Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Synchrotron Radiat ; 31(Pt 5): 1224-1233, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39196771

RESUMEN

Ultra-high-speed synchrotron-based hard X-ray (i.e. above 10 keV) imaging is gaining a growing interest in a number of scientific domains for tracking non-repeatable dynamic phenomena at spatio-temporal microscales. This work describes an optimized indirect X-ray imaging microscope designed to achieve high performance at micrometre pixel size and megahertz acquisition speed. The entire detector optical arrangement has an improved sensitivity within the near-ultraviolet (NUV) part of the emitted spectrum (i.e. 310-430 nm wavelength). When combined with a single-crystal fast-decay scintillator, such as LYSO:Ce (Lu2-xYxSiO5:Ce), it exploits the potential of the NUV light-emitting scintillators. The indirect arrangement of the detector makes it suitable for high-dose applications that require high-energy illumination. This allows for synchrotron single-bunch hard X-ray imaging to be performed with improved true spatial resolution, as herein exemplified through pulsed wire explosion and superheated near-nozzle gasoline injection experiments at a pixel size of 3.2 µm, acquisition rates up to 1.4 MHz and effective exposure time down to 60 ps.

2.
J Synchrotron Radiat ; 26(Pt 4): 1161-1172, 2019 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-31274440

RESUMEN

A novel high-quality custom-made macroscope optics, dedicated to high-resolution time-resolved X-ray tomographic microscopy at the TOMCAT beamline at the Swiss Light Source (Paul Scherrer Institut, Switzerland), is introduced. The macroscope offers 4× magnification, has a very high numerical aperture of 0.35 and it is modular and highly flexible. It can be mounted both in a horizontal and vertical configuration, enabling imaging of tall samples close to the scintillator, to avoid edge-enhancement artefacts. The macroscope performance was characterized and compared with two existing in-house imaging setups, one dedicated to high spatial and one to high temporal resolution. The novel macroscope shows superior performance for both imaging settings compared with the previous systems. For the time-resolved setup, the macroscope is 4 times more efficient than the previous system and, at the same time, the spatial resolution is also increased by a factor of 6. For the high-spatial-resolution setup, the macroscope is up to 8.5 times more efficient with a moderate spatial resolution improvement (factor of 1.5). This high efficiency, increased spatial resolution and very high image quality offered by the novel macroscope optics will make 10-20 Hz high-resolution tomographic studies routinely possible, unlocking unprecedented possibilities for the tomographic investigations of dynamic processes and radiation-sensitive samples.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA