Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 96
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 176(4): 869-881.e13, 2019 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-30735636

RESUMEN

Circular RNAs (circRNAs) are an intriguing class of RNA due to their covalently closed structure, high stability, and implicated roles in gene regulation. Here, we used an exome capture RNA sequencing protocol to detect and characterize circRNAs across >2,000 cancer samples. When compared against Ribo-Zero and RNase R, capture sequencing significantly enhanced the enrichment of circRNAs and preserved accurate circular-to-linear ratios. Using capture sequencing, we built the most comprehensive catalog of circRNA species to date: MiOncoCirc, the first database to be composed primarily of circRNAs directly detected in tumor tissues. Using MiOncoCirc, we identified candidate circRNAs to serve as biomarkers for prostate cancer and were able to detect circRNAs in urine. We further detected a novel class of circular transcripts, termed read-through circRNAs, that involved exons originating from different genes. MiOncoCirc will serve as a valuable resource for the development of circRNAs as diagnostic or therapeutic targets across cancer types.


Asunto(s)
Perfilación de la Expresión Génica/métodos , Neoplasias/genética , ARN/genética , Biomarcadores de Tumor/genética , Bases de Datos Genéticas , Regulación Neoplásica de la Expresión Génica/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , MicroARNs/genética , ARN/metabolismo , ARN Circular , Análisis de Secuencia de ARN/métodos , Secuenciación del Exoma/métodos
2.
Cell ; 173(7): 1770-1782.e14, 2018 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-29906450

RESUMEN

Using integrative genomic analysis of 360 metastatic castration-resistant prostate cancer (mCRPC) samples, we identified a novel subtype of prostate cancer typified by biallelic loss of CDK12 that is mutually exclusive with tumors driven by DNA repair deficiency, ETS fusions, and SPOP mutations. CDK12 loss is enriched in mCRPC relative to clinically localized disease and characterized by focal tandem duplications (FTDs) that lead to increased gene fusions and marked differential gene expression. FTDs associated with CDK12 loss result in highly recurrent gains at loci of genes involved in the cell cycle and DNA replication. CDK12 mutant cases are baseline diploid and do not exhibit DNA mutational signatures linked to defects in homologous recombination. CDK12 mutant cases are associated with elevated neoantigen burden ensuing from fusion-induced chimeric open reading frames and increased tumor T cell infiltration/clonal expansion. CDK12 inactivation thereby defines a distinct class of mCRPC that may benefit from immune checkpoint immunotherapy.


Asunto(s)
Quinasas Ciclina-Dependientes/metabolismo , Neoplasias de la Próstata/patología , Anticuerpos Monoclonales/uso terapéutico , Línea Celular Tumoral , Quimiocina CCL21/genética , Quimiocina CCL21/metabolismo , Quinasas Ciclina-Dependientes/antagonistas & inhibidores , Quinasas Ciclina-Dependientes/genética , Reparación del ADN , Regulación Neoplásica de la Expresión Génica , Inestabilidad Genómica , Humanos , Masculino , Mutación Missense , Estadificación de Neoplasias , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fenotipo , Receptor de Muerte Celular Programada 1/inmunología , Próstata/diagnóstico por imagen , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/inmunología , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Linfocitos T/metabolismo , Linfocitos T/patología , Tomografía Computarizada por Rayos X
3.
Cell ; 161(5): 1215-1228, 2015 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-26000489

RESUMEN

Toward development of a precision medicine framework for metastatic, castration-resistant prostate cancer (mCRPC), we established a multi-institutional clinical sequencing infrastructure to conduct prospective whole-exome and transcriptome sequencing of bone or soft tissue tumor biopsies from a cohort of 150 mCRPC affected individuals. Aberrations of AR, ETS genes, TP53, and PTEN were frequent (40%-60% of cases), with TP53 and AR alterations enriched in mCRPC compared to primary prostate cancer. We identified new genomic alterations in PIK3CA/B, R-spondin, BRAF/RAF1, APC, ß-catenin, and ZBTB16/PLZF. Moreover, aberrations of BRCA2, BRCA1, and ATM were observed at substantially higher frequencies (19.3% overall) compared to those in primary prostate cancers. 89% of affected individuals harbored a clinically actionable aberration, including 62.7% with aberrations in AR, 65% in other cancer-related genes, and 8% with actionable pathogenic germline alterations. This cohort study provides clinically actionable information that could impact treatment decisions for these affected individuals.


Asunto(s)
Perfilación de la Expresión Génica/métodos , Neoplasias de la Próstata Resistentes a la Castración/genética , Neoplasias de la Próstata Resistentes a la Castración/patología , Estudios de Cohortes , Humanos , Masculino , Mutación , Metástasis de la Neoplasia/tratamiento farmacológico , Metástasis de la Neoplasia/genética , Metástasis de la Neoplasia/patología , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico
4.
Cell ; 149(7): 1622-34, 2012 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-22726445

RESUMEN

Pseudogene transcripts can provide a novel tier of gene regulation through generation of endogenous siRNAs or miRNA-binding sites. Characterization of pseudogene expression, however, has remained confined to anecdotal observations due to analytical challenges posed by the extremely close sequence similarity with their counterpart coding genes. Here, we describe a systematic analysis of pseudogene "transcription" from an RNA-Seq resource of 293 samples, representing 13 cancer and normal tissue types, and observe a surprisingly prevalent, genome-wide expression of pseudogenes that could be categorized as ubiquitously expressed or lineage and/or cancer specific. Further, we explore disease subtype specificity and functions of selected expressed pseudogenes. Taken together, we provide evidence that transcribed pseudogenes are a significant contributor to the transcriptional landscape of cells and are positioned to play significant roles in cellular differentiation and cancer progression, especially in light of the recently described ceRNA networks. Our work provides a transcriptome resource that enables high-throughput analyses of pseudogene expression.


Asunto(s)
Estudio de Asociación del Genoma Completo , Neoplasias/genética , Seudogenes/genética , Transcriptoma , Secuencia de Aminoácidos , Secuencia de Bases , Neoplasias de la Mama/genética , Femenino , Humanos , Masculino , Datos de Secuencia Molecular , Neoplasias de la Próstata/genética , Análisis de Secuencia de ARN
6.
Nature ; 571(7765): 413-418, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31243372

RESUMEN

ABTRACT: Forkhead box A1 (FOXA1) is a pioneer transcription factor that is essential for the normal development of several endoderm-derived organs, including the prostate gland1,2. FOXA1 is frequently mutated in hormone-receptor-driven prostate, breast, bladder and salivary-gland tumours3-8. However, it is unclear how FOXA1 alterations affect the development of cancer, and FOXA1 has previously been ascribed both tumour-suppressive9-11 and oncogenic12-14 roles. Here we assemble an aggregate cohort of 1,546 prostate cancers and show that FOXA1 alterations fall into three structural classes that diverge in clinical incidence and genetic co-alteration profiles, with a collective prevalence of 35%. Class-1 activating mutations originate in early prostate cancer without alterations in ETS or SPOP, selectively recur within the wing-2 region of the DNA-binding forkhead domain, enable enhanced chromatin mobility and binding frequency, and strongly transactivate a luminal androgen-receptor program of prostate oncogenesis. By contrast, class-2 activating mutations are acquired in metastatic prostate cancers, truncate the C-terminal domain of FOXA1, enable dominant chromatin binding by increasing DNA affinity and-through TLE3 inactivation-promote metastasis driven by the WNT pathway. Finally, class-3 genomic rearrangements are enriched in metastatic prostate cancers, consist of duplications and translocations within the FOXA1 locus, and structurally reposition a conserved regulatory element-herein denoted FOXA1 mastermind (FOXMIND)-to drive overexpression of FOXA1 or other oncogenes. Our study reaffirms the central role of FOXA1 in mediating oncogenesis driven by the androgen receptor, and provides mechanistic insights into how the classes of FOXA1 alteration promote the initiation and/or metastatic progression of prostate cancer. These results have direct implications for understanding the pathobiology of other hormone-receptor-driven cancers and rationalize the co-targeting of FOXA1 activity in therapeutic strategies.


Asunto(s)
Factor Nuclear 3-alfa del Hepatocito/genética , Mutación/genética , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología , Línea Celular Tumoral , Cromatina/genética , Cromatina/metabolismo , Regulación Neoplásica de la Expresión Génica , Genoma Humano/genética , Factor Nuclear 3-alfa del Hepatocito/química , Factor Nuclear 3-alfa del Hepatocito/metabolismo , Humanos , Masculino , Modelos Moleculares , Metástasis de la Neoplasia/genética , Dominios Proteicos , Receptores Androgénicos/metabolismo , Vía de Señalización Wnt
7.
Pediatr Dev Pathol ; : 10935266241257547, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38845135

RESUMEN

Spindle cell/sclerosing rhabdomyosarcoma is an infrequent subtype of rhabdomyosarcoma according to the World Health Organization Classification of Soft Tissue and Bone Tumours, which includes a novel category of intraosseous spindle-cell rhabdomyosarcomas (ISCRMS) with EWSR1:: or FUS::TFCP2 fusions. We report a case of ISCRMS with EWSR1::TFCP2 fusion presenting in the femur mimicking osteosarcoma in this unusual primary location. We present an 18-year-old male with relapsed widely metastatic sarcoma, morphologically identical to osteosarcoma responding poorly to chemotherapy, initially presenting in the distal femur. Sections showed a high-grade malignant neoplasm with sheets of epithelioid and spindled cells without obvious rhabdomyoblastic differentiation morphologically containing focal areas resembling new bone/osteoid formation. Molecular sequencing identified t(12;22) EWSR1::TFCP2. The tumor cells were diffusely positive for pancytokeratin, MyoD1, and ALK by retrospective immunohistochemistry. Desmin and SATB2 were focally positive. Myogenin was negative, and INI-1 expression was retained. ISCRMS commonly involves craniofacial and pelvic bones, but rarely originates in long bones, as in this case. Initially, osteosarcoma was the primary diagnostic consideration based on distal long bone location, patient age, and evidence of osteoid formation. Distinction between the two entities may be nearly impossible on morphologic grounds alone, which presents a diagnostic pitfall without molecular or extensive immunoprofiling data.

8.
Proc Natl Acad Sci U S A ; 118(1): e2021450118, 2021 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-33310900

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus responsible for COVID-19, employs two key host proteins to gain entry and replicate within cells, angiotensin-converting enzyme 2 (ACE2) and the cell surface transmembrane protease serine 2 (TMPRSS2). TMPRSS2 was first characterized as an androgen-regulated gene in the prostate. Supporting a role for sex hormones, males relative to females are disproportionately affected by COVID-19 in terms of mortality and morbidity. Several studies, including one employing a large epidemiological cohort, suggested that blocking androgen signaling is protective against COVID-19. Here, we demonstrate that androgens regulate the expression of ACE2, TMPRSS2, and androgen receptor (AR) in subsets of lung epithelial cells. AR levels are markedly elevated in males relative to females greater than 70 y of age. In males greater than 70 y old, smoking was associated with elevated levels of AR and ACE2 in lung epithelial cells. Transcriptional repression of the AR enhanceosome with AR or bromodomain and extraterminal domain (BET) antagonists inhibited SARS-CoV-2 infection in vitro. Taken together, these studies support further investigation of transcriptional inhibition of critical host factors in the treatment or prevention of COVID-19.

9.
J Pathol ; 257(3): 274-284, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35220606

RESUMEN

Primary prostate cancer (PCa) can show marked molecular heterogeneity. However, systematic analyses comparing primary PCa and matched metastases in individual patients are lacking. We aimed to address the molecular aspects of metastatic progression while accounting for the heterogeneity of primary PCa. In this pilot study, we collected 12 radical prostatectomy (RP) specimens from men who subsequently developed metastatic castration-resistant prostate cancer (mCRPC). We used histomorphology (Gleason grade, focus size, stage) and immunohistochemistry (IHC) (ERG and p53) to identify independent tumors and/or distinct subclones of primary PCa. We then compared molecular profiles of these primary PCa areas to matched metastatic samples using whole-exome sequencing (WES) and amplicon-based DNA and RNA sequencing. Based on combined pathology and molecular analysis, seven (58%) RP specimens harbored monoclonal and topographically continuous disease, albeit with some degree of intratumor heterogeneity; four (33%) specimens showed true multifocal disease; and one displayed monoclonal disease with discontinuous topography. Early (truncal) events in primary PCa included SPOP p.F133V (one patient), BRAF p.K601E (one patient), and TMPRSS2:ETS rearrangements (eight patients). Activating AR alterations were seen in nine (75%) mCRPC patients, but not in matched primary PCa. Hotspot TP53 mutations, found in metastases from three patients, were readily present in matched primary disease. Alterations in genes encoding epigenetic modifiers were observed in several patients (either shared between primary foci and metastases or in metastatic samples only). WES-based phylogenetic reconstruction and/or clonality scores were consistent with the index focus designated by pathology review in six out of nine (67%) cases. The three instances of discordance pertained to monoclonal, topographically continuous tumors, which would have been considered as unique disease in routine practice. Overall, our results emphasize pathologic and molecular heterogeneity of primary PCa, and suggest that comprehensive IHC-assisted pathology review and genomic analysis are highly concordant in nominating the 'index' primary PCa area. © 2022 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Asunto(s)
Neoplasias de la Próstata Resistentes a la Castración , Neoplasias de la Próstata , Genómica , Humanos , Masculino , Proteínas Nucleares/genética , Filogenia , Proyectos Piloto , Prostatectomía , Neoplasias de la Próstata/patología , Neoplasias de la Próstata Resistentes a la Castración/genética , Neoplasias de la Próstata Resistentes a la Castración/patología , Proteínas Represoras/genética
10.
Nature ; 548(7667): 297-303, 2017 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-28783718

RESUMEN

Metastasis is the primary cause of cancer-related deaths. Although The Cancer Genome Atlas has sequenced primary tumour types obtained from surgical resections, much less comprehensive molecular analysis is available from clinically acquired metastatic cancers. Here we perform whole-exome and -transcriptome sequencing of 500 adult patients with metastatic solid tumours of diverse lineage and biopsy site. The most prevalent genes somatically altered in metastatic cancer included TP53, CDKN2A, PTEN, PIK3CA, and RB1. Putative pathogenic germline variants were present in 12.2% of cases of which 75% were related to defects in DNA repair. RNA sequencing complemented DNA sequencing to identify gene fusions, pathway activation, and immune profiling. Our results show that integrative sequence analysis provides a clinically relevant, multi-dimensional view of the complex molecular landscape and microenvironment of metastatic cancers.


Asunto(s)
Genética Médica , Genómica , Metástasis de la Neoplasia/genética , Adulto , Fosfatidilinositol 3-Quinasa Clase I/genética , Inhibidor p16 de la Quinasa Dependiente de Ciclina , Inhibidor p18 de las Quinasas Dependientes de la Ciclina/genética , Reparación del ADN/genética , Femenino , Mutación de Línea Germinal/genética , Humanos , Masculino , Metástasis de la Neoplasia/inmunología , Metástasis de la Neoplasia/patología , Fosfohidrolasa PTEN/genética , Proteínas de Unión a Retinoblastoma/genética , Transcriptoma/genética , Microambiente Tumoral/genética , Microambiente Tumoral/inmunología , Proteína p53 Supresora de Tumor/genética , Ubiquitina-Proteína Ligasas/genética , Secuenciación del Exoma
11.
Proc Natl Acad Sci U S A ; 116(23): 11428-11436, 2019 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-31061129

RESUMEN

Heterogeneity in the genomic landscape of metastatic prostate cancer has become apparent through several comprehensive profiling efforts, but little is known about the impact of this heterogeneity on clinical outcome. Here, we report comprehensive genomic and transcriptomic analysis of 429 patients with metastatic castration-resistant prostate cancer (mCRPC) linked with longitudinal clinical outcomes, integrating findings from whole-exome, transcriptome, and histologic analysis. For 128 patients treated with a first-line next-generation androgen receptor signaling inhibitor (ARSI; abiraterone or enzalutamide), we examined the association of 18 recurrent DNA- and RNA-based genomic alterations, including androgen receptor (AR) variant expression, AR transcriptional output, and neuroendocrine expression signatures, with clinical outcomes. Of these, only RB1 alteration was significantly associated with poor survival, whereas alterations in RB1, AR, and TP53 were associated with shorter time on treatment with an ARSI. This large analysis integrating mCRPC genomics with histology and clinical outcomes identifies RB1 genomic alteration as a potent predictor of poor outcome, and is a community resource for further interrogation of clinical and molecular associations.


Asunto(s)
Neoplasias de la Próstata Resistentes a la Castración/genética , Anciano , Androstenos/uso terapéutico , Benzamidas , Biomarcadores de Tumor/genética , Resistencia a Antineoplásicos/genética , Genómica/métodos , Humanos , Masculino , Persona de Mediana Edad , Nitrilos , Feniltiohidantoína/análogos & derivados , Feniltiohidantoína/uso terapéutico , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Receptores Androgénicos/genética , Resultado del Tratamiento
12.
Mod Pathol ; 33(11): 2280-2294, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32461624

RESUMEN

Although squamous cell carcinomas (SCC) are the most frequent human solid tumor at many anatomic sites, the driving molecular alterations underlying their progression from precursor lesions are poorly understood, especially in the context of photodamage. Therefore, we used high-depth, targeted next-generation sequencing (NGS) of RNA and DNA from routine tissue samples to characterize the progression of both well- (cutaneous) and poorly (ocular) studied SCCs. We assessed 56 formalin-fixed paraffin-embedded (FFPE) cutaneous lesions (n = 8 actinic keratosis, n = 30 carcinoma in situ [CIS], n = 18 invasive) and 43 FFPE ocular surface lesions (n = 2 conjunctival/corneal intraepithelial neoplasia, n = 20 CIS, n = 21 invasive), from institutions in the US and Brazil. An additional seven cases of advanced cutaneous SCC were profiled by hybrid capture-based NGS of >1500 genes. The cutaneous and ocular squamous neoplasms displayed a predominance of UV-signature mutations. Precursor lesions had highly similar somatic genomic landscapes to SCCs, including chromosomal gains of 3q involving SOX2, and highly recurrent mutations and/or loss of heterozygosity events affecting tumor suppressors TP53 and CDKN2A. Additionally, we identify a novel molecular subclass of CIS with RB1 mutations. Among TP53 wild-type tumors, human papillomavirus transcript was detected in one matched pair of cutaneous CIS and SCC. Amplicon-based whole-transcriptome sequencing of select 20 cutaneous lesions demonstrated significant upregulation of pro-invasion genes in cutaneous SCCs relative to precursors, including MMP1, MMP3, MMP9, LAMC2, LGALS1, and TNFRSF12A. Together, ocular and cutaneous squamous neoplasms demonstrate similar alterations, supporting a common model for neoplasia in UV-exposed epithelia. Treatment modalities useful for cutaneous SCC may also be effective in ocular SCC given the genetic similarity between these tumor types. Importantly, in both systems, precursor lesions possess the full complement of major genetic changes seen in SCC, supporting non-genetic drivers of invasiveness.


Asunto(s)
Carcinoma in Situ/patología , Carcinoma de Células Escamosas/patología , Neoplasias de la Conjuntiva/patología , Neoplasias del Ojo/patología , Mutación , Neoplasias Cutáneas/patología , Piel/patología , Anciano , Carcinoma in Situ/genética , Carcinoma de Células Escamosas/genética , Neoplasias de la Conjuntiva/genética , Neoplasias del Ojo/genética , Femenino , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Queratosis Actínica/genética , Queratosis Actínica/patología , Masculino , Persona de Mediana Edad , Neoplasias Cutáneas/genética
13.
Am J Hum Genet ; 98(6): 1051-1066, 2016 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-27181682

RESUMEN

Despite rapid technical progress and demonstrable effectiveness for some types of diagnosis and therapy, much remains to be learned about clinical genome and exome sequencing (CGES) and its role within the practice of medicine. The Clinical Sequencing Exploratory Research (CSER) consortium includes 18 extramural research projects, one National Human Genome Research Institute (NHGRI) intramural project, and a coordinating center funded by the NHGRI and National Cancer Institute. The consortium is exploring analytic and clinical validity and utility, as well as the ethical, legal, and social implications of sequencing via multidisciplinary approaches; it has thus far recruited 5,577 participants across a spectrum of symptomatic and healthy children and adults by utilizing both germline and cancer sequencing. The CSER consortium is analyzing data and creating publically available procedures and tools related to participant preferences and consent, variant classification, disclosure and management of primary and secondary findings, health outcomes, and integration with electronic health records. Future research directions will refine measures of clinical utility of CGES in both germline and somatic testing, evaluate the use of CGES for screening in healthy individuals, explore the penetrance of pathogenic variants through extensive phenotyping, reduce discordances in public databases of genes and variants, examine social and ethnic disparities in the provision of genomics services, explore regulatory issues, and estimate the value and downstream costs of sequencing. The CSER consortium has established a shared community of research sites by using diverse approaches to pursue the evidence-based development of best practices in genomic medicine.


Asunto(s)
Investigación Biomédica , Práctica Clínica Basada en la Evidencia , Exoma/genética , Genoma Humano , Genómica/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Polimorfismo de Nucleótido Simple/genética , Adulto , Enfermedades Cardiovasculares/genética , Niño , Ensayos Clínicos como Asunto , Humanos , National Human Genome Research Institute (U.S.) , Grupos de Población , Programas Informáticos , Estados Unidos
14.
N Engl J Med ; 375(5): 443-53, 2016 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-27433846

RESUMEN

BACKGROUND: Inherited mutations in DNA-repair genes such as BRCA2 are associated with increased risks of lethal prostate cancer. Although the prevalence of germline mutations in DNA-repair genes among men with localized prostate cancer who are unselected for family predisposition is insufficient to warrant routine testing, the frequency of such mutations in patients with metastatic prostate cancer has not been established. METHODS: We recruited 692 men with documented metastatic prostate cancer who were unselected for family history of cancer or age at diagnosis. We isolated germline DNA and used multiplex sequencing assays to assess mutations in 20 DNA-repair genes associated with autosomal dominant cancer-predisposition syndromes. RESULTS: A total of 84 germline DNA-repair gene mutations that were presumed to be deleterious were identified in 82 men (11.8%); mutations were found in 16 genes, including BRCA2 (37 men [5.3%]), ATM (11 [1.6%]), CHEK2 (10 [1.9% of 534 men with data]), BRCA1 (6 [0.9%]), RAD51D (3 [0.4%]), and PALB2 (3 [0.4%]). Mutation frequencies did not differ according to whether a family history of prostate cancer was present or according to age at diagnosis. Overall, the frequency of germline mutations in DNA-repair genes among men with metastatic prostate cancer significantly exceeded the prevalence of 4.6% among 499 men with localized prostate cancer (P<0.001), including men with high-risk disease, and the prevalence of 2.7% in the Exome Aggregation Consortium, which includes 53,105 persons without a known cancer diagnosis (P<0.001). CONCLUSIONS: In our multicenter study, the incidence of germline mutations in genes mediating DNA-repair processes among men with metastatic prostate cancer was 11.8%, which was significantly higher than the incidence among men with localized prostate cancer. The frequencies of germline mutations in DNA-repair genes among men with metastatic disease did not differ significantly according to age at diagnosis or family history of prostate cancer. (Funded by Stand Up To Cancer and others.).


Asunto(s)
Reparación del ADN/genética , Mutación de Línea Germinal , Neoplasias de la Próstata/genética , Factores de Edad , Anciano , Anciano de 80 o más Años , Análisis Mutacional de ADN , Predisposición Genética a la Enfermedad , Humanos , Incidencia , Masculino , Persona de Mediana Edad , Metástasis de la Neoplasia/genética
16.
J Pediatr Hematol Oncol ; 41(4): e263-e265, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-29554022

RESUMEN

Germline mutation of BRCA-associated protein-1 has been implicated in the development of tumor predisposition syndrome and high risk for malignant mesothelioma, lung adenocarcinoma, uveal melanoma, and cutaneous melanoma. Here, we present the case of a patient with recurrent metastatic melanoma who was found to have germline BAP1 and somatic BRAF mutation by clinical genomic sequencing. Detection of a germline mutation prompted screening for other cancers and surveillance in family members. Prospective integrative sequencing for pediatric cancer patients may identify pathogenic germline mutations and may improve outcomes and treatment-related morbidity by early diagnosis of malignancy.


Asunto(s)
Secuenciación del Exoma/métodos , Melanoma/genética , Síndromes Neoplásicos Hereditarios/diagnóstico , Síndromes Neoplásicos Hereditarios/genética , Neoplasias Cutáneas/genética , Proteínas Supresoras de Tumor/genética , Ubiquitina Tiolesterasa/genética , Adolescente , Femenino , Pruebas Genéticas/métodos , Mutación de Línea Germinal , Humanos , Linaje , Melanoma Cutáneo Maligno
17.
N Engl J Med ; 373(18): 1697-708, 2015 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-26510020

RESUMEN

BACKGROUND: Prostate cancer is a heterogeneous disease, but current treatments are not based on molecular stratification. We hypothesized that metastatic, castration-resistant prostate cancers with DNA-repair defects would respond to poly(adenosine diphosphate [ADP]-ribose) polymerase (PARP) inhibition with olaparib. METHODS: We conducted a phase 2 trial in which patients with metastatic, castration-resistant prostate cancer were treated with olaparib tablets at a dose of 400 mg twice a day. The primary end point was the response rate, defined either as an objective response according to Response Evaluation Criteria in Solid Tumors, version 1.1, or as a reduction of at least 50% in the prostate-specific antigen level or a confirmed reduction in the circulating tumor-cell count from 5 or more cells per 7.5 ml of blood to less than 5 cells per 7.5 ml. Targeted next-generation sequencing, exome and transcriptome analysis, and digital polymerase-chain-reaction testing were performed on samples from mandated tumor biopsies. RESULTS: Overall, 50 patients were enrolled; all had received prior treatment with docetaxel, 49 (98%) had received abiraterone or enzalutamide, and 29 (58%) had received cabazitaxel. Sixteen of 49 patients who could be evaluated had a response (33%; 95% confidence interval, 20 to 48), with 12 patients receiving the study treatment for more than 6 months. Next-generation sequencing identified homozygous deletions, deleterious mutations, or both in DNA-repair genes--including BRCA1/2, ATM, Fanconi's anemia genes, and CHEK2--in 16 of 49 patients who could be evaluated (33%). Of these 16 patients, 14 (88%) had a response to olaparib, including all 7 patients with BRCA2 loss (4 with biallelic somatic loss, and 3 with germline mutations) and 4 of 5 with ATM aberrations. The specificity of the biomarker suite was 94%. Anemia (in 10 of the 50 patients [20%]) and fatigue (in 6 [12%]) were the most common grade 3 or 4 adverse events, findings that are consistent with previous studies of olaparib. CONCLUSIONS: Treatment with the PARP inhibitor olaparib in patients whose prostate cancers were no longer responding to standard treatments and who had defects in DNA-repair genes led to a high response rate. (Funded by Cancer Research UK and others; ClinicalTrials.gov number, NCT01682772; Cancer Research UK number, CRUK/11/029.).


Asunto(s)
Antineoplásicos/uso terapéutico , Reparación del ADN , Inhibidores Enzimáticos/uso terapéutico , Ftalazinas/uso terapéutico , Piperazinas/uso terapéutico , Inhibidores de Poli(ADP-Ribosa) Polimerasas , Neoplasias de la Próstata/tratamiento farmacológico , Adulto , Anciano , Anemia/inducido químicamente , Proteínas de la Ataxia Telangiectasia Mutada/genética , Reparación del ADN/genética , Resistencia a Antineoplásicos , Inhibidores Enzimáticos/efectos adversos , Fatiga/inducido químicamente , Genes BRCA2 , Genes Supresores de Tumor , Humanos , Masculino , Persona de Mediana Edad , Mutación , Metástasis de la Neoplasia/tratamiento farmacológico , Ftalazinas/efectos adversos , Piperazinas/efectos adversos , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología
18.
Genome Res ; 25(9): 1372-81, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26253700

RESUMEN

RNA-seq by poly(A) selection is currently the most common protocol for whole transcriptome sequencing as it provides a broad, detailed, and accurate view of the RNA landscape. Unfortunately, the utility of poly(A) libraries is greatly limited when the input RNA is degraded, which is the norm for research tissues and clinical samples, especially when specimens are formalin-fixed. To facilitate the use of RNA sequencing beyond cell lines and in the clinical setting, we developed an exome-capture transcriptome protocol with greatly improved performance on degraded RNA. Capture transcriptome libraries enable measuring absolute and differential gene expression, calling genetic variants, and detecting gene fusions. Through validation against gold-standard poly(A) and Ribo-Zero libraries from intact RNA, we show that capture RNA-seq provides accurate and unbiased estimates of RNA abundance, uniform transcript coverage, and broad dynamic range. Unlike poly(A) selection and Ribo-Zero depletion, capture libraries retain these qualities regardless of RNA quality and provide excellent data from clinical specimens including formalin-fixed paraffin-embedded (FFPE) blocks. Systematic improvements across key applications of RNA-seq are shown on a cohort of prostate cancer patients and a set of clinical FFPE samples. Further, we demonstrate the utility of capture RNA-seq libraries in a patient with a highly malignant solitary fibrous tumor (SFT) enrolled in our clinical sequencing program called MI-ONCOSEQ. Capture transcriptome profiling from FFPE revealed two oncogenic fusions: the pathognomonic NAB2-STAT6 inversion and a therapeutically actionable BRAF fusion, which may drive this specific cancer's aggressive phenotype.


Asunto(s)
Exoma , Secuenciación de Nucleótidos de Alto Rendimiento , Neoplasias/genética , Estabilidad del ARN , Análisis de Secuencia de ARN , Línea Celular Tumoral , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Biblioteca de Genes , Genómica/métodos , Humanos , Neoplasias/patología , Proteínas de Fusión Oncogénica/genética , Reproducibilidad de los Resultados , Transcriptoma
19.
Genome Res ; 25(7): 1068-79, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26063736

RESUMEN

High-throughput RNA sequencing has revealed more pervasive transcription of the human genome than previously anticipated. However, the extent of natural antisense transcripts' (NATs) expression, their regulation of cognate sense genes, and the role of NATs in cancer remain poorly understood. Here, we use strand-specific paired-end RNA sequencing (ssRNA-seq) data from 376 cancer samples covering nine tissue types to comprehensively characterize the landscape of antisense expression. We found consistent antisense expression in at least 38% of annotated transcripts, which in general is positively correlated with sense gene expression. Investigation of sense/antisense pair expressions across tissue types revealed lineage-specific, ubiquitous and cancer-specific antisense loci transcription. Comparisons between tumor and normal samples identified both concordant (same direction) and discordant (opposite direction) sense/antisense expression patterns. Finally, we provide OncoNAT, a catalog of cancer-related genes with significant antisense transcription, which will enable future investigations of sense/antisense regulation in cancer. Using OncoNAT we identified several functional NATs, including NKX2-1-AS1 that regulates the NKX2-1 oncogene and cell proliferation in lung cancer cells. Overall, this study provides a comprehensive account of NATs and supports a role for NATs' regulation of tumor suppressors and oncogenes in cancer biology.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Neoplasias/genética , ARN sin Sentido/genética , Transcriptoma , Análisis por Conglomerados , Biología Computacional/métodos , Perfilación de la Expresión Génica , Sitios Genéticos , Humanos , Especificidad de Órganos/genética
20.
Genet Med ; 20(8): 855-866, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29144510

RESUMEN

PURPOSE: As massively parallel sequencing is increasingly being used for clinical decision making, it has become critical to understand parameters that affect sequencing quality and to establish methods for measuring and reporting clinical sequencing standards. In this report, we propose a definition for reduced coverage regions and describe a set of standards for variant calling in clinical sequencing applications. METHODS: To enable sequencing centers to assess the regions of poor sequencing quality in their own data, we optimized and used a tool (ExCID) to identify reduced coverage loci within genes or regions of particular interest. We used this framework to examine sequencing data from 500 patients generated in 10 projects at sequencing centers in the National Human Genome Research Institute/National Cancer Institute Clinical Sequencing Exploratory Research Consortium. RESULTS: This approach identified reduced coverage regions in clinically relevant genes, including known clinically relevant loci that were uniquely missed at individual centers, in multiple centers, and in all centers. CONCLUSION: This report provides a process road map for clinical sequencing centers looking to perform similar analyses on their data.


Asunto(s)
Secuenciación del Exoma/métodos , Análisis de Secuencia de ADN/métodos , Secuenciación Completa del Genoma/métodos , Secuencia de Bases , Mapeo Cromosómico , Exoma , Genoma Humano , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Análisis de Secuencia de ADN/normas , Programas Informáticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA