 2,2'-bipyridinium oxodiperoxotungstate of formula [WO(O2)2(2,2'-bpy)] was shown to be the main species responsible for the selective epoxidation of cyclooctene since 2 (in which the POM is associated with a protonated mono-N-oxide derivative of 2,2'-bpy of formula (2,2'-HbpyO)3[PW12O40]) exhibited no activity. The structures of 1, 2, and 3 were solved by single-crystal X-ray diffraction and were independently synthesized. The speciation of 1 was monitored under catalytic conditions by 1H and 1H DOSY NMR spectroscopies, where the formation in situ of 2 and 3 was revealed. A reaction mechanism is proposed that highlights the pivotal, yet often underestimated, role of H2O2 in the reached catalytic performances. The active species responsible for the oxygen transfer to cyclooctene is a hydroperoxide intermediate species that is formed by the interaction between the anionic structure of the catalyst and H2O2. The latter operates as a "conservative agent" whose presence in the catalytic system is required to prevent the catalysts from deactivating irreversibly.

3.
Molecules ; 28(19)2023 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-37836644

RESUMEN

Four mononuclear complexes (H3O){[NiL3](ClO4)3} (1), [CoL3](ClO4)2·2H2O (2), [CdL2Cl2] (3) and [CuL3](NO3)2 (4) have been prepared employing a newly synthesized 1,2,4-triazole ligand: 3-(3,5-dimethyl-1H-pyrazol-1-yl)-1H-1,2,4-triazole (L). The structures of the complexes, which crystallized in P63/m (1), P-1 (2), P1 (3), and P21/c (4), are reviewed within the context of the cooperative effect of the hydrogen bonding network and counter anions on the supramolecular formations. Moreover, within the framework of biological activity examination, these compounds showed favorable antibacterial performances compared to those of various species of bacteria, including both Gram-positive and Gram-negative strains. Significant antifungal inhibitory activity towards Fusarium oxysporum f. sp. albedinis fungi was recorded for 3 and 4 over the ligand L.


Asunto(s)
Antifúngicos , Complejos de Coordinación , Antifúngicos/farmacología , Antifúngicos/química , Complejos de Coordinación/farmacología , Complejos de Coordinación/química , Ligandos , Triazoles/farmacología , Triazoles/química , Antibacterianos/farmacología , Antibacterianos/química , Pirazoles/farmacología , Pirazoles/química
4.
Inorg Chem ; 61(29): 11084-11094, 2022 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-35817416

RESUMEN

The first mesoporous bimetallic TiIII/Al metal-organic framework (MOF) containing amine functionalities on its linkers has been selectively obtained by converting the cheap commercially available (TiCl3)3AlCl3 into Ti3-xAlxCl3(THF)3 and reacting this complex with 2-aminoterephthalic acid in dimethylformamide (DMF) under soft solvothermal conditions. This compound is structurally related to the previously described NH2-MIL-101(M) (M = Cr, Al, and Fe) MOFs. Thermal gravimetric analyses and in situ powder X-ray diffraction (PXRD) measurements demonstrated that this highly air-sensitive TiIII-containing MOF is structurally stable up to 200 °C. Nuclear magnetic resonance (NMR) spectroscopy, elemental analysis, and inductively coupled plasma (ICP) revealed that NH2-MIL-101(TiIII) contains trinuclear Ti3(µ3-O)Cl(DMF)2(RCOO)6 clusters with strongly bound DMF molecules and a small amount of aluminum. Sorption experiments revealed a higher affinity of this MOF for hydrogen compared to the previously described monometallic unfunctionalized MIL-101(TiIII) MOF.

5.
J Am Chem Soc ; 143(30): 11641-11650, 2021 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-34309388

RESUMEN

Metal-organic frameworks (MOFs) have emerged as an important, yet highly challenging class of electrochemical energy storage materials. The chemical principles for electroactive MOFs remain, however, poorly explored because precise chemical and structural control is mandatory. For instance, no anionic MOF with a lithium cation reservoir and reversible redox (like a conventional Li-ion cathode) has been synthesized to date. Herein, we report on electrically conducting Li-ion MOF cathodes with the generic formula Li2-M-DOBDC (wherein M = Mg2+ or Mn2+; DOBDC4- = 2,5-dioxido-1,4-benzenedicarboxylate), by rational control of the ligand to transition metal stoichiometry and secondary building unit (SBU) topology in the archetypal CPO-27. The accurate chemical and structural changes not only enable reversible redox but also induce a million-fold electrical conductivity increase by virtue of efficient electronic self-exchange facilitated by mix-in redox: 10-7 S/cm for Li2-Mn-DOBDC vs 10-13 S/cm for the isoreticular H2-Mn-DOBDC and Li2-Mg-DOBDC, or the Mn-CPO-27 compositional analogues. This particular SBU topology also considerably augments the redox potential of the DOBDC4- linker (from 2.4 V up to 3.2 V, vs Li+/Li0), a highly practical feature for Li-ion battery assembly and energy evaluation. As a particular cathode material, Li2-Mn-DOBDC displays an average discharge potential of 3.2 V vs Li+/Li0, demonstrates excellent capacity retention over 100 cycles, while also handling fast cycling rates, inherent to the intrinsic electronic conductivity. The Li2-M-DOBDC material validates the concept of reversible redox activity and electronic conductivity in MOFs by accommodating the ligand's noncoordinating redox center through composition and SBU design.

6.
Inorg Chem ; 60(21): 16666-16677, 2021 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-34652917

RESUMEN

The metal sites of MIL-100(Fe), MIL-100(Fe,Al), and MIL-100(Al) metal-organic frameworks (MOFs) were decorated with ethylenediamine (EN). Interestingly, the Al-containing MOFs presented hierarchized porosity, and their structural integrity was maintained upon functionalization. Solution and solid-state NMR confirmed the grafting efficiency in the case of MIL-100(Al) and the presence of a free amine group. It was shown that MIL-100(Al) can be functionalized by only one EN molecule in each trimeric Al3O cluster unit, whereas the other two aluminum sites are occupied by a hydroxyl and a water molecule. The -NH2 sites of the grafted ethylenediamine can be used for further postfunctionalization through amine chemistry and are responsible for the basicity of the functionalized material as well as increased affinity for CO2. Furthermore, the presence of coordinated water molecules on the Al-MOF is responsible for simultaneous Brønsted acidity. Finally, the Al-containing MOFs show an unusual carbon dioxide sorption mechanism at high pressures that distinguishes those materials from their iron and chromium counterparts and is suspected to be due to the presence of polarized Al-OH bonds.

7.
Org Biomol Chem ; 19(25): 5658, 2021 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-34106117

RESUMEN

Correction for 'Water binding stabilizes stacked conformations of ferrocene containing sheet-like aromatic oligoamides' by Ya-Zhou Liu et al., Org. Biomol. Chem., 2021, DOI: 10.1039/d1ob00580d.

8.
Org Biomol Chem ; 19(25): 5521-5524, 2021 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-33904564

RESUMEN

While water clusters play an essential role in the stability of biological structures, their ability to stabilize synthetic oligomers is less understood. We have synthesized a heptameric sheet-like aromatic oligoamide foldamer with ferrocene as turn unit. It shows strong interactions with water in the solid state and in solution. The water binding limits the fluxional processes resulting from the flexible ferrocene unit, highlighting the importance of such interactions for conformational studies on this class of molecule.

9.
Chemistry ; 26(1): 181-185, 2020 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-31691432

RESUMEN

A series of aromatic oligoamides incorporating an inherently flexible ferrocene dicarboxylic acid unit was synthesized. Solid state, solution, and computational studies on these systems indicated that the aromatic strands can adopt a syn parallel stacked conformation. This results in modular ß-sheet-like molecular clefts that display structure-dependent recognition of small polar molecules. NMR and theoretical studies of the host-guest interaction support an in cleft binding mode and allowed the selectivity of the oligomers to be rationalized on the basis of minor changes in functional-group presentation on the edge of the aromatic strands.

10.
Chemistry ; 26(52): 11960-11965, 2020 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-32378754

RESUMEN

Non-covalent interactions are important for directing protein folding across multiple intermediates and can even provide access to multiple stable structures with different properties and functions. Herein, we describe an approach for mimicking this behavior in the self-assembly of metal-organic cages. Two ligands, the bend angles of which are controlled by non-covalent interactions and one ligand lacking the above-mentioned interactions, were synthesized and used for self-assembly with Pd2+ . As these weak interactions are easily broken, the bend angles have a controlled flexibility giving access to M2 (L1)4 , M6 (L2)12 , and M12 (L2)24 cages. By controlling the self-assembly conditions this process can be directed in a stepwise fashion. Additionally, the multiple endohedral hydrogen-bonding sites on the ligand were found to play a role in the binding and discrimination of neutral guests.

11.
Angew Chem Int Ed Engl ; 59(28): 11303-11306, 2020 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-32196879

RESUMEN

Processes leading to enantiomerically pure compounds are of utmost importance, in particular for the pharmaceutical industry. Starting from a racemic mixture, crystallization-induced diastereomeric transformation allows in theory for 100 % transformation of the desired enantiomer. However, this method has the inherent limiting requirement for the organic compound to form a salt. Herein, this limitation is lifted by introducing cocrystallization in the context of thermodynamic deracemization, with the process applied to a model chiral fungicide. We report a new general single thermodynamic deracemization process based on cocrystallization for the deracemization of (R,S)-4,4-dimethyl-1-(4-fluorophenyl)-2-(1H-1,2,4-triazol-1-yl)pentan-3-one. This study demonstrates the feasibility of this novel approach and paves the way to further development of such processes.

12.
Inorg Chem ; 58(8): 4753-4760, 2019 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-30938152

RESUMEN

Ammonia borane, NH3BH3 (AB), is very attractive for hydrogen storage; however, it dehydrogenates exothermally, producing a mixture of polymeric products with limited potential for direct rehydrogenation. Recently, it was shown that AB complexed with Al3+ in Al(BH4)3·AB endothermically dehydrogenates to a single product identified as Al(BH4)3·NHBH, with the potential for direct rehydrogenation of AB. Here we explore the reactivity of AB-derived RNH2BH3 (R = -CH3, -CH2-) with AlX3 salts (X = BH4-, Cl-), aiming to extend the series to different anions and to enlarge the stability window for Al(BH4)3·NRBH. Three novel complexes were identified: Al(BH4)3·CH3NH2BH3 having a molecular structure similar to that of Al(BH4)3·AB but different dehydrogenation properties, as well as [Al(CH3NH2BH3)2Cl2][AlCl4] and [Al(NH2CH2CH2NH2)(BH4)2][Al(BH4)4], rare examples of Al3+ making part of the cations and anions simultaneously. The latter compounds are of interest in the design of novel electrolytes for Al-based batteries. The coordination of two ABs to a single Al atom opens a route to materials with higher hydrogen content.

13.
Org Biomol Chem ; 17(25): 6284-6292, 2019 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-31194210

RESUMEN

A gold-catalysed post-Ugi chemo- and diastereoselective cascade dearomative spirocyclization/1,6-addition sequence is disclosed for the synthesis of diverse fused polyheterocyclic scaffolds bearing indole, pyrrole, benzothiophene, furan or electron-rich arene moieties from easily available building blocks. The effectiveness and efficiency of this diversity-oriented approach has been proved in the rapid construction of 28 fused polyheterocyclic scaffolds with a good building-block variability and structural complexity in two operational steps.

14.
Angew Chem Int Ed Engl ; 58(34): 11768-11773, 2019 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-31216118

RESUMEN

α-Alkylidene cyclic carbonates (αCCs) recently emerged as attractive CO2 -sourced synthons for the construction of complex organic molecules. Herein, we report the transformation of αCCs into novel families of sulfur-containing compounds by organocatalyzed chemoselective addition of thiols, following a domino process that is switched on/off depending on the desired product. The process is extremely fast and versatile in substrate scope, provides selectively linear thiocarbonates or elusive tetrasubstituted ethylene carbonates with high yields following a 100 % atom economy reaction, and valorizes CO2 as a renewable feedstock. It is also exploited to produce a large diversity of unprecedented functional polymers. It constitutes a robust platform for the design of new sulfur-containing organic synthons and important families of polymers.

15.
Chemistry ; 24(17): 4259-4263, 2018 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-29430742

RESUMEN

Reducible 3,6-bis(3,5-dimethyl-pyrazolyl)1,2,4,5-tetrazine was employed to isolate supramolecular air-stable [Co4 ] and [Zn4 ] squares, which were achieved via careful selection of counterions rather than the use of reducing agents. Magnetic susceptibility studies revealed a strong radical-CoII exchange coupling (Jrad-Co /hc=-118 cm-1 , -2J formalism) with a spin ground state of ST =4, whereas the unreduced analogue revealed negligible coupling between the Co centers (JCo-Co /hc=-0.64 cm-1 ). Radical-radical coupling was also probed in the [Zn4 ] congener, which led to Jrad-rad /hc=-15.9(5) cm-1 . These results highlight the versatile air-stable coordination chemistry of tetrazine and the importance of exploiting easily reducible delocalized radical to promote strong exchange coupling between spin carriers.

16.
Inorg Chem ; 57(3): 1356-1367, 2018 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-29336560

RESUMEN

Photodynamic therapeutic agents are of key interest in developing new strategies to develop more specific and efficient anticancer treatments. In comparison to classical chemotherapeutic agents, the activity of photodynamic therapeutic compounds can be finely controlled thanks to the light triggering of their photoreactivity. The development of type I photosensitizing agents, which do not rely on the production of ROS, is highly desirable. In this context, we developed new iridium(III) complexes which are able to photoreact with biomolecules; namely, our Ir(III) complexes can oxidize guanine residues under visible light irradiation. We report the synthesis and extensive photophysical characterization of four new Ir(III) complexes, [Ir(ppyCF3)2(N^N)]+ [ppyCF3 = 2-(3,5-bis(trifluoromethyl)phenyl)pyridine) and N^N = 2,2'-dipyridyl (bpy); 2-(pyridin-2-yl)pyrazine (pzpy); 2,2'-bipyrazine (bpz); 1,4,5,8-tetraazaphenanthrene (TAP)]. In addition to an extensive experimental and theoretical study of the photophysics of these complexes, we characterize their photoreactivity toward model redox-active targets and the relevant biological target, the guanine base. We demonstrate that photoinduced electron transfer takes place between the excited Ir(III) complex and guanine which leads to the formation of stable photoproducts, indicating that the targeted guanine is irreversibly damaged. These results pave the way to the elaboration of new type I photosensitizers for targeting cancerous cells.


Asunto(s)
Antineoplásicos/farmacología , Complejos de Coordinación/farmacología , Iridio/farmacología , Neoplasias/tratamiento farmacológico , Fármacos Fotosensibilizantes/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Supervivencia Celular/efectos de los fármacos , Complejos de Coordinación/síntesis química , Complejos de Coordinación/química , Humanos , Iridio/química , Estructura Molecular , Neoplasias/patología , Fotoquimioterapia , Fármacos Fotosensibilizantes/síntesis química , Fármacos Fotosensibilizantes/química , Teoría Cuántica , Termodinámica
17.
Molecules ; 23(4)2018 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-29584708

RESUMEN

A library of bidentate diols, as well as tridentate triols and aminodiols, derived from (+)-sabinol, was synthesized in a stereoselective manner. Sabinol was transformed into allylic trichloroacetamide via Overman rearrangement of the corresponding trichloroacetimidate. After changing the protecting group to Boc, the enamine was subjected to stereospecific dihydroxylation with OsO4/NMO, resulting in the (1R,2R,3R,5R)-aminodiol diastereomer. The obtained primary aminodiol was transformed to a secondary analogue. The ring closure of the N-benzyl-substituted aminodiol with formaldehyde was investigated and regioselective formation of the spiro-oxazolidine ring was observed. Hydroboration or dihydroxylation of sabinol or its benzyl ether with OsO4/NMO resulted in the formation of sabinane-based diols and triols following a highly stereospecific reaction. Treatment of sabinol with m-CPBA afforded O-benzoyl triol as a diastereoisomer of the directly dihydroxylated product, instead of the expected epoxy alcohol. The resulting aminodiols, diol, and triols were applied as chiral catalysts in the reaction of diethylzinc and benzaldehyde from moderate to good selectivity.


Asunto(s)
Terpenos/síntesis química , Catálisis , Ligandos , Estructura Molecular , Estereoisomerismo , Terpenos/química
18.
Angew Chem Int Ed Engl ; 57(1): 272-276, 2018 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-29144011

RESUMEN

We report herein an efficient gold(I)-catalyzed post-Ugi domino dearomatization/ipso-cyclization/Michael sequence that enables access to libraries of diverse (hetero)arene-annulated tricyclic heterocycles. This process affords novel complex polycyclic scaffolds in moderate to good yields from readily available acyclic precursors with excellent chemo-, regio-, and diastereoselectivity. The power of this strategy has been demonstrated by the rapid synthesis of 40 highly functionalized polyheterocycles bearing indole, pyrrole, (benzo)furan, (benzo)thiophene, pyrazole, and electron-rich arene groups in two operational steps.

19.
Beilstein J Org Chem ; 14: 2190-2197, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30202471

RESUMEN

In recent decades, considerable research attention has been devoted to new synthetic procedures for thiacyclophanes. Thiacyclophanes are widely used as host molecules for the molecular recognition of organic compounds as well as metals. Herein, we report the selective and high-yielding synthesis of novel alternate-linked-meta-para-thiacyclophanes. These novel thiacyclophanes are selectively synthesized in high-yielding procedures. Furthermore, post-functionalization of the phenolic moieties was successfully performed. The 3D structure of the alternate-linked-meta-para-[22.12]thiacyclophane was further elucidated via X-ray crystallographic analysis.

20.
J Org Chem ; 82(3): 1666-1675, 2017 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-28093912

RESUMEN

Nitrones are important building blocks for natural and biologically active compounds, used as spin-trap reagents and therapeutic agents. All this makes nitrones intriguing and valuable compounds for fundamental studies and as useful chemicals in various synthetic strategies. Therefore, nitrones are still of great interest and in the limelight of researches. With our initial goal to solve synthetic problems toward 5-phenyl-2,2'-bipyridine (Phbpy), we found that this reaction can proceed through the formation of 6-phenyl-3-(pyridin-2-yl)-1,2,4-triazin-4(3H)-ol (4-OH), which rapidly isomerizes to a 3,4-dihydro-1,2,4-triazine-based nitrone, namely 6-phenyl-3-pyridin-2-yl-2,3-dihydro-1,2,4-triazin-4-oxide (4'), This encouraged us to study condensation of hydrazonophenylacetaldehyde oxime (2), obtained from 2-isonitrosoacetophenone (1), with other aldehydes. The reaction with both salicylaldehyde and p-tolualdehyde leads to the open-chain isomers, namely (2-hydroxybenzylidene)hydrazono-2-phenylacetaldehyde oxime (5) and (4-methylbenzylidene)hydrazono-2-phenylacetaldehyde oxime (6), respectively. The latter product exists in solution in equilibrium with its cyclic isomer 6-phenyl-3-(4-methylphenyl)-2,3-dihydro-1,2,4-triazin-4-oxide (6'), while the former one exists in solution exclusively in the open-chain form. It was also found that 2 reacts with acetone with the formation of 3,3-dimethyl-6-phenyl-2,3-dihydro-1,2,4-triazin-4-oxide (7'), which also exists in solution in equilibrium with its open-chain isomer 2-phenyl-2-(propan-2-ylidenehydrazono)acetaldehyde oxime (7). The static DFT as well as ab initio molecular dynamics simulations have corroborated the experimental findings.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA