Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Eur Heart J ; 45(19): 1753-1764, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38753456

RESUMEN

BACKGROUND AND AIMS: Chronic stress associates with cardiovascular disease, but mechanisms remain incompletely defined. Advanced imaging was used to identify stress-related neural imaging phenotypes associated with atherosclerosis. METHODS: Twenty-seven individuals with post-traumatic stress disorder (PTSD), 45 trauma-exposed controls without PTSD, and 22 healthy controls underwent 18F-fluorodeoxyglucose positron emission tomography/magnetic resonance imaging (18F-FDG PET/MRI). Atherosclerotic inflammation and burden were assessed using 18F-FDG PET (as maximal target-to-background ratio, TBR max) and MRI, respectively. Inflammation was assessed using high-sensitivity C-reactive protein (hsCRP) and leucopoietic imaging (18F-FDG PET uptake in spleen and bone marrow). Stress-associated neural network activity (SNA) was assessed on 18F-FDG PET as amygdala relative to ventromedial prefrontal cortex (vmPFC) activity. MRI diffusion tensor imaging assessed the axonal integrity (AI) of the uncinate fasciculus (major white matter tract connecting vmPFC and amygdala). RESULTS: Median age was 37 years old and 54% of participants were female. There were no significant differences in atherosclerotic inflammation between participants with PTSD and controls; adjusted mean difference in TBR max (95% confidence interval) of the aorta 0.020 (-0.098, 0.138), and of the carotids 0.014 (-0.091, 0.119). Participants with PTSD had higher hsCRP, spleen activity, and aorta atherosclerotic burden (normalized wall index). Participants with PTSD also had higher SNA and lower AI. Across the cohort, carotid atherosclerotic burden (standard deviation of wall thickness) associated positively with SNA and negatively with AI independent of Framingham risk score. CONCLUSIONS: In this study of limited size, participants with PTSD did not have higher atherosclerotic inflammation than controls. Notably, impaired cortico-limbic interactions (higher amygdala relative to vmPFC activity or disruption of their intercommunication) associated with carotid atherosclerotic burden. Larger studies are needed to refine these findings.


Asunto(s)
Enfermedades de las Arterias Carótidas , Tomografía de Emisión de Positrones , Trastornos por Estrés Postraumático , Humanos , Femenino , Masculino , Adulto , Trastornos por Estrés Postraumático/fisiopatología , Trastornos por Estrés Postraumático/diagnóstico por imagen , Enfermedades de las Arterias Carótidas/fisiopatología , Enfermedades de las Arterias Carótidas/diagnóstico por imagen , Fluorodesoxiglucosa F18 , Imagen por Resonancia Magnética , Persona de Mediana Edad , Corteza Prefrontal/diagnóstico por imagen , Corteza Prefrontal/fisiopatología , Amígdala del Cerebelo/diagnóstico por imagen , Amígdala del Cerebelo/fisiopatología , Radiofármacos , Estudios de Casos y Controles , Estrés Psicológico/fisiopatología , Estrés Psicológico/complicaciones
2.
Ann Rheum Dis ; 82(3): 324-330, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36450449

RESUMEN

OBJECTIVE: Recent large-scale randomised trials demonstrate that immunomodulators reduce cardiovascular (CV) events among the general population. However, it is uncertain whether these effects apply to rheumatoid arthritis (RA) and if certain treatment strategies in RA reduce CV risk to a greater extent. METHODS: Patients with active RA despite use of methotrexate were randomly assigned to addition of a tumour necrosis factor (TNF) inhibitor (TNFi) or addition of sulfasalazine and hydroxychloroquine (triple therapy) for 24 weeks. Baseline and follow-up 18F-fluorodeoxyglucose-positron emission tomography/CT scans were assessed for change in arterial inflammation, an index of CV risk, measured as an arterial target-to-background ratio (TBR) in the carotid arteries and aorta. RESULTS: 115 patients completed the protocol. The two treatment groups were well balanced with a median age of 58 years, 71% women, 57% seropositive and a baseline disease activity score in 28 joints of 4.8 (IQR 4.0, 5.6). Baseline TBR was similar across the two groups. Significant TBR reductions were observed in both groups-ΔTNFi: -0.24 (SD=0.51), Δtriple therapy: -0.19 (SD=0.51)-without difference between groups (difference in Δs: -0.02, 95% CI -0.19 to 0.15, p=0.79). While disease activity was significantly reduced across both treatment groups, there was no association with change in TBR (ß=0.04, 95% CI -0.03 to 0.10). CONCLUSION: We found that addition of either a TNFi or triple therapy resulted in clinically important improvements in vascular inflammation. However, the addition of a TNFi did not reduce arterial inflammation more than triple therapy. TRIAL REGISTRATION NUMBER: NCT02374021.


Asunto(s)
Antirreumáticos , Arteritis , Artritis Reumatoide , Enfermedades Cardiovasculares , Humanos , Femenino , Persona de Mediana Edad , Masculino , Antirreumáticos/efectos adversos , Enfermedades Cardiovasculares/prevención & control , Enfermedades Cardiovasculares/inducido químicamente , Factor de Necrosis Tumoral alfa , Factores de Riesgo , Artritis Reumatoide/diagnóstico por imagen , Artritis Reumatoide/tratamiento farmacológico , Artritis Reumatoide/inducido químicamente , Metotrexato/uso terapéutico , Factores Inmunológicos/uso terapéutico , Factores de Riesgo de Enfermedad Cardiaca , Arteritis/inducido químicamente , Arteritis/tratamiento farmacológico , Resultado del Tratamiento
3.
J Nucl Cardiol ; 29(4): 1660-1670, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-34046803

RESUMEN

Non-invasive positron emission tomography (PET) of vascular inflammation and atherosclerotic plaque by identifying increased uptake of 18F-fluordeoxyglucose (18F-FDG) is a powerful tool for monitoring disease activity, progression, and its response to therapy. 18F-FDG PET/computed tomography (PET/CT) of the aorta and carotid arteries has become widely used to assess changes in inflammation in clinical trials. However, the recent advent of hybrid PET/magnetic resonance (PET/MR) scanners has advantages for vascular imaging due to the reduction in radiation exposure and improved soft tissue contrast of MR compared to CT. Important for research and clinical use is an understanding of the scan-rescan repeatability of the PET measurement. While this has been studied for PET/CT, no data is currently available for vascular PET/MR imaging. In this study, we determined the scan-rescan measurement repeatability of 18F-FDG PET/MR in the aorta and carotid arteries was less than 5%, comparable to similar findings for 18F-FDG PET/CT.


Asunto(s)
Fluorodesoxiglucosa F18 , Tomografía Computarizada por Tomografía de Emisión de Positrones , Humanos , Inflamación/diagnóstico por imagen , Imagen por Resonancia Magnética , Tomografía de Emisión de Positrones/métodos , Radiofármacos , Tomografía Computarizada por Rayos X/métodos
4.
Radiology ; 298(2): 332-340, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33258745

RESUMEN

Background Tumor perfusion may inform therapeutic response and resistance in metastatic renal cell carcinoma (RCC) treated with antiangiogenic therapy. Purpose To determine if arterial spin labeled (ASL) MRI perfusion changes are associated with tumor response and disease progression in metastatic RCC treated with vascular endothelial growth factor receptor (VEGFR) tyrosine kinase inhibitors (TKIs). Materials and Methods In this prospective study (ClinicalTrials.gov identifier: NCT00749320), metastatic RCC perfusion was measured with ASL MRI before and during sunitinib or pazopanib therapy between October 2008 and March 2014. Objective response rate (ORR) and progression-free survival (PFS) were calculated. Perfusion was compared between responders and nonresponders at baseline, at week 2, after cycle 2 (12 weeks), after cycle 4 (24 weeks), and at disease progression and compared with the ORR by using the Wilcoxon rank sum test and with PFS by using the log-rank test. Results Seventeen participants received sunitinib (mean age, 59 years ± 7.0 [standard deviation]; 11 men); 11 participants received pazopanib (mean age, 63 years ± 6.6; eight men). Responders had higher baseline tumor perfusion than nonresponders (mean, 404 mL/100 g/min ± 213 vs 199 mL/100 g/min ± 136; P = .02). Perfusion decreased from baseline to week 2 (-53 mL/100 g/min ± 31; P < .001), after cycle 2 (-65 mL/100 g/min ± 25; P < .001), and after cycle 4 (-79 mL/100 g/min ± 15; P = .008). Interval reduction in perfusion at those three time points was not associated with ORR (P = .63, .29, and .27, respectively) or PFS (P = .28, .27, and .32). Perfusion increased from cycle 4 to disease progression (51% ± 11; P < .001). Conclusion Arterial spin labeled perfusion MRI may assist in identifying responders to vascular endothelial growth factor receptor tyrosine kinase inhibitors and may help detect early evidence of disease progression in patients with metastatic renal cell carcinoma. © RSNA, 2020 Online supplemental material is available for this article. See also the editorial by Goh and De Vita in this issue.


Asunto(s)
Carcinoma de Células Renales/tratamiento farmacológico , Neoplasias Renales/tratamiento farmacológico , Imagen por Resonancia Magnética/métodos , Inhibidores de Proteínas Quinasas/uso terapéutico , Pirimidinas/uso terapéutico , Sulfonamidas/uso terapéutico , Sunitinib/uso terapéutico , Adulto , Anciano , Carcinoma de Células Renales/secundario , Femenino , Humanos , Indazoles , Neoplasias Renales/secundario , Masculino , Persona de Mediana Edad , Estudios Prospectivos , Proteínas Tirosina Quinasas/antagonistas & inhibidores , Marcadores de Spin
5.
J Nucl Cardiol ; 28(5): 2194-2204, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-31898004

RESUMEN

BACKGROUND: Hybrid PET/MR imaging has significant potential in cardiology due to its combination of molecular PET imaging and cardiac MR. Multi-tissue-class MR-based attenuation correction (MRAC) is necessary for accurate PET quantification. Moreover, for thoracic PET imaging, respiration is known to lead to misalignments of MRAC and PET data that result in PET artifacts. These factors can be addressed by using multi-echo MR for tissue segmentation and motion-robust or motion-gated acquisitions. However, the combination of these strategies is not routinely available and can be prone to errors. In this study, we examine the qualitative and quantitative impacts of multi-class MRAC compared to a more widely available simple two-class MRAC for cardiac PET/MR. METHODS AND RESULTS: In a cohort of patients with cardiac sarcoidosis, we acquired MRAC data using multi-echo radial gradient-echo MR imaging. Water-fat separation was used to produce attenuation maps with up to 4 tissue classes including water-based soft tissue, fat, lung, and background air. Simultaneously acquired 18F-fluorodeoxyglucose PET data were subsequently reconstructed using each attenuation map separately. PET uptake values were measured in the myocardium and compared between different PET images. The inclusion of lung and subcutaneous fat in the MRAC maps significantly affected the quantification of 18F-fluorodeoxyglucose activity in the myocardium but only moderately altered the appearance of the PET image without introduction of image artifacts. CONCLUSION: Optimal MRAC for cardiac PET/MR applications should include segmentation of all tissues in combination with compensation for the respiratory-related motion of the heart. Simple two-class MRAC is adequate for qualitative clinical assessment.


Asunto(s)
Corazón/diagnóstico por imagen , Angiografía por Resonancia Magnética/normas , Tomografía Computarizada por Tomografía de Emisión de Positrones/normas , Anciano , Estudios de Cohortes , Femenino , Fluorodesoxiglucosa F18/administración & dosificación , Fluorodesoxiglucosa F18/uso terapéutico , Corazón/fisiopatología , Humanos , Angiografía por Resonancia Magnética/métodos , Angiografía por Resonancia Magnética/estadística & datos numéricos , Masculino , Persona de Mediana Edad , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos , Tomografía Computarizada por Tomografía de Emisión de Positrones/estadística & datos numéricos , Radiofármacos/administración & dosificación , Radiofármacos/uso terapéutico
6.
J Nucl Cardiol ; 28(5): 1-12, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-31792913

RESUMEN

BACKGROUND: 18F-Fluoride uptake denotes calcification activity in aortic stenosis and atherosclerosis. While PET/MR has several advantages over PET/CT, attenuation correction of PET/MR data is challenging, limiting cardiovascular application. We compared PET/MR and PET/CT assessments of 18F-fluoride uptake in the aortic valve and coronary arteries. METHODS AND RESULTS: 18 patients with aortic stenosis or recent myocardial infarction underwent 18F-fluoride PET/CT followed immediately by PET/MR. Valve and coronary 18F-fluoride uptake were evaluated independently. Both standard (Dixon) and novel radial GRE) MR attenuation correction (AC) maps were validated against PET/CT with results expressed as tissue-to-background ratios (TBRs). Visually, aortic valve 18F-fluoride uptake was similar on PET/CT and PET/MR. TBRMAX values were comparable with radial GRE AC (PET/CT 1.55±0.33 vs. PET/MR 1.58 ± 0.34, P = 0.66; 95% limits of agreement - 27% to + 25%) but performed less well with Dixon AC (1.38 ± 0.44, P = 0.06; bias (-)14%; 95% limits of agreement - 25% to + 53%). In native coronaries, 18F-fluoride uptake was similar on PET/MR to PET/CT regardless of AC approach. PET/MR identified 28/29 plaques identified on PET/CT; however, stents caused artifact on PET/MR making assessment of 18F-fluoride uptake challenging. CONCLUSION: Cardiovascular PET/MR demonstrates good visual and quantitative agreement with PET/CT. However, PET/MR is hampered by stent-related artifacts currently limiting clinical application.


Asunto(s)
Fluorodesoxiglucosa F18/uso terapéutico , Angiografía por Resonancia Magnética/normas , Tomografía Computarizada por Tomografía de Emisión de Positrones/normas , Anciano , Estenosis de la Válvula Aórtica/diagnóstico por imagen , Femenino , Fluorodesoxiglucosa F18/administración & dosificación , Humanos , Angiografía por Resonancia Magnética/métodos , Angiografía por Resonancia Magnética/estadística & datos numéricos , Masculino , Persona de Mediana Edad , Infarto del Miocardio/diagnóstico por imagen , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos , Tomografía Computarizada por Tomografía de Emisión de Positrones/estadística & datos numéricos , Radiofármacos/administración & dosificación , Radiofármacos/uso terapéutico
7.
Bioconjug Chem ; 31(2): 360-368, 2020 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-31095372

RESUMEN

Nanotherapy has recently emerged as an experimental treatment option for atherosclerosis. To fulfill its promise, robust noninvasive imaging approaches for subject selection and treatment evaluation are warranted. To that end, we present here a positron emission tomography (PET)-based method for quantification of liposomal nanoparticle uptake in the atherosclerotic vessel wall. We evaluated a modular procedure to label liposomal nanoparticles with the radioisotope zirconium-89 (89Zr). Their biodistribution and vessel wall targeting in a rabbit atherosclerosis model was evaluated up to 15 days after intravenous injection by PET/computed tomography (CT) and PET/magnetic resonance imaging (PET/MRI). Vascular permeability was assessed in vivo using three-dimensional dynamic contrast-enhanced MRI (3D DCE-MRI) and ex vivo using near-infrared fluorescence (NIRF) imaging. The 89Zr-radiolabeled liposomes displayed a biodistribution pattern typical of long-circulating nanoparticles. Importantly, they markedly accumulated in atherosclerotic lesions in the abdominal aorta, as evident on PET/MRI and confirmed by autoradiography, and this uptake moderately correlated with vascular permeability. The method presented herein facilitates the development of nanotherapy for atherosclerotic disease as it provides a tool to screen for nanoparticle targeting in individual subjects' plaques.


Asunto(s)
Aterosclerosis/diagnóstico por imagen , Liposomas/análisis , Placa Aterosclerótica/diagnóstico por imagen , Tomografía de Emisión de Positrones/métodos , Radioisótopos/análisis , Circonio/análisis , Animales , Aorta Abdominal/diagnóstico por imagen , Masculino , Conejos , Distribución Tisular
8.
J Nucl Cardiol ; 27(4): 1126-1141, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-31667675

RESUMEN

BACKGROUND: The standard MR Dixon-based attenuation correction (AC) method in positron emission tomography/magnetic resonance (PET/MR) imaging segments only the air, lung, fat and soft-tissues (4-class), thus neglecting the highly attenuating bone tissues and affecting quantification in bones and adjacent vessels. We sought to address this limitation by utilizing the distinctively high bone uptake rate constant Ki expected from 18F-Sodium Fluoride (18F-NaF) to segment bones from PET data and support 5-class hybrid PET/MR-driven AC for 18F-NaF and 18F-Fluorodeoxyglucose (18F-FDG) PET/MR cardiovascular imaging. METHODS: We introduce 5-class Ki/MR-AC for (i) 18F-NaF studies where the bones are segmented from Patlak Ki images and added as the 5th tissue class to the MR Dixon 4-class AC map. Furthermore, we propose two alternative dual-tracer protocols to permit 5-class Ki/MR-AC for (ii) 18F-FDG-only data, with a streamlined simultaneous administration of 18F-FDG and 18F-NaF at 4:1 ratio (R4:1), or (iii) for 18F-FDG-only or both 18F-FDG and 18F-NaF dual-tracer data, by administering 18F-NaF 90 minutes after an equal 18F-FDG dosage (R1:1). The Ki-driven bone segmentation was validated against computed tomography (CT)-based segmentation in rabbits, followed by PET/MR validation on 108 vertebral bone and carotid wall regions in 16 human volunteers with and without prior indication of carotid atherosclerosis disease (CAD). RESULTS: In rabbits, we observed similar (< 1.2% mean difference) vertebral bone 18F-NaF SUVmean scores when applying 5-class AC with Ki-segmented bone (5-class Ki/CT-AC) vs CT-segmented bone (5-class CT-AC) tissue. Considering the PET data corrected with continuous CT-AC maps as gold-standard, the percentage SUVmean bias was reduced by 17.6% (18F-NaF) and 15.4% (R4:1) with 5-class Ki/CT-AC vs 4-class CT-AC. In humans without prior CAD indication, we reported 17.7% and 20% higher 18F-NaF target-to-background ratio (TBR) at carotid bifurcations wall and vertebral bones, respectively, with 5- vs 4-class AC. In the R4:1 human cohort, the mean 18F-FDG:18F-NaF TBR increased by 12.2% at carotid bifurcations wall and 19.9% at vertebral bones. For the R1:1 cohort of subjects without CAD indication, mean TBR increased by 15.3% (18F-FDG) and 15.5% (18F-NaF) at carotid bifurcations and 21.6% (18F-FDG) and 22.5% (18F-NaF) at vertebral bones. Similar TBR enhancements were observed when applying the proposed AC method to human subjects with prior CAD indication. CONCLUSIONS: Ki-driven bone segmentation and 5-class hybrid PET/MR-driven AC is feasible and can significantly enhance 18F-NaF and 18F-FDG contrast and quantification in bone tissues and carotid walls.


Asunto(s)
Enfermedades de las Arterias Carótidas/diagnóstico por imagen , Fluorodesoxiglucosa F18 , Imagen por Resonancia Magnética/métodos , Imagen Multimodal/métodos , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos , Radiofármacos , Adulto , Animales , Huesos/diagnóstico por imagen , Femenino , Humanos , Masculino , Persona de Mediana Edad , Conejos , Fluoruro de Sodio
9.
MAGMA ; 33(1): 141-161, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31833014

RESUMEN

OBJECTIVES: This study aimed at developing technical recommendations for the acquisition, processing and analysis of renal ASL data in the human kidney at 1.5 T and 3 T field strengths that can promote standardization of renal perfusion measurements and facilitate the comparability of results across scanners and in multi-centre clinical studies. METHODS: An international panel of 23 renal ASL experts followed a modified Delphi process, including on-line surveys and two in-person meetings, to formulate a series of consensus statements regarding patient preparation, hardware, acquisition protocol, analysis steps and data reporting. RESULTS: Fifty-nine statements achieved consensus, while agreement could not be reached on two statements related to patient preparation. As a default protocol, the panel recommends pseudo-continuous (PCASL) or flow-sensitive alternating inversion recovery (FAIR) labelling with a single-slice spin-echo EPI readout with background suppression and a simple but robust quantification model. DISCUSSION: This approach is considered robust and reproducible and can provide renal perfusion images of adequate quality and SNR for most applications. If extended kidney coverage is desirable, a 2D multislice readout is recommended. These recommendations are based on current available evidence and expert opinion. Nonetheless they are expected to be updated as more data become available, since the renal ASL literature is rapidly expanding.


Asunto(s)
Circulación Cerebrovascular , Riñón/diagnóstico por imagen , Imagen por Resonancia Magnética/tendencias , Marcadores de Spin , Investigación Biomédica Traslacional/tendencias , Algoritmos , Consenso , Técnica Delphi , Imagen Eco-Planar , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Riñón/irrigación sanguínea , Trasplante de Riñón , Angiografía por Resonancia Magnética , Estudios Multicéntricos como Asunto , Perfusión , Arteria Renal/diagnóstico por imagen , Reproducibilidad de los Resultados , Relación Señal-Ruido
11.
NMR Biomed ; 28(10): 1304-14, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26332103

RESUMEN

Atherosclerotic plaques that cause stroke and myocardial infarction are characterized by increased microvascular permeability and inflammation. Dynamic contrast-enhanced MRI (DCE-MRI) has been proposed as a method to quantify vessel wall microvascular permeability in vivo. Until now, most DCE-MRI studies of atherosclerosis have been limited to two-dimensional (2D) multi-slice imaging. Although providing the high spatial resolution required to image the arterial vessel wall, these approaches do not allow the quantification of plaque permeability with extensive anatomical coverage, an essential feature when imaging heterogeneous diseases, such as atherosclerosis. To our knowledge, we present the first systematic evaluation of three-dimensional (3D), high-resolution, DCE-MRI for the extensive quantification of plaque permeability along an entire vascular bed, with validation in atherosclerotic rabbits. We compare two acquisitions: 3D turbo field echo (TFE) with motion-sensitized-driven equilibrium (MSDE) preparation and 3D turbo spin echo (TSE). We find 3D TFE DCE-MRI to be superior to 3D TSE DCE-MRI in terms of temporal stability metrics. Both sequences show good intra- and inter-observer reliability, and significant correlation with ex vivo permeability measurements by Evans Blue near-infrared fluorescence (NIRF). In addition, we explore the feasibility of using compressed sensing to accelerate 3D DCE-MRI of atherosclerosis, to improve its temporal resolution and therefore the accuracy of permeability quantification. Using retrospective under-sampling and reconstructions, we show that compressed sensing alone may allow the acceleration of 3D DCE-MRI by up to four-fold. We anticipate that the development of high-spatial-resolution 3D DCE-MRI with prospective compressed sensing acceleration may allow for the more accurate and extensive quantification of atherosclerotic plaque permeability along an entire vascular bed. We foresee that this approach may allow for the comprehensive and accurate evaluation of plaque permeability in patients, and may be a useful tool to assess the therapeutic response to approved and novel drugs for cardiovascular disease.


Asunto(s)
Aorta Abdominal/patología , Enfermedades de la Aorta/patología , Permeabilidad Capilar , Procesamiento de Imagen Asistido por Computador/métodos , Imagenología Tridimensional/métodos , Imagen por Resonancia Magnética/métodos , Placa Aterosclerótica/patología , Animales , Medios de Contraste , Modelos Animales de Enfermedad , Estudios de Factibilidad , Variaciones Dependientes del Observador , Conejos
12.
J Magn Reson Imaging ; 39(4): 1017, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24123809

RESUMEN

PURPOSE: This study examines template-based squared-difference registration for motion correction in dynamic contrast-enhanced (DCE) MRI studies of the carotid artery wall and compares the results of fixed-frame template-based registration with a previously proposed consecutive-frame registration method. MATERIALS AND METHODS: Ten T1-weighted black-blood, turbo spin-echo DCE-MRI studies of the carotid artery wall were used to test template-based squared-difference registration. An intermediate image from each series was selected as the fixed-frame template for registration. Squared-difference minimization was used to align each image and template. Time-intensity curves generated from data aligned with template-based squared-difference registration were compared with gold standard curves created by drawing regions of interest on each image in the series. The results were also compared with unregistered data and data after consecutive-frame squared-difference registration. RESULTS: An analysis of variance test of root mean-square error values between gold standard curve and curves from unregistered data and data registered with consecutive-frame and fixed-frame template-based methods was significant (P < 0.005) with template-based squared-difference registration producing curves that most closely matched the gold standard. CONCLUSION: A fixed-frame template-based squared-difference registration method was proposed and validated for alignment of DCE-MRI of carotid arteries.


Asunto(s)
Arteria Carótida Común/patología , Estenosis Carotídea/patología , Gadolinio DTPA , Interpretación de Imagen Asistida por Computador/métodos , Angiografía por Resonancia Magnética/métodos , Reconocimiento de Normas Patrones Automatizadas/métodos , Técnica de Sustracción , Anciano , Medios de Contraste , Femenino , Humanos , Aumento de la Imagen/métodos , Masculino , Persona de Mediana Edad , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
13.
J Heart Lung Transplant ; 43(4): 529-538, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37951322

RESUMEN

BACKGROUND: Previous retrospective studies suggest a good diagnostic performance of 18F-fluorodeoxyglucose positron emission tomography (18F-FDG-PET)/computed tomography (CT) in left ventricular assist device (LVAD) infections. Our aim was to prospectively evaluate the role of PET/CT in the characterization and impact on clinical management of LVAD infections. METHODS: A total of 40 patients (aged 58 [53-62] years) with suspected LVAD infection and 5 controls (aged 69 [64-71] years) underwent 18F-FDG-PET/CT. Four LVAD components were evaluated: exit site and subcutaneous driveline (peripheral), pump pocket, and outflow graft. The location with maximal uptake was considered the presumed site of infection. Infection was confirmed by positive culture (exit site or blood) and/or surgical findings. RESULTS: Visual uptake was present in 40 patients (100%) in the infection group vs 4 (80%) control subjects. For each individual component, the presence of uptake was more frequent in the infection than in the control group. The location of maximal uptake was most frequently the pump pocket (48%) in the infection group and the peripheral components (75%) in the control group. Maximum standard uptake values (SUVmax) were higher in the infection than in the control group: SUVmax (average all components): 6.9 (5.1-8.5) vs 3.8 (3.7-4.3), p = 0.002; SUVmax (location of maximal uptake): 10.6 ± 4.0 vs 5.4 ± 1.9, p = 0.01. Pump pocket infections were more frequent in patients with bacteremia than without bacteremia (79% vs 31%, p = 0.011). Pseudomonas (32%) and methicillin-susceptible Staphylococcus aureus (29%) were the most frequent pathogens and were associated with pump pocket infections, while Staphylococcus epidermis (11%) was associated with peripheral infections. PET/CT affected the clinical management of 83% of patients with infection, resulting in surgical debridement (8%), pump exchange (13%), and upgrade in the transplant listing status (10%), leading to 8% of urgent transplants. CONCLUSIONS: 18F-FDG-PET/CT enables the diagnosis and characterization of the extent of LVAD infections, which can significantly affect the clinical management of these patients.


Asunto(s)
Bacteriemia , Corazón Auxiliar , Infecciones Relacionadas con Prótesis , Humanos , Fluorodesoxiglucosa F18 , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos , Corazón Auxiliar/efectos adversos , Tomografía Computarizada por Rayos X , Estudios Retrospectivos , Infecciones Relacionadas con Prótesis/diagnóstico por imagen , Infecciones Relacionadas con Prótesis/etiología , Bacteriemia/diagnóstico , Bacteriemia/etiología
14.
JACC Cardiovasc Imaging ; 17(4): 411-424, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38300202

RESUMEN

BACKGROUND: Imaging with late gadolinium enhancement (LGE) magnetic resonance (MR) and 18F-fluorodeoxyglucose (18F-FDG) PET allows complementary assessment of myocardial injury and disease activity and has shown promise for improved characterization of active cardiac sarcoidosis (CS) based on the combined positive imaging outcome, MR(+)PET(+). OBJECTIVES: This study aims to evaluate qualitative and quantitative assessments of hybrid MR/PET imaging in CS and to evaluate its association with cardiac-related outcomes. METHODS: A total of 148 patients with suspected CS underwent hybrid MR/PET imaging. Patients were classified based on the presence/absence of LGE (MR+/MR-), presence/absence of 18F-FDG (PET+/PET-), and pattern of 18F-FDG uptake (focal/diffuse) into the following categories: MR(+)PET(+)FOCAL, MR(+)PET(+)DIFFUSE, MR(+)PET(-), MR(-)PET(+)FOCAL, MR(-)PET(+)DIFFUSE, MR(-)PET(-). Further analysis classified MR positivity based on %LGE exceeding 5.7% as MR(+/-)5.7%. Quantitative values of standard uptake value, target-to-background ratio, target-to-normal-myocardium ratio (TNMRmax), and T2 were measured. The primary clinical endpoint was met by the occurrence of cardiac arrest, ventricular tachycardia, or secondary prevention implantable cardioverter-defibrillator (ICD) before the end of the study. The secondary endpoint was met by any of the primary endpoint criteria plus heart failure or heart block. MR/PET imaging results were compared between those meeting or not meeting the clinical endpoints. RESULTS: Patients designated MR(+)5.7%PET(+)FOCAL had increased odds of meeting the primary clinical endpoint compared to those with all other imaging classifications (unadjusted OR: 9.2 [95% CI: 3.0-28.7]; P = 0.0001), which was higher than the odds based on MR or PET alone. TNMRmax achieved an area under the receiver-operating characteristic curve of 0.90 for separating MR(+)PET(+)FOCAL from non-MR(+)PET(+)FOCAL, and 0.77 for separating those reaching the clinical endpoint from those not reaching the clinical endpoint. CONCLUSIONS: Hybrid MR/PET image-based classification of CS was statistically associated with clinical outcomes in CS. TNMRmax had modest sensitivity and specificity for quantifying the imaging-based classification MR(+)PET(+)FOCAL and was associated with outcomes. Use of combined MR and PET image-based classification may have use in prognostication and treatment management in CS.


Asunto(s)
Cardiomiopatías , Miocarditis , Sarcoidosis , Humanos , Fluorodesoxiglucosa F18 , Cardiomiopatías/diagnóstico por imagen , Cardiomiopatías/terapia , Cardiomiopatías/complicaciones , Medios de Contraste , Radiofármacos , Valor Predictivo de las Pruebas , Gadolinio , Tomografía de Emisión de Positrones/métodos , Imagen por Resonancia Magnética/métodos , Miocarditis/complicaciones , Espectroscopía de Resonancia Magnética , Sarcoidosis/diagnóstico por imagen , Sarcoidosis/terapia , Sarcoidosis/complicaciones
15.
J Cardiovasc Magn Reson ; 15: 42, 2013 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-23706156

RESUMEN

BACKGROUND: Dynamic contrast enhanced (DCE) cardiovascular magnetic resonance (CMR) is increasingly used to quantify microvessels and permeability in atherosclerosis. Accurate quantification depends on reliable sampling of both vessel wall (VW) uptake and contrast agent dynamic in the blood plasma (the so called arterial input function, AIF). This poses specific challenges in terms of spatial/temporal resolution and matched dynamic MR signal range, which are suboptimal in current vascular DCE-CMR protocols. In this study we describe a novel dual-imaging approach, which allows acquiring simultaneously AIF and VW images using different spatial/temporal resolution and optimizes imaging parameters for the two compartments. We refer to this new acquisition as SHILO, Simultaneous HI-/LOw-temporal (low-/hi-spatial) resolution DCE-imaging. METHODS: In SHILO, the acquisition of low spatial resolution single-shot AIF images is interleaved with segments of higher spatial resolution images of the VW. This allows sampling the AIF and VW with different spatial/temporal resolution and acquisition parameters, at independent spatial locations. We show the adequacy of this temporal sampling scheme by using numerical simulations. Following, we validate the MR signal of SHILO against a standard 2D spoiled gradient recalled echo (SPGR) acquisition with in vitro and in vivo experiments. Finally, we show feasibility of using SHILO imaging in subjects with carotid atherosclerosis. RESULTS: Our simulations confirmed the superiority of the SHILO temporal sampling scheme over conventional strategies that sample AIF and tissue curves at the same time resolution. Both the median relative errors and standard deviation of absolute parameter values were lower for the SHILO than for conventional sampling schemes. We showed equivalency of the SHILO signal and conventional 2D SPGR imaging, using both in vitro phantom experiments (R2 =0.99) and in vivo acquisitions (R2 =0.95). Finally, we showed feasibility of using the newly developed SHILO sequence to acquire DCE-CMR data in subjects with carotid atherosclerosis to calculate plaque perfusion indices. CONCLUSIONS: We successfully demonstrate the feasibility of using the newly developed SHILO dual-imaging technique for simultaneous AIF and VW imaging in DCE-CMR of atherosclerosis. Our initial results are promising and warrant further investigation of this technique in wider studies measuring kinetic parameters of plaque neovascularization with validation against gold standard techniques.


Asunto(s)
Enfermedades de las Arterias Carótidas/diagnóstico , Angiografía por Resonancia Magnética/métodos , Neovascularización Patológica/diagnóstico , Enfermedades de las Arterias Carótidas/patología , Medios de Contraste , Estudios de Factibilidad , Gadolinio DTPA , Humanos , Análisis de los Mínimos Cuadrados , Neovascularización Patológica/patología , Fantasmas de Imagen , Factores de Tiempo
16.
Ann Am Thorac Soc ; 20(4): 574-583, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36476449

RESUMEN

Rationale: There is upper airway inflammation in patients with obstructive sleep apnea (OSA), which reduces with continuous positive airway pressure (CPAP) therapy. Objectives: Validate the use of positron emission tomography (PET)/magnetic resonance imaging (MRI) to quantify metabolic activity within the pharyngeal mucosa of patients with OSA against nasal lavage proteomics and assess the impact of CPAP therapy. Methods: Adults with OSA underwent [18F]-Fluoro-2-deoxy-D-glucose PET/MRI of the neck before and 3 months after initiating CPAP. Nasal lavage samples were collected. Inflammatory protein expression from samples was analyzed using the Olink platform. Upper airway imaging segmentation was performed. Target-to-background ratio (TBRmax) was calculated from target pharyngeal maximum standard uptake values (SUV) and personalized background mean SUV. Most-diseased segment TBRmax was identified per participant at locations with the highest PET avidity. Correlation analysis was performed between baseline TBRmax and nasal lavage proteomics. TBRmax was compared before and after CPAP using linear mixed-effect models. Results: Among 38 participants, the baseline mean age was 46.3 years (standard deviation [SD], 12.5), 21% were female, the mean body mass index was 30.9 kg/m2 (SD, 4.6), and the mean respiratory disturbance index measured by peripheral arterial tonometry was 31 events/h (SD, 16.4). There was a significant positive correlation between pharyngeal mucosa most-diseased segment TBRmax and nasal lavage proteomic inflammation (r = 0.41 [P < 0.001, false discovery rate = 0.002]). Primary analysis revealed a reduction in the most-diseased segment TBRmax after a median of 2.91 months of CPAP therapy (-0.86 [standard error (SE) ± 0.30; P = 0.007]). Stratified analysis by smoking status revealed a significantly decreased most-diseased segment TBRmax after CPAP therapy among never-smokers but not among ever-smokers (-1.01 [SE ± 0.39; P = 0.015] vs. -0.64 [SE ± 0.49; P = 0.201]). Conclusions: CPAP therapy reduces metabolic activity measured by PET/MRI within the upper airway of adults with OSA. Furthermore, PET/MRI measures of upper airway metabolic activity correlate with a noninvasive marker of inflammation (i.e., nasal lavage inflammatory protein expression).


Asunto(s)
Proteómica , Apnea Obstructiva del Sueño , Adulto , Humanos , Femenino , Persona de Mediana Edad , Masculino , Apnea Obstructiva del Sueño/diagnóstico por imagen , Apnea Obstructiva del Sueño/terapia , Presión de las Vías Aéreas Positiva Contínua/métodos , Imagen por Resonancia Magnética , Inflamación/diagnóstico por imagen , Tomografía de Emisión de Positrones
17.
Diagnostics (Basel) ; 13(11)2023 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-37296722

RESUMEN

BACKGROUND: The aim of this study is to explore the utility of cardiac magnetic resonance (CMR) imaging of radiomic features to distinguish active and inactive cardiac sarcoidosis (CS). METHODS: Subjects were classified into active cardiac sarcoidosis (CSactive) and inactive cardiac sarcoidosis (CSinactive) based on PET-CMR imaging. CSactive was classified as featuring patchy [18F]fluorodeoxyglucose ([18F]FDG) uptake on PET and presence of late gadolinium enhancement (LGE) on CMR, while CSinactive was classified as featuring no [18F]FDG uptake in the presence of LGE on CMR. Among those screened, thirty CSactive and thirty-one CSinactive patients met these criteria. A total of 94 radiomic features were subsequently extracted using PyRadiomics. The values of individual features were compared between CSactive and CSinactive using the Mann-Whitney U test. Subsequently, machine learning (ML) approaches were tested. ML was applied to two sub-sets of radiomic features (signatures A and B) that were selected by logistic regression and PCA, respectively. RESULTS: Univariate analysis of individual features showed no significant differences. Of all features, gray level co-occurrence matrix (GLCM) joint entropy had a good area under the curve (AUC) and accuracy with the smallest confidence interval, suggesting it may be a good target for further investigation. Some ML classifiers achieved reasonable discrimination between CSactive and CSinactive patients. With signature A, support vector machine and k-neighbors showed good performance with AUC (0.77 and 0.73) and accuracy (0.67 and 0.72), respectively. With signature B, decision tree demonstrated AUC and accuracy around 0.7; Conclusion: CMR radiomic analysis in CS provides promising results to distinguish patients with active and inactive disease.

18.
J Vis Exp ; (199)2023 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-37811943

RESUMEN

The current standard for measuring coronary artery calcification to determine the extent of atherosclerosis is by calculating the Agatston score from computed tomography (CT). However, the Agatston score disregards pixel values less than 130 Hounsfield Units (HU) and calcium regions less than 1 mm2. Due to this thresholding, the score is not sensitive to small, weakly attenuating regions of calcium deposition and may not detect nascent micro-calcification. A recently proposed metric called the spatially weighted calcium score (SWCS) also utilizes CT but does not include a threshold for HU and does not require elevated signals in contiguous pixels. Thus, the SWCS is sensitive to weakly attenuating, smaller calcium deposits and may improve the measurement of coronary heart disease risk. Currently, the SWCS is underutilized owing to the added computational complexity. To promote translation of the SWCS into clinical research and reliable, repeatable computation of the score, the aim of this study was to develop a semi-automatic graphical tool that calculates both the SWCS and the Agatston score. The program requires gated cardiac CT scans with a calcium hydroxyapatite phantom in the field of view. The phantom allows for deriving a weighting function, from which each pixel's weight is adjusted, allowing for the mitigation of signal variations and variability between scans. With all three anatomical views visible simultaneously, the user traces the course of the four main coronary arteries by placing points or regions of interest. Features such as scroll-to-zoom, double-click to delete, and brightness/contrast adjustment, along with written guidance at every step, make the program user-friendly and easy to use. Once tracing the arteries is complete, the program generates reports, which include the scores and snapshots of any visible calcium. The SWCS may reveal the presence of subclinical disease, which may be used for early intervention and lifestyle changes.


Asunto(s)
Calcinosis , Enfermedad de la Arteria Coronaria , Humanos , Calcio , Vasos Coronarios/diagnóstico por imagen , Tomografía Computarizada por Rayos X/métodos , Enfermedad de la Arteria Coronaria/diagnóstico por imagen , Reproducibilidad de los Resultados , Angiografía Coronaria/métodos
19.
JACC Clin Electrophysiol ; 9(8 Pt 3): 1709-1716, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37227360

RESUMEN

BACKGROUND: Sustained ventricular tachycardia and sudden cardiac death due to degenerative mitral valve prolapse (MVP) can occur in the absence of severe mitral regurgitation (MR). A significant percentage of patients with MVP-related sudden death do not have any evidence of replacement fibrosis, suggesting other unrecognized proarrhythmic factors may place these patients at risk. OBJECTIVES: This study aims to characterize myocardial fibrosis/inflammation and ventricular arrhythmia complexity in patients with MVP and only mild or moderate MR. METHODS: Prospective observational study of patients with MVP and only mild or moderate MR underwent ventricular arrhythmia characterization and hybrid positron emission tomography (PET)/magnetic resonance imaging (MRI). Coregistered hybrid 18F-fluorodeoxyglucose (18F-FDG)-PET and MRI late gadolinium enhancement images were assessed and categorized. Recruitment occurred in the cardiac electrophysiology clinic. RESULTS: In 12 patients with degenerative MVP with only mild or moderate MR, of which a majority had complex ventricular ectopy (n = 10, 83%), focal (or focal-on-diffuse) uptake of 18F-FDG (PET-positive) was detected in 83% (n = 10) of patients. Three-quarters of the patients (n = 9, 75%) had FDG uptake that coexisted with areas of late gadolinium enhancement (PET/MRI-positive). Abnormal T1, T2 and extracellular volume (ECV) values were observed in 58% (n = 7), 25% (n = 3), and 16% (n = 2), respectively. CONCLUSIONS: Most patients with degenerative MVP, ventricular ectopy, and mild or moderate MR show myocardial inflammation that is concordant with myocardial scar. Further study is needed to determine whether these findings contribute to the observation that most MVP-related sudden deaths occur in patients with less than severe MR.


Asunto(s)
Insuficiencia de la Válvula Mitral , Prolapso de la Válvula Mitral , Complejos Prematuros Ventriculares , Humanos , Prolapso de la Válvula Mitral/complicaciones , Prolapso de la Válvula Mitral/diagnóstico por imagen , Prolapso de la Válvula Mitral/patología , Insuficiencia de la Válvula Mitral/diagnóstico por imagen , Medios de Contraste , Gadolinio , Fluorodesoxiglucosa F18 , Fibrosis , Inflamación
20.
Magn Reson Med ; 67(5): 1252-65, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22084006

RESUMEN

Arterial spin labeling perfusion MRI can suffer from artifacts and quantification errors when the time delay between labeling and arrival of labeled blood in the tissue is uncertain. This transit delay is particularly uncertain in broad clinical populations, where reduced or collateral flow may occur. Measurement of transit delay by acquisition of the arterial spin labeling signal at many different time delays typically extends the imaging time and degrades the sensitivity of the resulting perfusion images. Acquisition of transit delay maps at the same spatial resolution as perfusion images may not be necessary, however, because transit delay maps tend to contain little high spatial resolution information. Here, we propose the use of a reduced spatial resolution arterial spin labeling prescan for the rapid measurement of transit delay. Approaches to using the derived transit delay information to optimize and quantify higher resolution continuous arterial spin labeling perfusion images are described. Results in normal volunteers demonstrate heterogeneity of transit delay across different brain regions that lead to quantification errors without the transit maps and demonstrate the feasibility of this approach to perfusion and transit delay quantification.


Asunto(s)
Algoritmos , Encéfalo/fisiología , Circulación Cerebrovascular/fisiología , Aumento de la Imagen/métodos , Interpretación de Imagen Asistida por Computador/métodos , Angiografía por Resonancia Magnética/métodos , Velocidad del Flujo Sanguíneo/fisiología , Encéfalo/anatomía & histología , Femenino , Humanos , Masculino , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA