Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Mol Cell Proteomics ; 23(5): 100760, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38579929

RESUMEN

We describe deep analysis of the human proteome in less than 1 h. We achieve this expedited proteome characterization by leveraging state-of-the-art sample preparation, chromatographic separations, and data analysis tools, and by using the new Orbitrap Astral mass spectrometer equipped with a quadrupole mass filter, a high-field Orbitrap mass analyzer, and an asymmetric track lossless (Astral) mass analyzer. The system offers high tandem mass spectrometry acquisition speed of 200 Hz and detects hundreds of peptide sequences per second within data-independent acquisition or data-dependent acquisition modes of operation. The fast-switching capabilities of the new quadrupole complement the sensitivity and fast ion scanning of the Astral analyzer to enable narrow-bin data-independent analysis methods. Over a 30-min active chromatographic method consuming a total analysis time of 56 min, the Q-Orbitrap-Astral hybrid MS collects an average of 4319 MS1 scans and 438,062 tandem mass spectrometry scans per run, producing 235,916 peptide sequences (1% false discovery rate). On average, each 30-min analysis achieved detection of 10,411 protein groups (1% false discovery rate). We conclude, with these results and alongside other recent reports, that the 1-h human proteome is within reach.


Asunto(s)
Proteoma , Proteómica , Espectrometría de Masas en Tándem , Humanos , Proteoma/análisis , Proteómica/métodos , Factores de Tiempo
2.
Mol Syst Biol ; 17(9): e10156, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34569154

RESUMEN

Reliable methods to quantify dynamic signaling changes across diverse pathways are needed to better understand the effects of disease and drug treatment in cells and tissues but are presently lacking. Here, we present SigPath, a targeted mass spectrometry (MS) assay that measures 284 phosphosites in 200 phosphoproteins of biological interest. SigPath probes a broad swath of signaling biology with high throughput and quantitative precision. We applied the assay to investigate changes in phospho-signaling in drug-treated cancer cell lines, breast cancer preclinical models, and human medulloblastoma tumors. In addition to validating previous findings, SigPath detected and quantified a large number of differentially regulated phosphosites newly associated with disease models and human tumors at baseline or with drug perturbation. Our results highlight the potential of SigPath to monitor phosphoproteomic signaling events and to nominate mechanistic hypotheses regarding oncogenesis, response, and resistance to therapy.


Asunto(s)
Fosfoproteínas , Proteómica , Humanos , Espectrometría de Masas , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Fosforilación , Transducción de Señal
3.
Inorg Chem ; 59(5): 3026-3033, 2020 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-32058703

RESUMEN

Cation ordering in perovskite-derived phases can lead to a wealth of tunable physical properties. Ordering is typically driven by a large difference between the cation size and charge, but many Ruddlesden-Popper phases An+1BnO3n+1 appear to lack such B-site ordering, even when these differences are present. One such example is the "double" Ruddlesden-Popper n = 1 composition LaSr3NiRuO8. In this material, a lack of B-site ordering is observed through traditional crystallographic techniques, but antiferromagnetic ordering in the magnetism data suggests that B-site cation ordering is indeed present. Neutron total scattering, particularly analysis of the neutron pair distribution function, reveals that the structure is locally B-site-ordered below 6 Å but becomes slightly disordered in the midrange structure around 12 Å. This provides evidence for paracrystalline order in this material: cation ordering within a single perovskite sheet that lacks perfect registry within the three-dimensional stack of sheets. This work highlights the importance of employing a structural technique that can probe both the local and midrange order in addition to the crystallographic structure and provides a structural origin to the observed magnetic properties of LaSr3NiRuO8. Further, it is proposed that paracrystalline order is likely to be common among these layered-type oxides.

4.
bioRxiv ; 2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-38045259

RESUMEN

Owing to its roles in cellular signal transduction, protein phosphorylation plays critical roles in myriad cell processes. That said, detecting and quantifying protein phosphorylation has remained a challenge. We describe the use of a novel mass spectrometer (Orbitrap Astral) coupled with data-independent acquisition (DIA) to achieve rapid and deep analysis of human and mouse phosphoproteomes. With this method we map approximately 30,000 unique human phosphorylation sites within a half-hour of data collection. We applied this approach to generate a phosphoproteome multi-tissue atlas of the mouse. Altogether, we detected 81,120 unique phosphorylation sites within 12 hours of measurement. With this unique dataset, we examine the sequence and structural context of protein phosphorylation. Finally, we highlight the discovery potential of this resource with multiple examples of novel phosphorylation events relevant to mitochondrial and brain biology.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA