RESUMEN
Genome-wide association studies have previously identified 23 genetic loci associated with circulating fibrinogen concentration. These studies used HapMap imputation and did not examine the X-chromosome. 1000 Genomes imputation provides better coverage of uncommon variants, and includes indels. We conducted a genome-wide association analysis of 34 studies imputed to the 1000 Genomes Project reference panel and including â¼120 000 participants of European ancestry (95 806 participants with data on the X-chromosome). Approximately 10.7 million single-nucleotide polymorphisms and 1.2 million indels were examined. We identified 41 genome-wide significant fibrinogen loci; of which, 18 were newly identified. There were no genome-wide significant signals on the X-chromosome. The lead variants of five significant loci were indels. We further identified six additional independent signals, including three rare variants, at two previously characterized loci: FGB and IRF1. Together the 41 loci explain 3% of the variance in plasma fibrinogen concentration.
Asunto(s)
Fibrinógeno/análisis , Sitios Genéticos , Polimorfismo de Nucleótido Simple , Adulto , Anciano , Anciano de 80 o más Años , Femenino , Fibrinógeno/genética , Estudio de Asociación del Genoma Completo , Humanos , Mutación INDEL , Masculino , Persona de Mediana Edad , Población Blanca/genéticaRESUMEN
Venous thromboembolism (VTE), the third leading cause of cardiovascular mortality, is a complex thrombotic disorder with environmental and genetic determinants. Although several genetic variants have been found associated with VTE, they explain a minor proportion of VTE risk in cases. We undertook a meta-analysis of genome-wide association studies (GWASs) to identify additional VTE susceptibility genes. Twelve GWASs totaling 7,507 VTE case subjects and 52,632 control subjects formed our discovery stage where 6,751,884 SNPs were tested for association with VTE. Nine loci reached the genome-wide significance level of 5 × 10(-8) including six already known to associate with VTE (ABO, F2, F5, F11, FGG, and PROCR) and three unsuspected loci. SNPs mapping to these latter were selected for replication in three independent case-control studies totaling 3,009 VTE-affected individuals and 2,586 control subjects. This strategy led to the identification and replication of two VTE-associated loci, TSPAN15 and SLC44A2, with lead risk alleles associated with odds ratio for disease of 1.31 (p = 1.67 × 10(-16)) and 1.21 (p = 2.75 × 10(-15)), respectively. The lead SNP at the TSPAN15 locus is the intronic rs78707713 and the lead SLC44A2 SNP is the non-synonymous rs2288904 previously shown to associate with transfusion-related acute lung injury. We further showed that these two variants did not associate with known hemostatic plasma markers. TSPAN15 and SLC44A2 do not belong to conventional pathways for thrombosis and have not been associated to other cardiovascular diseases nor related quantitative biomarkers. Our findings uncovered unexpected actors of VTE etiology and pave the way for novel mechanistic concepts of VTE pathophysiology.
Asunto(s)
Predisposición Genética a la Enfermedad/genética , Glicoproteínas de Membrana/genética , Proteínas de Transporte de Membrana/genética , Tetraspaninas/genética , Tromboembolia Venosa/genética , Estudio de Asociación del Genoma Completo , Genotipo , Humanos , Oportunidad RelativaRESUMEN
Thrombin, the major enzyme of the hemostatic system, is involved in biological processes associated with several human diseases. The capacity of a given individual to generate thrombin, called the thrombin generation potential (TGP), can be robustly measured in plasma and was shown to associate with thrombotic disorders. To investigate the genetic architecture underlying the interindividual TGP variability, we conducted a genome-wide association study in 2 discovery samples (N = 1967) phenotyped for 3 TGP biomarkers, the endogenous thrombin potential, the peak height, and the lag time, and replicated the main findings in 2 independent studies (N = 1254). We identified the ORM1 gene, coding for orosomucoid, as a novel locus associated with lag time variability, reflecting the initiation process of thrombin generation with a combined P value of P = 7.1 × 10(-15) for the lead single nucleotide polymorphism (SNP) (rs150611042). This SNP was also observed to associate with ORM1 expression in monocytes (P = 8.7 × 10(-10)) and macrophages (P = 3.2 × 10(-3)). In vitro functional experiments further demonstrated that supplementing normal plasma with increasing orosomucoid concentrations was associated with impaired thrombin generation. These results pave the way for novel mechanistic pathways and therapeutic perspectives in the etiology of thrombin-related disorders.
Asunto(s)
Orosomucoide/genética , Trombina/metabolismo , Adulto , Pruebas de Coagulación Sanguínea , Femenino , Estudio de Asociación del Genoma Completo , Humanos , Masculino , Persona de Mediana Edad , Polimorfismo de Nucleótido SimpleRESUMEN
Although most characterized tumor antigens are encoded by canonical transcripts (such as differentiation or tumor-testis antigens) or mutations (both driver and passenger mutations), recent results have shown that noncanonical transcripts including long noncoding RNAs and transposable elements (TEs) can also encode tumor-specific neo-antigens. Here, we investigate the presentation and immunogenicity of tumor antigens derived from noncanonical mRNA splicing events between coding exons and TEs. Comparing human non-small cell lung cancer (NSCLC) and diverse healthy tissues, we identified a subset of splicing junctions that is both tumor specific and shared across patients. We used HLA-I peptidomics to identify peptides encoded by tumor-specific junctions in primary NSCLC samples and lung tumor cell lines. Recurrent junction-encoded peptides were immunogenic in vitro, and CD8+ T cells specific for junction-encoded epitopes were present in tumors and tumor-draining lymph nodes from patients with NSCLC. We conclude that noncanonical splicing junctions between exons and TEs represent a source of recurrent, immunogenic tumor-specific antigens in patients with NSCLC.
Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Masculino , Humanos , Neoplasias Pulmonares/genética , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Elementos Transponibles de ADN , Linfocitos T CD8-positivos/patología , Recurrencia Local de Neoplasia/genética , Exones/genética , Antígenos de Neoplasias/genéticaRESUMEN
Oncogenesis often implicates epigenetic alterations, including derepression of transposable elements (TEs) and defects in alternative splicing. Here, we explore the possibility that noncanonical splice junctions between exons and TEs represent a source of tumor-specific antigens. We show that mouse normal tissues and tumor cell lines express wide but distinct ranges of mRNA junctions between exons and TEs, some of which are tumor specific. Immunopeptidome analyses in tumor cell lines identified peptides derived from exon-TE splicing junctions associated to MHC-I molecules. Exon-TE junction-derived peptides were immunogenic in tumor-bearing mice. Both prophylactic and therapeutic vaccinations with junction-derived peptides delayed tumor growth in vivo. Inactivation of the TE-silencing histone 3-lysine 9 methyltransferase Setdb1 caused overexpression of new immunogenic junctions in tumor cells. Our results identify exon-TE splicing junctions as epigenetically controlled, immunogenic, and protective tumor antigens in mice, opening possibilities for tumor targeting and vaccination in patients with cancer.
Asunto(s)
Antígenos de Neoplasias , Elementos Transponibles de ADN , Animales , Ratones , Elementos Transponibles de ADN/genética , Antígenos de Neoplasias/genética , Exones/genética , ARN Mensajero , Línea Celular TumoralRESUMEN
In order to investigate whether DNA methylation marks could contribute to the incomplete penetrance of the FV Leiden mutation, a major genetic risk factor for venous thrombosis (VT), we measured genome-wide DNA methylation levels in peripheral blood samples of 98 VT patients carrying the mutation and 251 VT patients without the mutation using the dedicated Illumina HumanMethylation450 array. The genome-wide analysis of 388,120 CpG probes identified three sites mapping to the SLC19A2 locus whose DNA methylation levels differed significantly (p<3 10-8) between carriers and non-carriers. The three sites replicated (p<2 10-7) in an independent sample of 214 individuals from five large families ascertained on VT and FV Leiden mutation among which 53 were carriers and 161 were non-carriers of the mutation. In both studies, these three CpG sites were also associated (2.33 10-11
0.05). In conclusion, our work clearly illustrates some promises and pitfalls of DNA methylation investigations on peripheral blood DNA in large epidemiological cohorts. DNA methylation levels at SLC19A2 are influenced by SNPs in LD with FV Leiden, but these DNA methylation marks do not explain the incomplete penetrance of the FV Leiden mutation.
Asunto(s)
Metilación de ADN , Factor V/genética , Estudio de Asociación del Genoma Completo , Mutación , Adulto , Femenino , Humanos , Masculino , Persona de Mediana EdadRESUMEN
Twelve autosomal and 8 X chromosome Alu markers were genotyped for the first time in 161 Central and West Yakuts to test their ability to reconstruct the genetic history of these populations, the northernmost Turkic-speaker ethnic group living in Siberia. Autosomal data revealed that both groups showed extremely close genetic distances to other populations of Siberian origins that occupied areas from Lake Baikal, the ancestral place of origin of Yakuts, to North Siberia, their current territories. Autosomal and X chromosome data revealed some discrepancies on the genetic differentiation and the effective sizes of Central and West Yakuts. Such discrepancies could be related to the patrilineal and occasionally polygamous structure of these populations. Autosomal and X Alu markers are informative markers to reconstruct population past demography and history, but their utility is limited by the available data. This study represents a contribution for further investigations on these populations.