Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Immunity ; 50(2): 317-333.e6, 2019 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-30683620

RESUMEN

Interleukin-1 (IL-1) signaling is important for multiple potentially pathogenic processes in the central nervous system (CNS), but the cell-type-specific roles of IL-1 signaling are unclear. We used a genetic knockin reporter system in mice to track and reciprocally delete or express IL-1 receptor 1 (IL-1R1) in specific cell types, including endothelial cells, ventricular cells, peripheral myeloid cells, microglia, astrocytes, and neurons. We found that endothelial IL-1R1 was necessary and sufficient for mediating sickness behavior and drove leukocyte recruitment to the CNS and impaired neurogenesis, whereas ventricular IL-1R1 was critical for monocyte recruitment to the CNS. Although microglia did not express IL-1R1, IL-1 stimulation of endothelial cells led to the induction of IL-1 in microglia. Together, these findings describe the structure and functions of the brain's IL-1R1-expressing system and lay a foundation for the dissection and identification of IL-1R1 signaling pathways in the pathogenesis of CNS diseases.


Asunto(s)
Encéfalo/inmunología , Neuroinmunomodulación/inmunología , Receptores Tipo I de Interleucina-1/inmunología , Transducción de Señal/inmunología , Animales , Astrocitos/citología , Astrocitos/inmunología , Astrocitos/metabolismo , Encéfalo/citología , Encéfalo/metabolismo , Línea Celular , Células Cultivadas , Células Endoteliales/efectos de los fármacos , Células Endoteliales/inmunología , Células Endoteliales/metabolismo , Interleucina-1/farmacología , Ratones Endogámicos C57BL , Ratones Transgénicos , Microglía/citología , Microglía/inmunología , Microglía/metabolismo , Neuroinmunomodulación/genética , Neuronas/citología , Neuronas/inmunología , Neuronas/metabolismo , Receptores Tipo I de Interleucina-1/genética , Receptores Tipo I de Interleucina-1/metabolismo , Transducción de Señal/genética
2.
J Am Soc Nephrol ; 34(10): 1629-1646, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37545036

RESUMEN

SIGNIFICANCE STATEMENT: Activation of the type 1 IL-1 receptor (IL-1R1) triggers a critical innate immune signaling cascade that contributes to the pathogenesis of AKI. However, blockade of IL-1 signaling in AKI has not consistently demonstrated kidney protection. The current murine experiments show that IL-1R1 activation in the proximal tubule exacerbates toxin-induced AKI and cell death through local suppression of apolipoprotein M. By contrast, IL-1R1 activation in endothelial cells ameliorates AKI by restoring VEGFA-dependent endothelial cell viability. Using this information, future delivery strategies can maximize the protective effects of blocking IL-1R1 while mitigating unwanted actions of IL-1R1 manipulation. BACKGROUND: Activation of the type 1 IL-1 receptor (IL-1R1) triggers a critical innate immune signaling cascade that contributes to the pathogenesis of AKI. IL-1R1 is expressed on some myeloid cell populations and on multiple kidney cell lineages, including tubular and endothelial cells. Pharmacological inhibition of the IL-1R1 does not consistently protect the kidney from injury, suggesting there may be complex, cell-specific effects of IL-1R1 stimulation in AKI. METHODS: To examine expression of IL-1 and IL-1R1 in intrinsic renal versus infiltrating immune cell populations during AKI, we analyzed single-cell RNA sequencing (scRNA-seq) data from kidney tissues of humans with AKI and mice with acute aristolochic acid exposure. We then investigated cell-specific contributions of renal IL-1R1 signaling to AKI using scRNA-seq, RNA microarray, and pharmacological interventions in mice with IL-1R1 deletion restricted to the proximal tubule or endothelium. RESULTS: scRNA-seq analyses demonstrated robust IL-1 expression in myeloid cell populations and low-level IL-1R1 expression in kidney parenchymal cells during toxin-induced AKI. Our genetic studies showed that IL-1R1 activation in the proximal tubule exacerbated toxin-induced AKI and cell death through local suppression of apolipoprotein M. By contrast, IL-1R1 activation in endothelial cells ameliorated aristolochic acid-induced AKI by restoring VEGFA-dependent endothelial cell viability and density. CONCLUSIONS: These data highlight opposing cell-specific effects of IL-1 receptor signaling on AKI after toxin exposure. Disrupting pathways activated by IL-1R1 in the tubule, while preserving those triggered by IL-1R1 activation on endothelial cells, may afford renoprotection exceeding that of global IL-1R1 inhibition while mitigating unwanted actions of IL-1R1 blockade.


Asunto(s)
Lesión Renal Aguda , Receptores de Interleucina-1 , Humanos , Ratones , Animales , Receptores de Interleucina-1/genética , Apolipoproteínas M , Células Endoteliales/metabolismo , Lesión Renal Aguda/patología , Ratones Noqueados , Interleucina-1 , Endotelio/metabolismo , Ratones Endogámicos C57BL
4.
J Surg Res ; 282: 183-190, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36308901

RESUMEN

INTRODUCTION: Traumatic brain injury (TBI) can lead to neurocognitive decline, in part due to phosphorylated tau (p-tau). Whether p-tau accumulation worsens in the setting of polytrauma remains unknown. Propranolol has shown clinical benefit in head injuries; however, the underlying mechanism is also unknown. We hypothesize that hemorrhagic shock would worsen p-tau accumulation but that propranolol would improve functional outcomes on behavioral studies. METHODS: A murine polytrauma model was developed to examine the accumulation of p-tau and whether it can be mitigated by early administration of propranolol. TBI was induced using a weight-drop model and hemorrhagic shock was achieved via controlled hemorrhage for 1 h. Mice were given intraperitoneal propranolol 4 mg/kg or saline control. The animals underwent behavioral testing at 30 d postinjury and were sacrificed for cerebral histological analysis. These studies were completed in male and female mice. RESULTS: TBI alone led to increased p-tau generation compared to sham on both immunohistochemistry and immunofluorescence (P < 0.05). The addition of hemorrhage led to greater accumulation of p-tau in the hippocampus (P < 0.007). In male mice, p-tau accumulation decreased with propranolol administration for both polytrauma and TBI alone (P < 0.0001). Male mice treated with propranolol also outperformed saline-control mice on the hippocampal-dependent behavioral assessment (P = 0.0013). These results were not replicated in female mice; the addition of hemorrhage did not increase p-tau accumulation and propranolol did not demonstrate a therapeutic effect. CONCLUSIONS: Polytrauma including TBI generates high levels of hippocampal p-tau, but propranolol may help prevent this accumulation to improve both neuropathological and functional outcomes in males.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Traumatismo Múltiple , Choque Hemorrágico , Animales , Ratones , Masculino , Femenino , Propranolol/farmacología , Propranolol/uso terapéutico , Choque Hemorrágico/complicaciones , Choque Hemorrágico/tratamiento farmacológico , Modelos Animales de Enfermedad
5.
Am J Physiol Renal Physiol ; 322(2): F164-F174, 2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-34894725

RESUMEN

Interleukin (IL)-1 receptor type 1 (IL-1R1) activation triggers a proinflammatory signaling cascade that can exacerbate kidney injury. However, the functions of podocyte IL-1R1 in glomerular disease remain unclear. To study the role of IL-1R1 signaling in podocytes, we selectively ablated podocyte IL-1R1 in mice (PKO mice). We then subjected PKO mice and wild-type controls to two glomerular injury models: nephrotoxic serum (NTS)- and adriamycin-induced nephropathy. Surprisingly, we found that IL-1R1 activation in podocytes limited albuminuria and podocyte injury during NTS- and adriamycin-induced nephropathy. Moreover, deletion of IL-1R1 in podocytes drove podocyte apoptosis and glomerular injury through diminishing Akt activation. Activation of Akt signaling abrogated the differences in albuminuria and podocyte injury between wild-type and PKO mice during NTS. Thus, IL-1R1 signaling in podocytes limits susceptibility to glomerular injury via an Akt-dependent signaling pathway. These data identify an unexpected protective role for IL-1R1 signaling in podocytes in the pathogenesis of glomerular disease.NEW & NOTEWORTHY The present study establishes that activation of the receptor for interleukin-1 limits susceptibility to damage to the kidney glomerulus in preclinical mouse models by stimulating Akt signaling cascades inside the podocyte.


Asunto(s)
Glomerulonefritis/metabolismo , Podocitos/metabolismo , Proteinuria/metabolismo , Receptores Tipo I de Interleucina-1/metabolismo , Animales , Apoptosis/efectos de los fármacos , Línea Celular , Modelos Animales de Enfermedad , Doxorrubicina , Glomerulonefritis/inducido químicamente , Glomerulonefritis/patología , Glomerulonefritis/prevención & control , Humanos , Interleucina-1beta/farmacología , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas de la Membrana/genética , Ratones de la Cepa 129 , Ratones Noqueados , Podocitos/efectos de los fármacos , Podocitos/patología , Proteinuria/inducido químicamente , Proteinuria/patología , Proteinuria/prevención & control , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptores Tipo I de Interleucina-1/agonistas , Receptores Tipo I de Interleucina-1/genética , Transducción de Señal
6.
Proc Natl Acad Sci U S A ; 115(43): E10245-E10254, 2018 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-30297392

RESUMEN

Autism spectrum disorder (ASD) is a common neurobehavioral disorder with limited treatment options. Activation of p38 MAPK signaling networks has been identified in ASD, and p38 MAPK signaling elevates serotonin (5-HT) transporter (SERT) activity, effects mimicked by multiple, hyperfunctional SERT coding variants identified in ASD subjects. Mice expressing the most common of these variants (SERT Ala56) exhibit hyperserotonemia, a biomarker observed in ASD subjects, as well as p38 MAPK-dependent SERT hyperphosphorylation, elevated hippocampal 5-HT clearance, hypersensitivity of CNS 5-HT1A and 5-HT2A/2C receptors, and behavioral and gastrointestinal perturbations reminiscent of ASD. As the α-isoform of p38 MAPK drives SERT activation, we tested the hypothesis that CNS-penetrant, α-isoform-specific p38 MAPK inhibitors might normalize SERT Ala56 phenotypes. Strikingly, 1-week treatment of adult SERT Ala56 mice with MW150, a selective p38α MAPK inhibitor, normalized hippocampal 5-HT clearance, CNS 5-HT1A and 5-HT2A/2C receptor sensitivities, social interactions, and colonic motility. Conditional elimination of p38α MAPK in 5-HT neurons of SERT Ala56 mice restored 5-HT1A and 5-HT2A/2C receptor sensitivities as well as social interactions, mirroring effects of MW150. Our findings support ongoing p38α MAPK activity as an important determinant of the physiological and behavioral perturbations of SERT Ala56 mice and, more broadly, supports consideration of p38α MAPK inhibition as a potential treatment for core and comorbid phenotypes present in ASD subjects.


Asunto(s)
Encéfalo/metabolismo , Tracto Gastrointestinal/metabolismo , Proteína Quinasa 14 Activada por Mitógenos/metabolismo , Receptores de Serotonina 5-HT2/metabolismo , Proteínas de Transporte de Serotonina en la Membrana Plasmática/metabolismo , Serotonina/metabolismo , Animales , Trastorno del Espectro Autista/metabolismo , Masculino , Ratones , Fenotipo , Transducción de Señal/fisiología
7.
Neurosurg Focus ; 47(5): E8, 2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31675718

RESUMEN

Although there is a substantial amount of research on the neurological consequences of traumatic brain injury (TBI), there is a knowledge gap regarding the relationship between TBI and the pathophysiology of organ system dysfunction and autonomic dysregulation. In particular, the mechanisms or incidences of renal or cardiac complications after TBI are mostly unknown. Autonomic dysfunction following TBI exacerbates secondary injury and may contribute to nonneurologial complications that prolong hospital length of stay. Gaining insights into the mechanisms of autonomic dysfunction can guide advancements in monitoring and treatment paradigms to improve acute survival and long-term prognosis of TBI patients. In this paper, the authors will review the literature on autonomic dysfunction after TBI and possible mechanisms of paroxysmal sympathetic hyperactivity. Specifically, they will discuss the link among the brain, heart, and kidneys and review data to direct future research on and interventions for TBI-induced autonomic dysfunction.


Asunto(s)
Enfermedades del Sistema Nervioso Autónomo/etiología , Enfermedades del Sistema Nervioso Autónomo/fisiopatología , Lesiones Traumáticas del Encéfalo/complicaciones , Lesiones Traumáticas del Encéfalo/fisiopatología , Encéfalo/fisiopatología , Corazón/fisiopatología , Humanos , Riñón/fisiopatología
8.
Brain Inj ; 30(11): 1279-1292, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27715315

RESUMEN

BACKGROUND: Alzheimer's disease (AD) and chronic traumatic encephalopathy (CTE) have long been recognized as sharing some similar neuropathological features, mainly the presence of neurofibrilary tangles and hyperphosphorylated tau, but have generally been described as distinct entities. Evidence indicates that neurotrauma increases the risk of developing dementia and accelerates the progression of disease. Findings are emerging that CTE and AD may be present in the same patients. CLINICAL PRESENTATION: This study presents a series of previously unpublished cases, with one case demonstrating possible neurotrauma-related AD, one pure CTE, and an example of a case exhibiting features of both AD and CTE. The future significance of this work lies not only in the confirmation of AD-CTE co-existence, but, more importantly, ways of generating a hypothesis about the possibility that CTE may accelerate AD development. Understanding the relationship between neurotrauma and neurodegenerative disease will help elucidate how distinct disease entities can co-exist in the same patient. It will ultimately require the use of pre-clinical animal models and repeat injury paradigms to investigate clinically relevant injury mechanisms. These models should produce a CTE-like phenotype that must be both neuropathologically and behaviourally similar to human disease. CONCLUSION: This case series and review of the literature presents a discussion of AD and CTE in the context of neurotrauma. It highlights recent work from repetitive neurotrauma models with an emphasis on those exhibiting a CTE-like phenotype. Potential mechanisms of interest shared amongst AD and CTE are briefly addressed and future experiments are advocated for to enhance understanding of CTE pathophysiology and the relationship between CTE and AD.


Asunto(s)
Enfermedad de Alzheimer/complicaciones , Encefalopatía Traumática Crónica/complicaciones , Adulto , Anciano , Enfermedad de Alzheimer/diagnóstico , Encefalopatía Traumática Crónica/diagnóstico , Bases de Datos Factuales/estadística & datos numéricos , Humanos , Masculino , Proteínas tau/metabolismo
9.
J Pharmacol Sci ; 127(1): 17-29, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25704014

RESUMEN

Neurodegenerative diseases with distinct genetic etiologies and pathological phenotypes appear to share common mechanisms of neuronal cellular dysfunction, including excitotoxicity, calcium dysregulation, oxidative damage, ER stress and mitochondrial dysfunction. Glial cells, including microglia and astrocytes, play an increasingly recognized role in both the promotion and prevention of neurodegeneration. Sigma receptors, particularly the sigma-1 receptor subtype, which are expressed in both neurons and glia of multiple regions within the central nervous system, are a unique class of intracellular proteins that can modulate many biological mechanisms associated with neurodegeneration. These receptors therefore represent compelling putative targets for pharmacologically treating neurodegenerative disorders. In this review, we provide an overview of the biological mechanisms frequently associated with neurodegeneration, and discuss how sigma-1 receptors may alter these mechanisms to preserve or restore neuronal function. In addition, we speculate on their therapeutic potential in the treatment of various neurodegenerative disorders.


Asunto(s)
Degeneración Nerviosa/fisiopatología , Enfermedades Neurodegenerativas/fisiopatología , Receptores sigma/fisiología , Animales , Humanos , Modelos Biológicos , Terapia Molecular Dirigida/métodos , Enfermedades Neurodegenerativas/tratamiento farmacológico , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Receptores sigma/agonistas , Receptor Sigma-1
10.
Am J Physiol Lung Cell Mol Physiol ; 306(10): L915-24, 2014 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-24705722

RESUMEN

Exoenzyme Y (ExoY) is a Pseudomonas aeruginosa toxin that is introduced into host cells through the type 3 secretion system (T3SS). Once inside the host cell cytoplasm, ExoY generates cyclic nucleotides that cause tau phosphorylation and microtubule breakdown. Microtubule breakdown causes interendothelial cell gap formation and tissue edema. Although ExoY transiently induces interendothelial cell gap formation, it remains unclear whether ExoY prevents repair of the endothelial cell barrier. Here, we test the hypothesis that ExoY intoxication impairs recovery of the endothelial cell barrier following gap formation, decreasing migration, proliferation, and lung repair. Pulmonary microvascular endothelial cells (PMVECs) were infected with P. aeruginosa strains for 6 h, including one possessing an active ExoY (PA103 exoUexoT::Tc pUCPexoY; ExoY(+)), one with an inactive ExoY (PA103ΔexoUexoT::Tc pUCPexoY(K81M); ExoY(K81M)), and one that lacks PcrV required for a functional T3SS (ΔPcrV). ExoY(+) induced interendothelial cell gaps, whereas ExoY(K81M) and ΔPcrV did not promote gap formation. Following gap formation, bacteria were removed and endothelial cell repair was examined. PMVECs were unable to repair gaps even 3-5 days after infection. Serum-stimulated growth was greatly diminished following ExoY intoxication. Intratracheal inoculation of ExoY(+) and ExoY(K81M) caused severe pneumonia and acute lung injury. However, whereas the pulmonary endothelial cell barrier was functionally improved 1 wk following ExoY(K81M) infection, pulmonary endothelium was unable to restrict the hyperpermeability response to elevated hydrostatic pressure following ExoY(+) infection. In conclusion, ExoY is an edema factor that chronically impairs endothelial cell barrier integrity following lung injury.


Asunto(s)
Proteínas Bacterianas/fisiología , Proliferación Celular , Células Endoteliales/microbiología , Glucosiltransferasas/fisiología , Neumonía Bacteriana/inmunología , Infecciones por Pseudomonas/inmunología , Pseudomonas aeruginosa/enzimología , Animales , AMP Cíclico/metabolismo , Edema/inmunología , Edema/microbiología , Células Endoteliales/inmunología , Células Endoteliales/fisiología , Interacciones Huésped-Patógeno , Pulmón/irrigación sanguínea , Pulmón/inmunología , Pulmón/microbiología , Lesión Pulmonar/inmunología , Lesión Pulmonar/microbiología , Masculino , Microvasos/patología , Microvasos/fisiopatología , Neumonía Bacteriana/microbiología , Neumonía Bacteriana/patología , Infecciones por Pseudomonas/microbiología , Infecciones por Pseudomonas/patología , Pseudomonas aeruginosa/inmunología , Pseudomonas aeruginosa/fisiología , Ratas
11.
Front Mol Biosci ; 11: 1366259, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38693918

RESUMEN

Introduction: Acute kidney injury (AKI) is one of the most common causes of organ failure in critically ill patients. Following AKI, the canonical pro-inflammatory cytokine interleukin-1ß (IL-1ß) is released predominantly from activated myeloid cells and binds to the interleukin-1 receptor R1 (IL-1R1) on leukocytes and kidney parenchymal cells. IL-1R1 on kidney tubular cells is known to amplify the immune response and exacerbate AKI. However, the specific role of IL-1R1 on myeloid cells during AKI is poorly understood. The objective of the present study was to elucidate the function of myeloid cell IL-1R1 during AKI. As IL-1R1 is known to signal through the pro-inflammatory Toll-like receptor (TLR)/MyD88 pathway, we hypothesized that myeloid cells expressing IL-1R1 would exacerbate AKI. Methods: IL-1R1 was selectively depleted in CD11c+-expressing myeloid cells with CD11cCre + /IL-1R1 fl/fl (Myel KO) mice. Myel KO and littermate controls (CD11cCre - /IL-1R1 fl/fl-Myel WT) were subjected to kidney ischemia/reperfusion (I/R) injury. Kidney injury was assessed by blood urea nitrogen (BUN), serum creatinine and injury marker neutrophil gelatinase-associated lipocalin (NGAL) protein expression. Renal tubular cells (RTC) were co-cultured with CD11c+ bone marrow-derived dendritic cells (BMDC) from Myel KO and Myel WT mice. Results: Surprisingly, compared to Myel WT mice, Myel KO mice displayed exaggerated I/R-induced kidney injury, as measured by elevated levels of serum creatinine and BUN, and kidney NGAL protein expression. In support of these findings, in vitro co-culture studies showed that RTC co-cultured with Myel KO BMDC (in the presence of IL-1ß) exhibited higher mRNA levels of the kidney injury marker NGAL than those co-cultured with Myel WT BMDC. In addition, we observed that IL-1R1 on Myel WT BMDC preferentially augmented the expression of anti-inflammatory cytokine interleukin-1 receptor antagonist (IL-1ra/Il1rn), effects that were largely abrogated in Myel KO BMDC. Furthermore, recombinant IL-1Ra could rescue IL-1ß-induced tubular cell injury. Discussion: Our findings suggest a novel function of IL-1R1 is to serve as a critical negative feedback regulator of IL-1 signaling in CD11c+ myeloid cells to dampen inflammation to limit AKI. Our results lend further support for cell-specific, as opposed to global, targeting of immunomodulatory agents.

12.
Brain Sci ; 14(1)2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-38248266

RESUMEN

Traumatic brain injury (TBI) is a pervasive public health crisis that severely impacts the quality of life of affected individuals. Like peripheral forms of trauma, TBI results from extraordinarily heterogeneous environmental forces being imparted on the cranial space, resulting in heterogeneous disease pathologies. This has made therapies for TBI notoriously difficult to develop, and currently, there are no FDA-approved pharmacotherapies specifically for the acute or chronic treatment of TBI. TBI is associated with changes in cognition and can precipitate the onset of debilitating psychiatric disorders like major depressive disorder (MDD), generalized anxiety disorder (GAD), and post-traumatic stress disorder (PTSD). Complicating these effects of TBI, FDA-approved pharmacotherapies utilized to treat these disorders often fail to reach the desired level of efficacy in the context of neurotrauma. Although a complicated association, decades of work have linked central serotonin (5-HT) neurotransmission as being involved in the etiology of a myriad of neuropsychiatric disorders, including MDD and GAD. 5-HT is a biogenic monoamine neurotransmitter that is highly conserved across scales of biology. Though the majority of 5-HT is isolated to peripheral sites such as the gastrointestinal (GI) tract, 5-HT neurotransmission within the CNS exerts exquisite control over diverse biological functions, including sleep, appetite and respiration, while simultaneously establishing normal mood, perception, and attention. Although several key studies have begun to elucidate how various forms of neurotrauma impact central 5-HT neurotransmission, a full determination of precisely how TBI disrupts the highly regulated dynamics of 5-HT neuron function and/or 5-HT neurotransmission has yet to be conceptually or experimentally resolved. The purpose of the current review is, therefore, to integrate the disparate bodies of 5-HT and TBI research and synthesize insight into how new combinatorial research regarding 5-HT neurotransmission and TBI may offer an informed perspective into the nature of TBI-induced neuropsychiatric complications.

13.
Nat Commun ; 15(1): 3753, 2024 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-38704394

RESUMEN

The European ammonia industry emits 36 million tons of carbon dioxide annually, primarily from steam methane reforming (SMR) hydrogen production. These emissions can be mitigated by producing hydrogen via water electrolysis using dedicated renewables with grid backup. This study investigates the impact of decarbonization targets for hydrogen synthesis on the economic viability and technical feasibility of retrofitting existing European ammonia plants for on-site, semi-islanded electrolytic hydrogen production. Results show that electrolytic hydrogen cuts emissions, on average, by 85% (36%-100% based on grid price and carbon intensity), even without enforcing emission limits. However, an optimal lifespan average well-to-gate emission cap of 1 kg carbon dioxide equivalent (CO2e)/kg H2 leads to a 95% reduction (92%-100%) while maintaining cost-competitiveness with SMR in renewable-rich regions (mean levelized cost of hydrogen (LCOH) of 4.1 euro/kg H2). Conversely, a 100% emissions reduction target dramatically increases costs (mean LCOH: 6.3 euro/kg H2) and land area for renewables installations, likely hindering the transition to electrolytic hydrogen in regions with poor renewables and limited land. Increasing plant flexibility effectively reduces costs, particularly in off-grid plants (mean reduction: 32%). This work guides policymakers in defining cost-effective decarbonization targets and identifying region-based strategies to support an electrolytic hydrogen-fed ammonia industry.

14.
Exp Neurol ; 374: 114695, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38246304

RESUMEN

Mild traumatic brain injury (mTBI) is a leading cause of disability in the United States, with neuropsychiatric disturbances such as depression, anxiety, PTSD, and social disturbances being common comorbidities following injury. The molecular mechanisms driving neuropsychiatric complications following neurotrauma are not well understood and current FDA-approved pharmacotherapies employed to ameliorate these comorbidities lack desired efficacy. Concerted efforts to understand the molecular mechanisms of and identify novel drug candidates for treating neurotrauma-elicited neuropsychiatric sequelae are clearly needed. Serotonin (5-HT) is linked to the etiology of neuropsychiatric disorders, however our understanding of how various forms of TBI directly affect 5-HT neurotransmission is limited. 5-HT neurons originate in the raphe nucleus (RN) of the midbrain and project throughout the brain to regulate diverse behavioral phenotypes. We hypothesize that the characterization of the dynamics governing 5-HT neurotransmission after injury will drive the discovery of novel drug targets and lead to a greater understanding of the mechanisms associated with neuropsychiatric disturbances following mild TBI (mTBI). Herein, we provide evidence that closed-head mTBI alters total DRN 5-HT levels, with RNA sequencing of the DRN revealing injury-derived alterations in transcripts required for the development, identity, and functional stability of 5-HT neurons. Further, using gene ontology analyses combined with immunohistological analyses, we have identified a novel mechanism of transcriptomic control within 5-HT neurons that may directly influence 5-HT neuron identity/function post-injury. These studies provide molecular evidence of injury-elicited 5-HT neuron dysregulation, data which may expedite the identification of novel therapeutic targets to attenuate TBI-elicited neuropsychiatric sequelae.


Asunto(s)
Conmoción Encefálica , Núcleo Dorsal del Rafe , Humanos , Serotonina , Conmoción Encefálica/complicaciones , Neuronas , Perfilación de la Expresión Génica , Neuronas Serotoninérgicas
15.
Neuroscience ; 509: 20-35, 2023 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-36332692

RESUMEN

Acceleration/deceleration forces are a common component of various causes of mild traumatic brain injury (mTBI) and result in strain and shear forces on brain tissue. A small quantifiable volume dubbed the compensatory reserve volume (CRV) permits energy transmission to brain tissue during acceleration/deceleration events. The CRV is principally regulated by cerebral blood flow (CBF) and CBF is primarily determined by the concentration of inspired carbon dioxide (CO2). We hypothesized that experimental hypercapnia (i.e. increased inspired concentration of CO2) may act to prevent and mitigate the actions of acceleration/deceleration-induced TBI. To determine these effects C57Bl/6 mice underwent experimental hypercapnia whereby they were exposed to medical-grade atmospheric air or 5% CO2 immediately prior to an acceleration/deceleration-induced mTBI paradigm. mTBI results in significant increases in righting reflex time (RRT), reductions in core body temperature, and reductions in general locomotor activity-three hours post injury (hpi). Experimental hypercapnia immediately preceding mTBI was found to prevent mTBI-induced increases in RRT and reductions in core body temperature and general locomotor activity. Ribonucleic acid (RNA) sequencing conducted four hpi revealed that CO2 exposure prevented mTBI-induced transcriptional alterations of several targets related to oxidative stress, immune, and inflammatory signaling. Quantitative real-time PCR analysis confirmed the prevention of mTBI-induced increases in mitogen-activated protein kinase kinase kinase 6 and metallothionein-2. These initial proof of concept studies reveal that increases in inspired CO2 mitigate the detrimental contributions of acceleration/deceleration events in mTBI and may feasibly be translated in the future to humans using a medical device seeking to prevent mTBI among high-risk groups.


Asunto(s)
Conmoción Encefálica , Ratones , Humanos , Animales , Conmoción Encefálica/prevención & control , Dióxido de Carbono , Desaceleración , Hipercapnia , Aceleración , Respiración
16.
Nat Commun ; 14(1): 6062, 2023 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-37770432

RESUMEN

Hematopoietic stem cells (HSCs) residing in specialized niches in the bone marrow are responsible for the balanced output of multiple short-lived blood cell lineages in steady-state and in response to different challenges. However, feedback mechanisms by which HSCs, through their niches, sense acute losses of specific blood cell lineages remain to be established. While all HSCs replenish platelets, previous studies have shown that a large fraction of HSCs are molecularly primed for the megakaryocyte-platelet lineage and are rapidly recruited into proliferation upon platelet depletion. Platelets normally turnover in an activation-dependent manner, herein mimicked by antibodies inducing platelet activation and depletion. Antibody-mediated platelet activation upregulates expression of Interleukin-1 (IL-1) in platelets, and in bone marrow extracellular fluid in vivo. Genetic experiments demonstrate that rather than IL-1 directly activating HSCs, activation of bone marrow Lepr+ perivascular niche cells expressing IL-1 receptor is critical for the optimal activation of quiescent HSCs upon platelet activation and depletion. These findings identify a feedback mechanism by which activation-induced depletion of a mature blood cell lineage leads to a niche-dependent activation of HSCs to reinstate its homeostasis.


Asunto(s)
Interleucina-1 , Trombocitopenia , Humanos , Interleucina-1/metabolismo , Células Madre Hematopoyéticas/metabolismo , Médula Ósea/metabolismo , Megacariocitos , Trombocitopenia/metabolismo
17.
Mol Pharmacol ; 81(3): 299-308, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22101517

RESUMEN

Methamphetamine is a highly addictive psychostimulant drug of abuse that causes neurotoxicity with high or repeated dosing. Earlier studies demonstrated the ability of the selective σ receptor ligand N-phenethylpiperidine oxalate (AC927) to attenuate the neurotoxic effects of methamphetamine in vivo. However, the precise mechanisms through which AC927 conveys its protective effects remain to be determined. With the use of differentiated NG108-15 cells as a model system, the effects of methamphetamine on neurotoxic endpoints and mediators such as apoptosis, necrosis, generation of reactive oxygen species (ROS) and reactive nitrogen species (RNS), and dopamine release were examined in the absence and presence of AC927. Methamphetamine at physiologically relevant micromolar concentrations caused apoptosis in NG108-15 cells. At higher concentrations of methamphetamine, necrotic cell death was observed. At earlier time points, methamphetamine caused ROS/RNS generation, which was detected with the fluorigenic substrate 5-(and-6)-chloromethyl-2',7'-dichlorodihydrofluorescin diacetate, acetyl ester, in a concentration- and time-dependent manner. N-Acetylcysteine, catalase, and l-N(G)-monomethyl arginine citrate inhibited the ROS/RNS fluorescence signal induced by methamphetamine, which suggests the formation of hydrogen peroxide and RNS. Exposure to methamphetamine also stimulated the release of dopamine from NG108-15 cells into the culture medium. AC927 attenuated methamphetamine-induced apoptosis, necrosis, ROS/RNS generation, and dopamine release in NG108-15 cells. Together, the data suggest that modulation of σ receptors can mitigate methamphetamine-induced cytotoxicity, ROS/RNS generation, and dopamine release in cultured cells.


Asunto(s)
Dopamina/metabolismo , Metanfetamina/antagonistas & inhibidores , Oxalatos/farmacología , Piperidinas/farmacología , Especies Reactivas de Oxígeno/metabolismo , Receptores sigma/agonistas , Apoptosis , Línea Celular Tumoral , Citometría de Flujo , Humanos , Metanfetamina/farmacología , Especies de Nitrógeno Reactivo/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Receptores sigma/metabolismo , Tirosina 3-Monooxigenasa/metabolismo
18.
Biomed Phys Eng Express ; 8(6)2022 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-36252558

RESUMEN

With the evolution of modern warfare and the increased use of improvised explosive devices (IEDs), there has been an increase in blast-induced traumatic brain injuries (bTBI) among military personnel and civilians. The increased prevalence of bTBI necessitates bTBI models that result in a properly scaled injury for the model organism being used. The primary laboratory model for bTBI is the shock tube, wherein a compressed gas ruptures a thin membrane, generating a shockwave. To generate a shock wave that is properly scaled from human to rodent subjects many pre-clinical models strive for a short duration and high peak overpressure while fitting a Friedlander waveform, the ideal representation of a blast wave. A large variety of factors have been experimentally characterized in attempts to create an ideal waveform, however we found current research on the gas composition being used to drive shock wave formation to be lacking. To better understand the effect the driver gas has on the waveform being produced, we utilized a previously established murine shock tube bTBI model in conjunction with several distinct driver gasses. In agreement with previous findings, helium produced a shock wave most closely fitting the Friedlander waveform in contrast to the plateau-like waveforms produced by some other gases. The peak static pressure at the exit of the shock tube and total pressure 5 cm from the exit have a strong negative correlation with the density of the gas being used: helium the least dense gas used produces the highest peak overpressure. Density of the driver gas also exerts a strong positive effect on the duration of the shock wave, with helium producing the shortest duration wave. Due to its ability to produce a Friedlander waveform and produce a waveform following proper injury scaling guidelines, helium is an ideal gas for use in shock tube models for bTBI.


Asunto(s)
Traumatismos por Explosión , Lesiones Encefálicas , Ratones , Humanos , Animales , Helio , Modelos Animales de Enfermedad , Explosiones
19.
Front Pharmacol ; 13: 930346, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35910378

RESUMEN

Various forms of traumatic brain injury (TBI) are a leading cause of disability in the United States, with the generation of neuropsychiatric complications such as depression, anxiety, social dysfunction, and suicidality being common comorbidities. Serotonin (5-HT) signaling is linked to psychiatric disorders; however, the effects of neurotrauma on normal, homeostatic 5-HT signaling within the central nervous system (CNS) have not been well characterized. We hypothesize that TBI alters specific components of 5-HT signaling within the CNS and that the elucidation of specific TBI-induced alterations in 5-HT signaling may identify novel targets for pharmacotherapies that ameliorate the neuropsychiatric complications of TBI. Herein, we provide evidence that closed-head blast-induced mild TBI (mTBI) results in selective alterations in cortical 5-HT2A receptor signaling. We find that mTBI increases in vivo cortical 5-HT2A receptor sensitivity and ex vivo radioligand binding at time points corresponding with mTBI-induced deficits in social behavior. In contrast, in vivo characterizations of 5-HT1A receptor function revealed no effect of mTBI. Notably, we find that repeated pharmacologic activation of 5-HT2A receptors post-injury reverses deficits in social dominance resulting from mTBI. Cumulatively, these studies provide evidence that mTBI drives alterations in cortical 5-HT2A receptor function and that selective targeting of TBI-elicited alterations in 5-HT2A receptor signaling may represent a promising avenue for the development of pharmacotherapies for TBI-induced generation of neuropsychiatric disorders.

20.
Neuroreport ; 33(14): 612-616, 2022 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-36062511

RESUMEN

The monoamine neurotransmitter serotonin (5-HT) is important for the regulation of behavior, and aberrations in 5-HT signaling are linked to several neuropsychiatric and neurodevelopmental disorders. 5-HT signaling is dependent on and tightly regulated by the functional activity of the 5-HT transporter (SERT). Neurotrauma is known to structurally and functionally impact 5-HT neuronal tracts and 5-HT signaling; however, the extent to which various forms of neurotrauma alter homeostatic 5-HT signaling through the modulation of SERT expression and/or functional uptake capacity is currently not well characterized. We aimed to better characterize the protein expression and uptake activity of SERT following mild traumatic brain injury (mTBI). A murine model of blast-induced mTBI was utilized to characterize alterations in SERT expression and function following injury. mTBI was found to decrease (≈26%) the protein levels of SERT 3 days postinjury (DPI) in the dorsal raphe nucleus (DRN), the primary locale of 5-HT neuronal cell bodies within the central nervous system. Concomitant reductions in midbrain SERT-dependent radiolabeled 5-HT uptake were observed 3 DPI (≈24%). No alterations in SERT expression were observed 10 DPI in the DRN. Additionally, no alterations in SERT expression or function were observed in prefrontal cortex samples at any time point observed. This data reveals time- and location-dependent alterations in SERT expression and function following mTBI. These studies illustrate the critical importance of ongoing research efforts to characterize the molecular effects of various forms of neurotrauma on SERT protein expression and function, which may yield novel drug targets within 5-HT systems.


Asunto(s)
Conmoción Encefálica , Proteínas de Transporte de Serotonina en la Membrana Plasmática , Animales , Núcleo Dorsal del Rafe , Ratones , Neuronas/metabolismo , Serotonina/metabolismo , Proteínas de Transporte de Serotonina en la Membrana Plasmática/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA