Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Int J Mol Sci ; 25(5)2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38473963

RESUMEN

The protein p32 (C1QBP) is a multifunctional and multicompartmental homotrimer that is overexpressed in many cancer types, including colon cancer. High expression levels of C1QBP are negatively correlated with the survival of patients. Previously, we demonstrated that C1QBP is an essential promoter of migration, chemoresistance, clonogenic, and tumorigenic capacity in colon cancer cells. However, the mechanisms underlying these functions and the effects of specific C1QBP protein inhibitors remain unexplored. Here, we show that the specific pharmacological inhibition of C1QBP with the small molecule M36 significantly decreased the viability rate, clonogenic capacity, and proliferation rate of different colon cancer cell lines in a dose-dependent manner. The effects of the inhibitor of C1QBP were cytostatic and non-cytotoxic, inducing a decreased activation rate of critical pro-malignant and mitogenic cellular pathways such as Akt-mTOR and MAPK in RKO colon cancer cells. Additionally, treatment with M36 significantly affected the mitochondrial integrity and dynamics of malignant cells, indicating that p32/C1QBP plays an essential role in maintaining mitochondrial homeostasis. Altogether, our results reinforce that C1QBP is an important oncogene target and that M36 may be a promising therapeutic drug for the treatment of colon cancer.


Asunto(s)
Neoplasias del Colon , Citostáticos , Humanos , Citostáticos/farmacología , Mitógenos/farmacología , Transducción de Señal , Proteínas Mitocondriales/metabolismo , Proliferación Celular , Proteínas Portadoras/metabolismo
2.
Int J Mol Sci ; 24(6)2023 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-36982333

RESUMEN

The presence of cancer stem cells (CSCs) has been associated with the induction of drug resistance and disease recurrence after therapy. 5-Fluorouracil (5FU) is widely used as the first-line treatment of colorectal cancer (CRC). However, its effectiveness may be limited by the induction of drug resistance in tumor cells. The Wnt pathway plays a key role in the development and CRC progression, but it is not clearly established how it is involved in CSCs resistance to treatment. This work aimed to investigate the role played by the canonical Wnt/ß-catenin pathway in CSCs resistance to 5FU treatment. Using tumor spheroids as a model of CSCs enrichment of CRC cell lines with different Wnt/ß-catenin contexts, we found that 5FU induces in all CRC spheroids tested cell death, DNA damage, and quiescence, but in different proportions for each one: RKO spheroids were very sensitive to 5FU, while SW480 were less susceptible, and the SW620 spheroids, the metastatic derivative of SW480 cells, displayed the highest resistance to death, high clonogenic capacity, and the highest ability for regrowth after 5FU treatment. Activating the canonical Wnt pathway with Wnt3a in RKO spheroids decreased the 5FU-induced cell death. But the Wnt/ß-catenin pathway inhibition with Adavivint alone or in combination with 5FU in spheroids with aberrant activation of this pathway produced a severe cytostatic effect compromising their clonogenic capacity and diminishing the stem cell markers expression. Remarkably, this combined treatment also induced the survival of a small cell subpopulation that could exit the arrest, recover SOX2 levels, and re-grow after treatment.


Asunto(s)
Neoplasias del Colon , Neoplasias Colorrectales , Humanos , Vía de Señalización Wnt , beta Catenina/metabolismo , Resistencia a Antineoplásicos , Recurrencia Local de Neoplasia/patología , Neoplasias del Colon/metabolismo , Línea Celular , Fluorouracilo/uso terapéutico , Puntos de Control del Ciclo Celular , Línea Celular Tumoral , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Proliferación Celular , Células Madre Neoplásicas/metabolismo
3.
Mol Carcinog ; 54(11): 1430-41, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25252130

RESUMEN

Canonical Wnt signaling is altered in most cases of colorectal cancer. Experimental evidence indicates that protein phosphatase 2A (PP2A) may play either positive or negative roles in Wnt signaling but its precise in vivo functions remain elusive. In this work, using colon cultured cell lines we showed that basal PP2A activity is markedly reduced in malignant cells compared to non-malignant counterparts. We found that whereas normal or cancer cells displaying not altered Wnt signaling express mRNAs coding for PP2A-A scaffold α and ß isoforms, cancer cells which have altered Wnt signaling do not express the Aß isoform mRNA. Remarkably, we found that the Aß protein levels are lost in all colon cancer cells, and in patients' tumor biopsies. In addition, all cancer cells exhibit higher levels of RalA activity, compared to non-malignant cells. Rescue experiments to restore Aß expression in malignant RKO cells, diminished the RalGTPase activation and cell proliferation, indicating that the Aß isoform acts as tumor suppressor in colon cancer cells. Reciprocal co-immunoprecipitation and immunofluorescence studies showed that the PP2A-C and -Aα subunits, expressed in all colon cells, interact in vivo with ß-catenin only in malignant cells. Selective inhibition of PP2A did not significantly affect cellular apoptosis but induced dose-dependent negative effects in ß-catenin-mediated transcriptional activity and in cell proliferation of malignant cells, indicating that the residual PP2A activity found in malignant cells, mediated by -C and Aα core subunits, is essential to maintain active Wnt signaling and cell proliferation in colon cancer cells.


Asunto(s)
Neoplasias del Colon/genética , Proteína Fosfatasa 2/genética , Subunidades de Proteína/genética , Vía de Señalización Wnt/genética , Línea Celular Tumoral , GTP Fosfohidrolasas/genética , Células HT29 , Humanos , Isoformas de Proteínas/genética , ARN Mensajero/genética , Transcripción Genética/genética , beta Catenina/genética
4.
IUBMB Life ; 67(12): 914-22, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26600003

RESUMEN

Glycogen synthase kinase 3 (GSK-3) was first discovered in 1980 as one of the key enzymes of glycogen metabolism. Since then, GSK-3 has been revealed as one of the master regulators of a diverse range of signaling pathways, including those activated by Wnts, participating in the regulation of numerous cellular functions, suggesting that its activity is tightly regulated. Numerous studies have pointed to an association of GSK-3 dysregulation with the onset and progression of human diseases, including diabetes mellitus, obesity, inflammation, neurological illnesses, and cancer. Therefore, GSK-3 is recognized as an attractive therapeutic target in multiple disorders. However, the great number of substrates that are phosphorylated by GSK-3 has raised the question of whether this limits its feasibility as a therapeutic target because of the potential disruption of many cellular processes and also by the fear that inhibition of GSK-3 may stimulate or aid in malignant transformation, as GSK-3 can phosphorylate pro-oncogenic factors. This mini review focuses on the role played by GSK-3 in Wnt signaling pathway and cancer using as model colon cancer.


Asunto(s)
Neoplasias del Colon/metabolismo , Glucógeno Sintasa Quinasa 3/metabolismo , Vía de Señalización Wnt , Animales , Neoplasias del Colon/tratamiento farmacológico , Glucógeno Sintasa Quinasa 3/antagonistas & inhibidores , Glucógeno Sintasa Quinasa 3/genética , Humanos , Isoenzimas/metabolismo , Terapia Molecular Dirigida , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Procesamiento Proteico-Postraduccional , Proteínas Wnt/metabolismo
5.
Stem Cell Rev Rep ; 20(1): 25-51, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37922108

RESUMEN

CD133 protein has been one of the most used surface markers to select and identify cancer cells with stem-like features. However, its expression is not restricted to tumoral cells; it is also expressed in differentiated cells and stem/progenitor cells in various normal tissues. CD133 participates in several cellular processes, in part orchestrating signal transduction of essential pathways that frequently are dysregulated in cancer, such as PI3K/Akt signaling and the Wnt/ß-catenin pathway. CD133 expression correlates with enhanced cell self-renewal, migration, invasion, and survival under stress conditions in cancer. Aside from the intrinsic cell mechanisms that regulate CD133 expression in each cellular type, extrinsic factors from the surrounding niche can also impact CD33 levels. The enhanced CD133 expression in cells can confer adaptive advantages by amplifying the activation of a specific signaling pathway in a context-dependent manner. In this review, we do not only describe the CD133 physiological functions known so far, but importantly, we analyze how the microenvironment changes impact the regulation of CD133 functions emphasizing its value as a marker of cell adaptability beyond a cancer-stem cell marker.


Asunto(s)
Fosfatidilinositol 3-Quinasas , Transducción de Señal , Fosfatidilinositol 3-Quinasas/metabolismo , Transducción de Señal/genética , Células Madre Neoplásicas/metabolismo , Autorrenovación de las Células
6.
Stem Cell Rev Rep ; 20(1): 52-66, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37804416

RESUMEN

Tissue homeostasis is crucial for multicellular organisms, wherein the loss of cells is compensated by generating new cells with the capacity for proliferation and differentiation. At the origin of these populations are the stem cells, which have the potential to give rise to cells with both capabilities, and persevere for a long time through the self-renewal and quiescence. Since the discovery of stem cells, an enormous effort has been focused on learning about their functions and the molecular regulation behind them. Wnt signaling is widely recognized as essential for normal and cancer stem cell. Moreover, ß-catenin-dependent Wnt pathway, referred to as canonical, has gained attention, while ß-catenin-independent Wnt pathways, known as non-canonical, have remained conspicuously less explored. However, recent evidence about non-canonical Wnt pathways in stem cells begins to lay the foundations of a conceivably vast field, and on which we aim to explain this in the present review. In this regard, we addressed the different aspects in which non-canonical Wnt pathways impact the properties of stem cells, both under normal conditions and also under disease, specifically in cancer.


Asunto(s)
Neoplasias , Vía de Señalización Wnt , Humanos , beta Catenina/metabolismo , Células Madre Neoplásicas/metabolismo , Neoplasias/metabolismo , Diferenciación Celular
7.
J Cell Commun Signal ; 17(4): 1389-1403, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37982965

RESUMEN

Aberrant canonical Wnt signaling is a hallmark of colon cancer. The TP53 tumor suppressor gene is altered in many solid tumors, including colorectal cancer, resulting in mutant versions of p53 (mut-p53) that lose their tumor suppressor capacities and acquire new-oncogenic functions (GOFs) critical for disease progression. Although the mechanisms related to mut-p53 GOF have been explored extensively, the relevance of mut-p53 in the canonical Wnt pathway is not well defined. This work investigated the influence of mut-p53 compared to wt-p53 in ß-catenin-dependent Wnt signaling. Using the TCGA public data from Pan-Cancer and the GEPIA2 platform, an in silico analysis of wt-p53 versus mut-p53 genotyped colorectal cancer patients showed that TP53 (p53) and CTNNB1 (ß-catenin) are significantly overexpressed in colorectal cancer, compared with normal tissue. Using p53 overexpression or p53 knockdown assays of wt-p53 or mut-p53, we found that while wt-p53 antagonizes canonical Wnt signaling, mut-p53 induces the opposite effect, improving the ß-catenin-dependent transcriptional activity and colony formation ability of colon cancer cells, which were both decreased by mut-p53 knockdown expression. The mechanism involved in mut-p53-induced activation of canonical Wnt appears to be via AKT-mediated phosphorylation of Ser 552 of ß-catenin, which is known to stabilize and enhance its transcriptional activity. We also found that while wt-p53 expression contributes to 5-FU sensitivity in colon cancer cells, the RITA p53 reactivating molecule counteracted the resistance against 5-FU in cells expressing mut-p53. Our results indicate that mut-p53 GOF acts as a positive regulator of canonical Wnt signaling and participates in the induction of resistance to 5-FU in colon cancer cells.

8.
Front Oncol ; 13: 1121787, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36969011

RESUMEN

Introduction: Cancer Stem Cells (CSC) are responsible for maintaining tumor growth, chemoresistance, and metastasis. Therefore, understanding their characteristics is critical to progress in cancer therapy. While the contribution of the canonical Wnt/b-catenin signaling in both normal and CSCs had been well established, the function of non-canonical Wnt signaling cascades in stem cells is unclear. Recently, we reported that Wnt ligands trigger complex signaling in which the canonical and non-canonical responses can be simultaneously activated by one ligand in colon cancer cells, suggesting, therefore, that noncanonical Wnt pathways may also be important in CSCs. Methods: The present work aimed to know the role of the Wnt/Ca2+ pathway in colon CSCs. We used tumorspheres as a model of CSCs enrichment of CRC cell lines with different Wnt/b-catenin contexts. Results: Using Wnt3a and Wnt5a as prototype ligands to activate the canonical or the non-canonical pathways, respectively, we found that both Wnt3a and Wnt5a promote sphere-formation capacity and proliferation without stimulating b-catenin-dependent transcription. Upregulation of sphere formation by Wnt5a or Wnt3a requires the downstream activation of Phospholipase C and transcriptional factor NFAT. Moreover, the single specific inhibition of PLC or NFAT, using U73122 and 11R-VIVIT, respectively, leads to impaired sphere formation. Discussion: Our results indicate that both types of ligands activate the Wnt/Ca2+ signaling axis to induce/maintain the self-renewal efficiency of CSCs, demonstrating to be essential for the functions of CSC in colon cancer.

9.
Int J Gynecol Cancer ; 22(6): 945-50, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22665040

RESUMEN

OBJECTIVE: Overexpression of progranulin (also named acrogranin, PC-cell-derived growth factor, or granulin-epithelin precursor) is associated with ovarian cancer, specifically with cell proliferation, malignancy, chemoresistance, and shortened overall survival. The objective of the current study is to identify the signaling pathways involved in the regulation of progranulin expression in ovarian cancer cell lines. METHODS: We studied the relation of protein kinase C (PKC), phosphatidylinositol 3-kinase, protein kinase A, P38, extracellular signal-regulated kinase, and Akt pathways on the modulation of progranulin expression levels in NIH-OVCAR-3 and SK-OV-3 ovarian cancer cell lines. The different pathways were examined using pharmacological inhibitors (calphostin C, LY294002, H89, SB203580, PD98059, and Akt Inhibitor), and mRNA and protein progranulin expression were analyzed by reverse transcriptase polymerase chain reaction and Western blot techniques, respectively. RESULTS: Inhibition of PKC signal transduction pathway by calphostin C decreased in a dose-dependent manner protein but not mRNA levels of progranulin in both ovarian cancer cell lines. LY294002 but not wortmannin, which are phosphatidylinositol 3-kinase inhibitors, also diminished the expression of progranulin in both cell lines. In addition, LY294002 treatment produced a significant reduction in cell viability. Inhibition of protein kinase A, P38, extracellular signal-regulated kinase, and Akt did not affect progranulin protein expression. CONCLUSIONS: These results suggest that the PKC signaling is involved in the regulation of progranulin protein expression in 2 different ovarian cancer cell lines. Inhibiting these intracellular signal transduction pathways may provide a future therapeutic target for hindering the cellular proliferation and invasion in ovarian cancer produced by progranulin.


Asunto(s)
Carcinoma/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Neoplasias Ováricas/metabolismo , Proteína Quinasa C/metabolismo , Transducción de Señal , Línea Celular Tumoral , Proteínas Quinasas Dependientes de AMP Cíclico/antagonistas & inhibidores , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Regulación hacia Abajo , Quinasas MAP Reguladas por Señal Extracelular/antagonistas & inhibidores , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Femenino , Humanos , Fosfatidilinositol 3-Quinasas/metabolismo , Inhibidores de las Quinasa Fosfoinosítidos-3 , Progranulinas , Proteína Quinasa C/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-akt/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/antagonistas & inhibidores , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
10.
J Cancer Res Clin Oncol ; 148(8): 1831-1854, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35441886

RESUMEN

P32/gC1qR/HABP1 is a doughnut-shaped acidic protein, highly conserved in eukaryote evolution and ubiquitous in the organism. Although its canonical subcellular localization is the mitochondria, p32 can also be found in the cytosol, nucleus, cytoplasmic membrane, and it can be secreted. Therefore, it is considered a multicompartmental protein. P32 can interact with many physiologically divergent ligands in each subcellular location and modulate their functions. The main ligands are C1q, hyaluronic acid, calreticulin, CD44, integrins, PKC, splicing factor ASF/SF2, and several microbial proteins. Among the functions in which p32 participates are mitochondrial metabolism and dynamics, apoptosis, splicing, immune response, inflammation, and modulates several cell signaling pathways. Notably, p32 is overexpressed in a significant number of epithelial tumors, where its expression level negatively correlates with patient survival. Several studies of gain and/or loss of function in cancer cells have demonstrated that p32 is a promoter of malignant hallmarks such as proliferation, cell survival, chemoresistance, angiogenesis, immunoregulation, migration, invasion, and metastasis. All of this strongly suggests that p32 is a potential diagnostic molecule and therapeutic target in cancer. Indeed, preclinical advances have been made in developing therapeutic strategies using p32 as a target. They include tumor homing peptides, monoclonal antibodies, an intracellular inhibitor, a p32 peptide vaccine, and p32 CAR T cells. These advances are promising and will allow soon to include p32 as part of targeted cancer therapies.


Asunto(s)
Proteínas Mitocondriales , Neoplasias , Proteínas Portadoras , Humanos , Ligandos , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Neoplasias/patología
11.
Biochem Biophys Rep ; 32: 101336, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36111249

RESUMEN

Astrin/SPAG5 is a mitotic spindle protein found to be overexpressed in several human cancers, functioning as an oncogene. The expression of Astrin has not been reported so far in colon cancer, nor has it been related to HIFs expression or action. Since mTOR, Astrin, and hypoxia-inducible factors (HIFs) are involved in promoting the growth and survival of cancer cells, we investigated the possible interaction between them in cultured colon cancer cells. Both Astrin and HIF-1α and HIF-2α protein levels were found only expressed in colon cancer cells compared with nonmalignant cells. Our data indicate that mTOR stimulates both Astrin and HIFs expression, but notably, mTORC activity seems to be independent of Astrin expression levels. However, while HIF-1α or HIF-2α stable knockdown increased Astrin expression, mTOR activity was affected in an opposite way by HIF-1α or HIF-2α silencing, indicating that HIF-1α inhibits mTOR while HIF-2α stimulates its activity. These data suggest that mTOR, Astrin, and HIFs compose an integrative network interacting to activate positive or negative regulatory loops probably to coordinate cancer cell growth, metabolism, and survival under oncogenic stress.

12.
Sci Rep ; 12(1): 4464, 2022 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-35296731

RESUMEN

O-linked ß-N-acetylglucosaminylation (O-GlcNAcylation) is a reversible post-translational modification on serine and threonine residues of cytosolic, nuclear and mitochondrial proteins. O-GlcNAcylation level is regulated by OGT (O-GlcNAc transferase), which adds GlcNAc on proteins, and OGA (O-GlcNAcase), which removes it. Abnormal level of protein O-GlcNAcylation has been observed in numerous cancer cell types, including cervical cancer cells. In the present study, we have evaluated the effect of increasing protein O-GlcNAcylation on cervical cancer-derived CaSki cells. We observed that pharmacological enhancement of protein O-GlcNAcylation by Thiamet G (an inhibitor of OGA) and glucosamine (which provides UDP-GlcNAc substrate to OGT) increases CaSki cells proliferation, migration and survival. Moreover, we showed that increased O-GlcNAcylation promotes IGF-1 receptor (IGF1R) autophosphorylation, possibly through inhibition of protein tyrosine-phosphatase 1B activity. This was associated with increased IGF-1-induced phosphatidyl-Inositol 3-phosphate production at the plasma membrane and increased Akt activation in CaSki cells. Finally, we showed that protein O-GlcNAcylation and Akt phosphorylation levels were higher in human cervical cancer samples compared to healthy cervix tissues, and a highly positive correlation was observed between O-GlcNAcylation level and Akt phosphorylation in theses tissues. Together, our results indicate that increased O-GlcNAcylation, by activating IGF1R/ Phosphatidyl inositol 3-Kinase (PI-3K)/Akt signaling, may participate in cervical cancer cell growth and proliferation.


Asunto(s)
Acetilglucosamina , Neoplasias del Cuello Uterino , Acetilglucosamina/metabolismo , Cuello del Útero/metabolismo , Femenino , Humanos , Inositol/metabolismo , N-Acetilglucosaminiltransferasas/genética , Procesamiento Proteico-Postraduccional , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptor IGF Tipo 1/metabolismo , Neoplasias del Cuello Uterino/metabolismo
13.
Carcinogenesis ; 32(11): 1615-24, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21859831

RESUMEN

The colonic epithelium is a continuously renewing tissue with a dynamic turnover of cells. Wnt pathway is a key regulator of its homeostasis and is altered in a large proportion of colon cancers. Protein kinase C (PKC) family of serine/threonine kinases are also involved in colon tumor formation and progression; however, the molecular role played by them in the Wnt pathway, is poorly understood. Reciprocal coimmunoprecipitation and immunofluorescence studies revealed that PKCζ interacts with ß-catenin mainly in tumoral colon cells, which overexpressed this PKC isoform. The pharmacological inhibition, the small interference RNA-mediated knockdown of PKCζ or the expression of a dominant-negative form of it in tumoral SW480 cells, blocked in a dose-dependent manner the constitutive transcriptional activity mediated by ß-catenin, the cell proliferation and the expression of the Wnt target gene c-myc. Remarkably, the PKCζ stably depleted cells exhibited diminished tumorigenic activity in grafted mice. We show that PKCζ functions in a mechanism that does not involve ß-catenin degradation since the effects produced by PKCζ inhibition were also obtained in the presence of proteosome inhibitor and in cells expressing a ß-catenin degradation-resistant mutant. It was found that PKCζ activity regulates the nuclear localization of ß-catenin since PKCζ inhibition induces a rapid export of ß-catenin from the nucleus to the cytoplasm in a Leptomycin B sensitive manner. Taken together, our results indicate that the atypical PKCζ plays an important role in the positive regulation of canonical Wnt pathway.


Asunto(s)
Núcleo Celular/metabolismo , Neoplasias del Colon/metabolismo , Neoplasias del Colon/patología , Proteína Quinasa C/metabolismo , Vía de Señalización Wnt , beta Catenina/metabolismo , Animales , Western Blotting , Adhesión Celular , Movimiento Celular , Proliferación Celular , Células Cultivadas , Colon/metabolismo , Neoplasias del Colon/genética , Técnica del Anticuerpo Fluorescente , Regulación Neoplásica de la Expresión Génica , Genes Dominantes , Humanos , Técnicas para Inmunoenzimas , Inmunoprecipitación , Mucosa Intestinal/metabolismo , Intestinos/citología , Luciferasas/metabolismo , Ratones , Ratones Desnudos , Proteína Quinasa C/antagonistas & inhibidores , Proteína Quinasa C/genética , ARN Mensajero/genética , ARN Interferente Pequeño/genética , Ratas , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Activación Transcripcional , beta Catenina/genética
14.
IUBMB Life ; 63(10): 915-21, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21905203

RESUMEN

Although it is well known that Wnt and protein kinase C (PKC) signaling pathways are both involved in carcinogenesis and tumor progression, their synergistic contribution to these processes or the crosstalk between them has just recently been approached. The Wnt and PKC signaling are involved in many cellular functions including proliferation, differentiation, survival, apoptosis, cytoskeletal remodeling, and cell motility. Canonical Wnt signaling has been well characterized as one of the most important contributors to tumorigenesis, and it has been implicated in many types of solid tumors. PKC is one of the key targets of noncanonical Wnt signaling, particularly in the Wnt/Ca(2+) pathway. Recently, data have implicated components of noncanonical Wnt/Ca(2+) and Wnt/planar cell polarity signaling in directly promoting the invasiveness and malignant progression of diverse forms of human cancer. But, unlike the canonical pathway, defining the roles of noncanonical Wnt signaling in human cancer is in its infancy. In this review, we provide a concise description of the current knowledge of the interaction between PKC and Wnt pathways and discuss the role of this crosstalk in cancer initiation and progression.


Asunto(s)
Transformación Celular Neoplásica/metabolismo , Modelos Biológicos , Neoplasias/metabolismo , Proteína Quinasa C/metabolismo , Transducción de Señal/fisiología , Proteínas Wnt/metabolismo , Humanos
15.
Methods Mol Biol ; 2174: 3-12, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-32813240

RESUMEN

The inherent or developed resistance of many cancer cells to chemotherapy and irradiation is actually the main challenge to overcome in cancer treatment. It is well known that cancer cells are characterized by several hallmarks, and it seems that the ability to evolve ways to evade stressful conditions and killing therapies must be consider another typical characteristic displayed by all malignant cells. This overview aims to provide a concise description of the main mechanisms involved in the promotion of resistance to anticancer therapy and to describe the most frequent challenges faced in the war against cancer therapy resistance.


Asunto(s)
Resistencia a Antineoplásicos/fisiología , Neoplasias/tratamiento farmacológico , Neoplasias/radioterapia , Antineoplásicos/farmacología , Resistencia a Antineoplásicos/efectos de los fármacos , Resistencia a Antineoplásicos/efectos de la radiación , Humanos , Inmunoterapia/métodos , Terapia Molecular Dirigida , Neoplasias/patología , Células Madre Neoplásicas/efectos de los fármacos , Células Madre Neoplásicas/patología , Células Madre Neoplásicas/efectos de la radiación , Hipoxia Tumoral
16.
Front Endocrinol (Lausanne) ; 12: 627745, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33828530

RESUMEN

Cancer cells characteristically have a high proliferation rate. Because tumor growth depends on energy-consuming anabolic processes, including biosynthesis of protein, lipid, and nucleotides, many tumor-associated conditions, including intermittent oxygen deficiency due to insufficient vascularization, oxidative stress, and nutrient deprivation, results from fast growth. To cope with these environmental stressors, cancer cells, including cancer stem cells, must adapt their metabolism to maintain cellular homeostasis. It is well- known that cancer stem cells (CSC) reprogram their metabolism to adapt to live in hypoxic niches. They usually change from oxidative phosphorylation to increased aerobic glycolysis even in the presence of oxygen. However, as opposed to most differentiated cancer cells relying on glycolysis, CSCs can be highly glycolytic or oxidative phosphorylation-dependent, displaying high metabolic plasticity. Although the influence of the metabolic and nutrient-sensing pathways on the maintenance of stemness has been recognized, the molecular mechanisms that link these pathways to stemness are not well known. Here in this review, we describe the most relevant signaling pathways involved in nutrient sensing and cancer cell survival. Among them, Adenosine monophosphate (AMP)-activated protein kinase (AMPK) pathway, mTOR pathway, and Hexosamine Biosynthetic Pathway (HBP) are critical sensors of cellular energy and nutrient status in cancer cells and interact in complex and dynamic ways.


Asunto(s)
Metabolismo Energético/fisiología , Células Madre Neoplásicas/metabolismo , Transducción de Señal/fisiología , Animales , Hexosaminas/metabolismo , Humanos , Estrés Oxidativo/fisiología , Serina-Treonina Quinasas TOR/metabolismo
17.
Front Oncol ; 11: 642940, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34136383

RESUMEN

p32 is a multifunctional and multicompartmental protein that has been found upregulated in numerous adenocarcinomas, including colorectal malignancy. High levels of p32 expression have been correlated with poor prognosis in colorectal cancer. However, the functions performed by p32 in colorectal cancer have not been characterized. Here we show that p32 is overexpressed in colorectal cancer cell lines compared to non-malignant colon cells. Colon cancer cells also display higher nuclear levels of p32 than nuclear levels found in non-malignant cells. Moreover, we demonstrate that p32 regulates the expression levels of genes tightly related to malignant phenotypes such as HAS-2 and PDCD4. Remarkably, we demonstrate that knockdown of p32 negatively affects Akt/mTOR signaling activation, inhibits the migration ability of colon malignant cells, and sensitizes them to cell death induced by oxidative stress and chemotherapeutic agents, but not to cell death induced by nutritional stress. In addition, knockdown of p32 significantly decreased clonogenic capacity and in vivo tumorigenesis in a xenograft mice model. Altogether, our results demonstrate that p32 is an important promoter of malignant phenotype in colorectal cancer cells, suggesting that it could be used as a therapeutic target in colorectal cancer treatment.

18.
Cell Signal ; 72: 109636, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32283254

RESUMEN

The Wnt signaling pathway is a crucial regulator of the intestinal epithelium homeostasis and is altered in most colon cancers. While the role of aberrant canonical, ß-catenin-dependent Wnt signaling has been well established in colon cancer promotion, much less is known about the role played by noncanonical, ß-catenin-independent Wnt signaling in this type of cancer. This work aimed to characterize the noncanonical signal transduction pathway in colon cancer cells. To this end, we used the prototype noncanonical ligand, Wnt5a, in comparison with Wnt3a, the prototype of a canonical ß-catenin activating ligand. The analysis of the expression profile of Wnt receptors in colon cancer cell lines showed a clear increase in both level expression and variety of Frizzled receptor types expressed in colon cancer cells compared with non-malignant cells. We found that Wnt5a activates a typical Wnt/Ca++ - noncanonical signaling pathway in colon malignant cells, inducing the hyperphosphorylation of Dvl1, Dvl2 and Dvl3, promoting Ca++ mobilization as a result of phospholipase C (PLC) activation via pertussis toxin-sensitive G-protein, and inducing PLC-dependent cell migration. We also found that while the co-receptor Ror2 tyrosine kinase activity is not required for Ca++ mobilization-induced by Wnt5a, it is required for the inhibitory effects of Wnt5a on the ß-catenin-dependent transcriptional activity. Unexpectedly, we found that although the prototype canonical Wnt3a ligand was unique in stimulating the ß-catenin-dependent transcriptional activity, it also simultaneously activated PLC, promoted Ca++ mobilization, and induced Rho kinase and PLC-dependent cell migration. Our data indicate, therefore, that a Wnt ligand can activate at the same time the so-called Wnt canonical and noncanonical pathways inducing the formation of complex signaling networks to integrate both pathways in colon cancer cells.


Asunto(s)
Neoplasias del Colon/metabolismo , Proteínas Wnt/metabolismo , Vía de Señalización Wnt , Animales , Calcio/metabolismo , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Neoplasias del Colon/patología , Proteínas de Unión al GTP/metabolismo , Humanos , Ligandos , Ratones , Modelos Biológicos , Toxina del Pertussis/farmacología , Fosforilación/efectos de los fármacos , Isoformas de Proteínas/metabolismo , Estabilidad Proteica/efectos de los fármacos , Receptores Huérfanos Similares al Receptor Tirosina Quinasa/metabolismo , Receptores Wnt/metabolismo , Factores de Tiempo , Transcripción Genética/efectos de los fármacos , Vía de Señalización Wnt/efectos de los fármacos , beta Catenina/metabolismo
19.
Biochim Biophys Acta ; 1783(5): 695-712, 2008 May.
Artículo en Inglés | MEDLINE | ID: mdl-18295358

RESUMEN

The posttranslational modifications induced on PKC isozymes as result of their activation were investigated. Reciprocal immunoprecipitations followed by Western blot analysis demonstrated that all PKC isozymes expressed in rat hepatocytes are modified by tyrosine nitration and tyrosine phosphorylation in different ways upon exposure of cells to a direct PKC activator (TPA), or to an extracellular ligand known to activate PKC-dependent pathways (epinephrine). Our data demonstrate for the first time that all PKC isozymes are also dynamically modified by O-linked beta-N-acetylglucosamine (O-GlcNAc); the presence of this modification was confirmed in part by FT-ICR mass spectrometry analysis. Interestingly, the O-GlcNAc modified Ser or Thr were mapped at similar positions in several PKC isozymes. The biochemical meaning of these posttranslational modifications was investigated for PKC alpha and delta. It was found that the PKC phosphorylation status of both isozymes in tyrosine and serine residues seems to regulate directly the enzyme activity since catalytic inactivation correlate with dephosphorylation of Ser at the C-terminus autophosphorylation sites of each PKC isozyme, and with an increase in the level of tyrosine phosphorylation. Whereas none of the other posttranslational modifications showed per se a direct effect in PKC delta activity, increased tyrosine nitration and O-GlcNAc modifications correlate negatively with PKCalpha activity.


Asunto(s)
Epinefrina/farmacología , Proteína Quinasa C/metabolismo , Procesamiento Proteico-Postraduccional , Acetato de Tetradecanoilforbol/farmacología , Acetilglucosamina/metabolismo , Animales , Activación Enzimática , Hepatocitos/efectos de los fármacos , Hepatocitos/enzimología , Isoenzimas/química , Isoenzimas/metabolismo , Masculino , Espectrometría de Masas , Proteína Quinasa C/química , Ratas , Ratas Wistar , Serina/metabolismo , Treonina/metabolismo , Tirosina/metabolismo
20.
Artículo en Inglés | MEDLINE | ID: mdl-31139149

RESUMEN

The dynamic O-linked-N-acetylglucosamine posttranslational modification of nucleocytoplasmic proteins has emerged as a key regulator of diverse cellular processes including several hallmarks of cancer. However, the role played by this modification in the establishment of CSC phenotype has been poorly studied so far and remains unclear. In this study we confirmed the previous reports showing that colon cancer cells exhibit higher O-GlcNAc basal levels than non-malignant cells, and investigated the role played by O-GlcNAcylation in the regulation of CSC phenotype. We found that the modification of O-GlcNAcylation levels by pharmacological inhibition of the O-GlcNAc-transferase enzyme that adds O-GlcNAc (OGT), but not of the enzyme that removes it (OGA), increased the expression of all stem cell markers tested in our colon malignant cell lines, and induced the appearance of a double positive (CD44+/CD133+) small stem cell-like subpopulation (which corresponded to 1-10%) that displayed very aggressive malignant phenotype such as increased clonogenicity and spheroid formation abilities in 3D culture. We reasoned that OGT inhibition would mimic in the tumor the presence of severe nutritional stress, and indeed, we demonstrated that nutritional stress reproduced in colon cancer cells the effects obtained with OGT inhibition. Thus, our data strongly suggests that stemness is regulated by HBP/O-GlcNAcylation nutrient sensing pathway, and that O-GlcNAc nutrient sensor represents an important survival mechanism in cancer cells under nutritional stressful conditions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA