Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Eur J Immunol ; 53(2): e2250059, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36458588

RESUMEN

Toll-like receptors (TLR) control the activation of dendritic cells that prime CD4+ T cells in draining lymph nodes, where these T cells then undergo massive clonal expansion. The mechanisms controlling this clonal T cell expansion are poorly defined. Using the CD4+ T cell-mediated disease experimental autoimmune encephalomyelitis (EAE), we show here that this process is markedly suppressed when TLR9 signaling is increased, without noticeably affecting the transcriptome of primed T cells, indicating a purely quantitative effect on CD4+ T cell expansion. Addressing the underpinning mechanisms revealed that CD4+ T cell expansion was preceded and depended on the accumulation of neutrophils in lymph nodes a few days after immunization. Underlying the importance of this immune regulation pathway, blocking neutrophil accumulation in lymph nodes by treating mice with a TLR9 agonist inhibited EAE progression in mice with defects in regulatory T cells or regulatory B cells, which otherwise developed a severe chronic disease. Collectively, this study demonstrates the key role of neutrophils in the quantitative regulation of antigen-specific CD4+ T cell expansion in lymph nodes, and the counter-regulatory role of TLR signaling in this process.


Asunto(s)
Encefalomielitis Autoinmune Experimental , Ratones , Animales , Neutrófilos/patología , Receptor Toll-Like 9/metabolismo , Linfocitos T CD4-Positivos , Ganglios Linfáticos , Receptores Toll-Like/metabolismo , Ratones Endogámicos C57BL
2.
Nat Immunol ; 12(2): 151-9, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21217761

RESUMEN

Plasma cells are of crucial importance for long-term immune protection. It is thought that long-lived plasma cells survive in specialized niches in the bone marrow. Here we demonstrate that bone marrow eosinophils localized together with plasma cells and were the key providers of plasma cell survival factors. In vitro, eosinophils supported the survival of plasma cells by secreting the proliferation-inducing ligand APRIL and interleukin-6 (IL-6). In eosinophil-deficient mice, plasma cell numbers were much lower in the bone marrow both at steady state and after immunization. Reconstitution experiments showed that eosinophils were crucial for the retention of plasma cells in the bone marrow. Moreover, depletion of eosinophils induced apoptosis in long-lived bone marrow plasma cells. Our findings demonstrate that the long-term maintenance of plasma cells in the bone marrow requires eosinophils.


Asunto(s)
Médula Ósea/patología , Eosinófilos/metabolismo , Interleucina-6/metabolismo , Células Plasmáticas/metabolismo , Miembro 13 de la Superfamilia de Ligandos de Factores de Necrosis Tumoral/metabolismo , Traslado Adoptivo , Animales , Antígenos de Diferenciación/biosíntesis , Apoptosis/inmunología , Eliminación de Componentes Sanguíneos , Médula Ósea/inmunología , Supervivencia Celular/inmunología , Células Cultivadas , Eosinófilos/inmunología , Eosinófilos/patología , Memoria Inmunológica , Interleucina-6/inmunología , Ratones , Ratones Endogámicos BALB C , Células Plasmáticas/citología , Células Plasmáticas/inmunología , Miembro 13 de la Superfamilia de Ligandos de Factores de Necrosis Tumoral/inmunología
3.
Kidney Int ; 102(6): 1392-1408, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36103953

RESUMEN

Post-transplant lymphoproliferative disorder is a life-threatening complication of immunosuppression following transplantation mediated by failure of T cells to control Epstein-Barr virus (EBV)-infected and transformed B cells. Typically, a modification or reduction of immunosuppression is recommended, but insufficiently defined thus far. In order to help delineate this, we characterized EBV-antigen-specific T cells and lymphoblastoid cell lines from healthy donors and in patients with a kidney transplant in the absence or presence of the standard immunosuppressants tacrolimus, cyclosporin A, prednisolone, rapamycin, and mycophenolic acid. Phenotypes of lymphoblastoid cell-lines and T cells, T cell-receptor-repertoire diversity, and T-cell reactivity upon co-culture with autologous lymphoblastoid cell lines were analyzed. Rapamycin and mycophenolic acid inhibited lymphoblastoid cell-line proliferation. T cells treated with prednisolone and rapamycin showed nearly normal cytokine production. Proliferation and the viability of T cells were decreased by mycophenolic acid, while tacrolimus and cyclosporin A were strong suppressors of T-cell function including their killing activity. Overall, our study provides a basis for the clinical decision for the modification and reduction of immunosuppression and adds information to the complex balance of maintaining anti-viral immunity while preventing acute rejection. Thus, an immunosuppressive regime based on mTOR inhibition and reduced or withdrawn calcineurin inhibitors could be a promising strategy for patients with increased risk of or manifested EBV-associated post-transplant lymphoproliferative disorder.


Asunto(s)
Infecciones por Virus de Epstein-Barr , Trastornos Linfoproliferativos , Humanos , Herpesvirus Humano 4 , Tacrolimus/farmacología , Tacrolimus/uso terapéutico , Calcineurina/genética , Inhibidores mTOR , Ciclosporina/farmacología , Ciclosporina/uso terapéutico , Infecciones por Virus de Epstein-Barr/tratamiento farmacológico , Ácido Micofenólico/uso terapéutico , Trastornos Linfoproliferativos/tratamiento farmacológico , Trastornos Linfoproliferativos/etiología , Trastornos Linfoproliferativos/prevención & control , Terapia de Inmunosupresión , Inmunosupresores/uso terapéutico , Sirolimus/farmacología , Sirolimus/uso terapéutico , Prednisolona/farmacología , Prednisolona/uso terapéutico , Serina-Treonina Quinasas TOR
5.
Transpl Int ; 34(9): 1680-1688, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34448272

RESUMEN

Epstein-Barr virus (EBV) reactivation is a very common and potentially lethal complication of renal transplantation. However, its risk factors and effects on transplant outcome are not well known. Here, we have analysed a large, multi-centre cohort (N = 512) in which 18.4% of the patients experienced EBV reactivation during the first post-transplant year. The patients were characterized pre-transplant and two weeks post-transplant by a multi-level biomarker panel. EBV reactivation was episodic for most patients, only 12 patients showed prolonged viraemia for over four months. Pre-transplant EBV shedding and male sex were associated with significantly increased incidence of post-transplant EBV reactivation. Importantly, we also identified a significant association of post-transplant EBV with acute rejection and with decreased haemoglobin levels. No further severe complications associated with EBV, either episodic or chronic, could be detected. Our data suggest that despite relatively frequent EBV reactivation, it had no association with serious complications during the first post-transplantation year. EBV shedding prior to transplantation could be employed as biomarkers for personalized immunosuppressive therapy. In summary, our results support the employed immunosuppressive regimes as relatively safe with regard to EBV. However, long-term studies are paramount to support these conclusions.


Asunto(s)
Infecciones por Virus de Epstein-Barr , Trasplante de Riñón , Trastornos Linfoproliferativos , ADN Viral , Infecciones por Virus de Epstein-Barr/etiología , Herpesvirus Humano 4/genética , Humanos , Trasplante de Riñón/efectos adversos , Masculino , Factores de Riesgo
6.
Mol Ther ; 28(12): 2691-2702, 2020 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-33186542

RESUMEN

Preventing the progression to acute respiratory distress syndrome (ARDS) in COVID-19 is an unsolved challenge. The involvement of T cell immunity in this exacerbation remains unclear. To identify predictive markers of COVID-19 progress and outcome, we analyzed peripheral blood of 10 COVID-19-associated ARDS patients and 35 mild/moderate COVID-19 patients, not requiring intensive care. Using multi-parametric flow cytometry, we compared quantitative, phenotypic, and functional characteristics of circulating bulk immune cells, as well as SARS-CoV-2 S-protein-reactive T cells between the two groups. ARDS patients demonstrated significantly higher S-protein-reactive CD4+ and CD8+ T cells compared to non-ARDS patients. Of interest, comparison of circulating bulk T cells in ARDS patients to non-ARDS patients demonstrated decreased frequencies of CD4+ and CD8+ T cell subsets, with activated memory/effector T cells expressing tissue migration molecule CD11a++. Importantly, survival from ARDS (4/10) was accompanied by a recovery of the CD11a++ T cell subsets in peripheral blood. Conclusively, data on S-protein-reactive polyfunctional T cells indicate the ability of ARDS patients to generate antiviral protection. Furthermore, decreased frequencies of activated memory/effector T cells expressing tissue migratory molecule CD11a++ observed in circulation of ARDS patients might suggest their involvement in ARDS development and propose the CD11a-based immune signature as a possible prognostic marker.


Asunto(s)
COVID-19/inmunología , Memoria Inmunológica/inmunología , Pandemias , Síndrome de Dificultad Respiratoria/inmunología , Adulto , Anciano , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , COVID-19/virología , Femenino , Humanos , Masculino , Glicoproteínas de Membrana/inmunología , Persona de Mediana Edad , Síndrome de Dificultad Respiratoria/patología , Síndrome de Dificultad Respiratoria/virología , SARS-CoV-2/inmunología , SARS-CoV-2/patogenicidad , Subgrupos de Linfocitos T/inmunología , Vitronectina
7.
Am J Transplant ; 20(11): 3210-3215, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32777178

RESUMEN

The optimal management in transplant recipients with coronavirus disease 2019 (COVID-19) remains uncertain. The main concern is the ability of immunosuppressed patients to generate sufficient immunity for antiviral protection. Here, we report on immune monitoring facilitating a successful outcome of severe severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-associated pneumonia, meningoencephalitis, gastroenteritis, and acute kidney and pancreas graft failure in a pancreas-kidney transplant recipient. Despite the very low numbers of circulating B, NK, and T cells identified in follow-up, a strong SARS-CoV-2 reactive T cell response was observed. Importantly, we detected T cells reactive to Spike, Membrane, and Nucleocapsid proteins of SARS-CoV-2 with majority of T cells showing polyfunctional proinflammatory Th1 phenotype at all analyzed time points. Antibodies against Spike protein were also detected with increasing titers in follow-up. Neutralization tests confirmed their antiviral protection. A correlation between cellular and humoral immunity was observed underscoring the specificity of demonstrated data. We conclude that analyzing the kinetics of nonspecific and SARS-CoV-2-reactive cellular and humoral immunity can facilitate the clinical decision on immunosuppression adjustment and allow successful outcome as demonstrated in the current clinical case. Although the antiviral protection of the detected SARS-CoV-2-reactive T cells requires further evaluation, our data prove an ability mounting a strong SARS-CoV-2-reactive T cell response with functional capacity in immunosuppressed patients.


Asunto(s)
Anticuerpos Antivirales/inmunología , COVID-19/epidemiología , Inmunidad Humoral , Trasplante de Riñón , Monitorización Inmunológica/métodos , Trasplante de Páncreas/métodos , SARS-CoV-2/inmunología , COVID-19/virología , Toma de Decisiones Clínicas , Comorbilidad , Rechazo de Injerto/epidemiología , Rechazo de Injerto/inmunología , Humanos , Huésped Inmunocomprometido , Pandemias
8.
Cytokine ; 129: 155044, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32109722

RESUMEN

Cytokines are soluble and readily analyzed signaling molecules which reveal vital cues about the state of the immune system. As such, they serve in diagnosis and monitoring of immune-related disorders, where strictly controlled handling of the samples including storage and freeze/thawing procedures are required. In basic research and clinical trials, human serum samples can be left for long-term storage before processing. Storage space is commonly limited in scientific laboratories, which require storage of fewer but larger aliquots of patient serum samples. There are also practical limitations to the number of analytes to be processed at the same time. Further, new findings and technological progress might prompt analysis of hitherto unconsidered or undetectable molecules. Repeated freeze/thawing of serum samples is therefore a likely scenario, raising the question of the stability of the measured analytes under such conditions. To address this question, we subjected serum samples with spiked-in T-helper cell associated cytokines to several cycles of freeze/thawing under different conditions, including storage at -20 °C or -80 °C and thawing at 4 °C, 22 °C, and 37 °C, respectively. The concentration of TNF-α, IL-4, IL-17F, and IL-22 decreased after storage at room temperature for 4 h before freezing. Generally, storage at -20 °C resulted in reduced cytokine concentrations. This contrasts storage at -80 °C, which gave stable analyte concentrations; unaffected by repeated freeze/thaw cycles. The study presented here highlights the need for sentinel samples with known cytokine concentrations as internal control for the freeze/thaw process.


Asunto(s)
Citocinas/sangre , Manejo de Especímenes/métodos , Linfocitos T Colaboradores-Inductores/metabolismo , Congelación , Humanos
9.
Nature ; 507(7492): 366-370, 2014 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-24572363

RESUMEN

B lymphocytes have critical roles as positive and negative regulators of immunity. Their inhibitory function has been associated primarily with interleukin 10 (IL-10) because B-cell-derived IL-10 can protect against autoimmune disease and increase susceptibility to pathogens. Here we identify IL-35-producing B cells as key players in the negative regulation of immunity. Mice in which only B cells did not express IL-35 lost their ability to recover from the T-cell-mediated demyelinating autoimmune disease experimental autoimmune encephalomyelitis (EAE). In contrast, these mice displayed a markedly improved resistance to infection with the intracellular bacterial pathogen Salmonella enterica serovar Typhimurium as shown by their superior containment of the bacterial growth and their prolonged survival after primary infection, and upon secondary challenge, compared to control mice. The increased immunity found in mice lacking IL-35 production by B cells was associated with a higher activation of macrophages and inflammatory T cells, as well as an increased function of B cells as antigen-presenting cells (APCs). During Salmonella infection, IL-35- and IL-10-producing B cells corresponded to two largely distinct sets of surface-IgM(+)CD138(hi)TACI(+)CXCR4(+)CD1d(int)Tim1(int) plasma cells expressing the transcription factor Blimp1 (also known as Prdm1). During EAE, CD138(+) plasma cells were also the main source of B-cell-derived IL-35 and IL-10. Collectively, our data show the importance of IL-35-producing B cells in regulation of immunity and highlight IL-35 production by B cells as a potential therapeutic target for autoimmune and infectious diseases. This study reveals the central role of activated B cells, particularly plasma cells, and their production of cytokines in the regulation of immune responses in health and disease.


Asunto(s)
Linfocitos B/inmunología , Linfocitos B/metabolismo , Encefalomielitis Autoinmune Experimental/inmunología , Inmunidad/inmunología , Interleucinas/metabolismo , Infecciones por Salmonella/inmunología , Animales , Células Presentadoras de Antígenos/inmunología , Células Presentadoras de Antígenos/metabolismo , Antígenos CD40/inmunología , Femenino , Humanos , Interleucina-10/metabolismo , Interleucinas/inmunología , Activación de Linfocitos , Macrófagos/citología , Macrófagos/inmunología , Masculino , Ratones , Células Plasmáticas/inmunología , Células Plasmáticas/metabolismo , Infecciones por Salmonella/microbiología , Linfocitos T/inmunología , Receptor Toll-Like 4/inmunología
10.
Immunity ; 33(5): 777-90, 2010 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-21093317

RESUMEN

The myeloid differentiation primary response gene 88 (Myd88) is critical for protection against pathogens. However, we demonstrate here that MyD88 expression in B cells inhibits resistance of mice to Salmonella typhimurium infection. Selective deficiency of Myd88 in B cells improved control of bacterial replication and prolonged survival of the infected mice. The B cell-mediated suppressive pathway was even more striking after secondary challenge. Upon vaccination, mice lacking Myd88 in B cells became completely resistant against this otherwise lethal infection, whereas control mice were only partially protected. Analysis of immune defenses revealed that MyD88 signaling in B cells suppressed three crucial arms of protective immunity: neutrophils, natural killer cells, and inflammatory T cells. We further show that interleukin-10 is an essential mediator of these inhibitory functions of B cells. Collectively, our data identify a role for MyD88 and B cells in regulation of cellular mechanisms of protective immunity during infection.


Asunto(s)
Linfocitos B/inmunología , Factor 88 de Diferenciación Mieloide/metabolismo , Salmonelosis Animal/inmunología , Salmonella typhimurium/inmunología , Transducción de Señal/inmunología , Animales , Inmunidad Innata , Interleucina-10/inmunología , Células Asesinas Naturales/inmunología , Linfocitos/inmunología , Ratones , Ratones Endogámicos C57BL , Factor 88 de Diferenciación Mieloide/genética , Neutrófilos/inmunología , Vacunas contra la Salmonella/inmunología
19.
Immunol Rev ; 233(1): 146-61, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20192998

RESUMEN

B lymphocytes contribute to immunity through production of antibodies, antigen presentation to T cells, and secretion of cytokines. B cells are generally considered in autoimmune diseases as drivers of pathogenesis. This view is certainly justified, given the successful utilization of the B cell-depleting reagent rituximab in patients with rheumatoid arthritis or other autoimmune pathologies. In a number of cases, however, the depletion of B cells led to an exacerbation of symptoms in patients with autoimmune disorders. In a similar manner, mice lacking B cells can develop an aggravated course of disease in several autoimmune models. These paradoxical observations are now explained by the concept that activated B cells can suppress immune responses through the production of cytokines, especially interleukin-10. Here, we review the stimulatory signals that induce interleukin-10 secretion and suppressive functions in B cells and the phenotype of the B cells with such characteristics. Finally, we formulate a model explaining how this process of immune regulation by activated B cells can confer advantageous properties to the immune system in its combat with pathogens. Altogether, this review proposes that B-cell-mediated regulation is a fundamental property of the immune system, with features of great interest for the development of new cell-based therapies for autoimmune diseases.


Asunto(s)
Enfermedades Autoinmunes/inmunología , Autoinmunidad , Linfocitos B/inmunología , Tolerancia Inmunológica , Activación de Linfocitos , Receptores Toll-Like/inmunología , Animales , Enfermedades Autoinmunes/terapia , Modelos Animales de Enfermedad , Humanos , Interleucina-10/inmunología , Ratones , Fenotipo , Transducción de Señal/inmunología
20.
Bioeng Transl Med ; 9(4): e10622, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39036083

RESUMEN

Recent technological advances in the production of in vitro transcribed messenger RNA (IVT-mRNA) facilitate its clinical use as well as its application in basic research. In this regard, numerous chemical modifications, which are not naturally observed in endogenous mRNA, have been implemented primarily to address the issue of immunogenicity and improve its biological performance. However, recent findings suggested pronounced differences between expression levels of IVT-mRNAs with different nucleoside modifications in transfected cells. Given the multistep process of IVT-mRNA delivery and subsequent intracellular expression, it is unclear which step is influenced by IVT-mRNA chemistry. Here, we deconvolute this process and show that the nucleoside modification does not interfere with complexation of carriers, their physicochemical properties, and extracellular stability, as exemplified by selected modifications. The immediate effect of mRNA chemistry on the efficiency of ribosomal protein synthesis as a contributor to differences in expression was quantified by in vitro cell-free translation. Our results demonstrate that for the nucleoside modifications tested, translatability was the decisive step in determining overall protein production. Also of special importance for future work on rational selection of tailored synthetic mRNA chemistries, our findings set a workflow to identify potentially limiting, modification-dependent steps in the complex delivery process.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA