Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Development ; 140(23): 4751-62, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24173804

RESUMEN

Dendrite size and morphology are key determinants of the functional properties of neurons. Here, we show that growth differentiation factor 5 (GDF5), a member of the bone morphogenetic protein (BMP) subclass of the transforming growth factor ß superfamily with a well-characterised role in limb morphogenesis, is a key regulator of the growth and elaboration of pyramidal cell dendrites in the developing hippocampus. Pyramidal cells co-express GDF5 and its preferred receptors, BMP receptor 1B and BMP receptor 2, during development. In culture, GDF5 substantially increased dendrite, but not axon, elongation from these neurons by a mechanism that depends on activation of SMADs 1/5/8 and upregulation of the transcription factor HES5. In vivo, the apical and basal dendritic arbours of pyramidal cells throughout the hippocampus were markedly stunted in both homozygous and heterozygous Gdf5 null mutants, indicating that dendrite size and complexity are exquisitely sensitive to the level of endogenous GDF5 synthesis.


Asunto(s)
Dendritas/metabolismo , Factor 5 de Diferenciación de Crecimiento/metabolismo , Hipocampo/metabolismo , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Receptores de Proteínas Morfogenéticas Óseas de Tipo 1/metabolismo , Receptores de Proteínas Morfogenéticas Óseas de Tipo II/metabolismo , Células Cultivadas , Activación Enzimática , Regulación del Desarrollo de la Expresión Génica , Factor 5 de Diferenciación de Crecimiento/biosíntesis , Factor 5 de Diferenciación de Crecimiento/genética , Hipocampo/embriología , Hipocampo/crecimiento & desarrollo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Células Piramidales/metabolismo , Interferencia de ARN , ARN Interferente Pequeño , Proteínas Represoras/metabolismo , Transducción de Señal/genética , Proteína Smad1/metabolismo , Proteína Smad5/metabolismo , Proteína Smad8/metabolismo , Regulación hacia Arriba
2.
Mol Cell Neurosci ; 59: 24-36, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24444792

RESUMEN

APRIL (A Proliferation-Inducing Ligand, TNFSF13) is a member of the tumor necrosis factor superfamily that regulates lymphocyte survival and activation and has been implicated in tumorigenesis and autoimmune diseases. Here we report the expression and first known activity of APRIL in the nervous system. APRIL and one of its receptors, BCMA (B-Cell Maturation Antigen, TNFRSF17), are expressed by hippocampal pyramidal cells of fetal and postnatal mice. In culture, these neurons secreted APRIL, and function-blocking antibodies to either APRIL or BCMA reduced axonal elongation. Recombinant APRIL enhanced axonal elongation, but did not influence dendrite elongation. The effect of APRIL on axon elongation was inhibited by anti-BCMA and the expression of a signaling-defective BCMA mutant in these neurons, suggesting that the axon growth-promoting effect of APRIL is mediated by BCMA. APRIL promoted phosphorylation and activation of ERK1, ERK2 and Akt and serine phosphorylation and inactivation of GSK-3ß in cultured hippocampal pyramidal cells. Inhibition of MEK1/MEK2 (activators of ERK1/ERK2), PI3-kinase (activator of Akt) or Akt inhibited the axon growth-promoting action of APRIL, as did pharmacological activation of GSK-3ß and the expression of a constitutively active form of GSK-3ß. These findings suggest that APRIL promotes axon elongation by a mechanism that depends both on ERK signaling and PI3-kinase/Akt/GSK-3ß signaling.


Asunto(s)
Axones/metabolismo , Hipocampo/metabolismo , Neurogénesis , Miembro 13 de la Superfamilia de Ligandos de Factores de Necrosis Tumoral/metabolismo , Animales , Antígeno de Maduración de Linfocitos B/metabolismo , Células Cultivadas , Dendritas/metabolismo , Glucógeno Sintasa Quinasa 3/metabolismo , Glucógeno Sintasa Quinasa 3 beta , Hipocampo/citología , Hipocampo/crecimiento & desarrollo , MAP Quinasa Quinasa 1/antagonistas & inhibidores , MAP Quinasa Quinasa 2/antagonistas & inhibidores , Ratones , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Inhibidores de las Quinasa Fosfoinosítidos-3 , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Células Piramidales/citología , Células Piramidales/efectos de los fármacos , Células Piramidales/metabolismo , Transducción de Señal , Miembro 13 de la Superfamilia de Ligandos de Factores de Necrosis Tumoral/genética
3.
J Neurochem ; 111(6): 1425-33, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20050289

RESUMEN

In the nervous system, both the shape and connectivity of neurons are strongly influenced by soluble, extracellular factors. Indeed, we recently demonstrated that after binding to p75(NTR), the common neurotrophin receptor, nerve growth factor (NGF) controls the morphology and connectivity of cultured mouse hippocampal neurons by encouraging the production of fewer yet longer dendrites, and by augmenting GABAergic connectivity. These effects of NGF are mediated by the differential expression of Enhancer-of-split 1/5 homologs and neurogenin 3. Amyloid beta (Abeta), a pathogenic agent in Alzheimer's disease (AD) is known to bind to p75(NTR), hence we studied its influence on cultured hippocampal neurons. At 800 nM, Abeta(1-40) prevents NGF-induced activation of NF-kappaB and consequently, it depresses the expression of Enhancer-of-split 1. Thus, at this concentration, the effect of Abeta on neurons is antagonistic to those provoked by NGF and accordingly, neurons sprout more yet shorter dendrites and their GABAergic input decreases. In contrast, at lower concentration, 20 nM, the amyloid induces cellular effects similar to those induced by NGF, both in terms of gene expression, neuronal morphology, and GABAergic connectivity. Our results demonstrate that Abeta may act as a neurotrophic factor that mimics the activity of NGF. However, at higher concentrations, the amyloid behaves as an antagonist of NGF, contributing to the advent of AD.


Asunto(s)
Péptidos beta-Amiloides/farmacología , Dendritas/efectos de los fármacos , Factor de Crecimiento Nervioso/farmacología , Animales , Dendritas/metabolismo , Relación Dosis-Respuesta a Droga , Embrión de Mamíferos , Ensayo de Inmunoadsorción Enzimática/métodos , Regulación de la Expresión Génica/efectos de los fármacos , Proteínas Fluorescentes Verdes/genética , Hipocampo/citología , Proteínas I-kappa B/metabolismo , Inmunoprecipitación , Ratones , Ratones Transgénicos , FN-kappa B/metabolismo , Factor de Crecimiento Nervioso/antagonistas & inhibidores , Neuronas/efectos de los fármacos , Neuronas/patología , Transducción de Señal/efectos de los fármacos , Transfección/métodos , Proteínas del Transporte Vesicular de Aminoácidos Inhibidores/metabolismo
4.
Mol Biol Cell ; 17(8): 3369-77, 2006 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-16723502

RESUMEN

Axonal elongation and guidance are controlled by extracellular factors such as the neurotrophins. Indeed, nerve growth factor (NGF) seems to promote axon growth through binding to its p75NTR receptor and inactivating RhoA. Furthermore, the local inhibition of glycogen synthase kinase (GSK)-3beta by NGF also favors microtubule polymerization and axon extension. Inactivation of GSK-3beta may be due to the NGF/TrkA-mediated activation of phosphatidylinositol-3 kinase (PI-3 kinase), which increases the levels of phosphatydilinositol 3-phosphate [PI3P]. However, we show here that NGF may inactivate GSK-3beta through an alternative mechanism. In cultured hippocampal neurons, the capacity of NGF to promote axon elongation is mostly mediated by p75NTR, and the activation of this pathway leads to the inactivation of GSK-3beta. However, the signaling pathway triggered by NGF/p75NTR acts through casein kinase II (CK2). NGF/p75NTR-activated CK2 phosphorylates the phosphatase and tensin homologue deleted on chromosome 10 (PTEN), thus rendering this phosphatase inactive. Like activation of the PI-3 kinase, PTEN inactivation allows PI3P levels to increase, thus favoring GSK-3beta inactivation and axon outgrowth. This newly disclosed mechanism may help to extend the repertoire of pharmacological agents that activate CK2 or that inhibit PTEN to stimulate axon regeneration after trauma or disease.


Asunto(s)
Axones/efectos de los fármacos , Axones/metabolismo , Quinasa de la Caseína II/metabolismo , Glucógeno Sintasa Quinasa 3/antagonistas & inhibidores , Factor de Crecimiento Nervioso/farmacología , Fosfohidrolasa PTEN/antagonistas & inhibidores , Receptor de Factor de Crecimiento Nervioso/metabolismo , Animales , Activación Enzimática/efectos de los fármacos , Glucógeno Sintasa Quinasa 3 beta , Ratones , Modelos Biológicos , Fosfatidilinositol 3-Quinasas/metabolismo , Fosforilación/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Factores de Tiempo
5.
Mol Biol Cell ; 16(1): 339-47, 2005 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-15496460

RESUMEN

Notch and neurotrophins control neuronal shape, but it is not known whether their signaling pathways intersect. Here we report results from hippocampal neuronal cultures that are in support of this possibility. We found that low cell density or blockade of Notch signaling by a soluble Delta-Fc ligand decreased the mRNA levels of the nuclear targets of Notch, the homologues of enhancer-of-split 1 and 5 (Hes1/5). This effect was associated with enhanced sprouting of new dendrites or dendrite branches. In contrast, high cell density or exposure of low-density cultures to NGF increased the Hes1/5 mRNA, reduced the number of primary dendrites and promoted dendrite elongation. The NGF effects on both Hes1/5 expression and dendrite morphology were prevented by p75-antibody (a p75NTR-blocking antibody) or transfection with enhancer-of-split 6 (Hes6), a condition known to suppress Hes activity. Nuclear translocation of NF-kappaB was identified as a link between p75NTR and Hes1/5 because it was required for the up-regulation of these two genes. The convergence of the Notch and p75NTR signaling pathways at the level of Hes1/5 illuminates an unexpected mechanism through which a diffusible factor (NGF) could regulate dendrite growth when cell-cell interaction via Notch is not in action.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Dendritas/metabolismo , Hipocampo/citología , Proteínas de Homeodominio/metabolismo , Proteínas de la Membrana/metabolismo , Factor de Crecimiento Nervioso/metabolismo , Receptores de Factor de Crecimiento Nervioso/metabolismo , Proteínas Represoras/metabolismo , Transporte Activo de Núcleo Celular , Animales , Axones/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Western Blotting , Comunicación Celular , Núcleo Celular/metabolismo , Células Cultivadas , Hipocampo/embriología , Procesamiento de Imagen Asistido por Computador , Ligandos , Ratones , Modelos Biológicos , FN-kappa B/metabolismo , Factores de Crecimiento Nervioso/metabolismo , Unión Proteica , ARN Mensajero/metabolismo , Receptor de Factor de Crecimiento Nervioso , Receptores Notch , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal , Factor de Transcripción HES-1
6.
Neurobiol Aging ; 36(2): 1057-71, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25534236

RESUMEN

Imbalances between excitatory and inhibitory transmissions in the brain anticipate the neuronal damage and death that occur in the neurodegenerative diseases like Alzheimer's disease (AD). We previously showed that amyloid-ß (Aß), a natural peptide involved in the onset and development of AD, counteracts the neurotrophic activity of the nerve growth factor (NGF) by dampening the γ-aminobutyric acid (GABA)ergic connectivity of cultured hippocampal neurons. Neuronal plasticity is partly controlled by the NGF-promoted expression of the homologue of enhancer-of-split 1 (Hes1), a transcription factor that regulates the formation of GABAergic synapses. We now show that Hes1 controls the expression of cerebellin 4 (Cbln4), a member of a small family of secreted synaptic proteins, and we present the evidence that Cbln4 plays an essential role in the formation and maintenance of inhibitory GABAergic connections. Cbln4 immunoreactivity was found in the hippocampus, mostly in the dendrites and somata of pyramidal neurons. In the CA1, the hippocampal region where the first neurons degenerate in AD, Cbln4 immunoreactivity was associated with GABAergic synapses (detected by vesicular inhibitory amino acid transporter [VGAT] immunostaining), which appear to surround and embrace the somata of CA1 pyramidal neurons (basket cells). Moreover, significant decreases of Hes1, Cbln4, and VGAT immunoreactivities and messenger RNA expression were found in the hippocampus of a mouse model of AD. We also found that either the overexpression of Cbln4 in cultured hippocampal neurons or the application of recombinant Cbln4 to the cultures increased the number of GABAergic varicosities, rescuing neurons from Aß-induced death. In contrast, knockdown of Cbln4 gene in cultured neurons was followed by a large reduction of GABAergic connections. Such an effect was reverted by exogenously added Cbln4. These findings suggest a therapeutic potential for Cbln4 in the treatment of AD.


Asunto(s)
Enfermedad de Alzheimer/genética , Péptidos beta-Amiloides/toxicidad , Neuronas GABAérgicas/patología , Proteínas del Tejido Nervioso/fisiología , Precursores de Proteínas/fisiología , Enfermedad de Alzheimer/terapia , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/fisiología , Región CA1 Hipocampal/citología , Células Cultivadas , Neuronas GABAérgicas/fisiología , Regulación de la Expresión Génica/genética , Proteínas de Homeodominio/fisiología , Humanos , Ratones Endogámicos C57BL , Ratones Transgénicos , Terapia Molecular Dirigida , Plasticidad Neuronal/genética , Factor de Transcripción HES-1
7.
Alzheimers Res Ther ; 4(4): 31, 2012 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-22849569

RESUMEN

INTRODUCTION: Alzheimer's disease (AD) is a neurodegenerative disorder characterized by the deposition of ß-amyloid (Aß) in the brain, which produces progressive neuronal loss and dementia. We recently demonstrated that the noxious effects of Aß on cultured hippocampal neurons are in part provoked by the antagonism of nerve growth factor (NGF) signalling, which impairs the activation of nuclear factor κB (NF-κB) by impeding the tyrosine phosphorylation of I-κBα. As a result, the expression of the homologue of Enhancer-of split 1 (Hes1) gene is downregulated and ultimately, gamma-aminobutyric acid (GABA)-ergic connectivity is lost. METHODS: Hes1 activity was promoted in cultured hippocampal neurons by overexpressing a Hes1-encoding plasmid or by upregulating this gene by activating NF-κB through different approaches (overexpressing either the I-κB kinaseß, or p65/RelA/NF-κB). Alternatively neurons were exposed to TGFß1. Dendrite patterning, GABAergic connectivity and cell survival were analyzed by immunofluorescence microscopy. Hes1 expression was determined by real-time PCR. NF-κB activation was measured using the dual-luciferase reporter assay. RESULTS: The expression of Hes1 abolished the effects of Aß on dendritic patterning and GABAergic input, and it prevented the death of the cultured neurons. TGFß1, a known neuroprotector, could counteract the deleterious effects of Aß by inducing NF-κB activation following the serine phosphorylation of I-κBα. Indeed, the number of GABAergic terminals generated by inducing Hes1 expression was doubled. CONCLUSION: Our data define some of the mechanisms involved in Aß-mediated cell death and they point to potential means to counteract this noxious activity.

8.
Mol Neurodegener ; 6(1): 14, 2011 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-21294893

RESUMEN

BACKGROUND: Amyloid beta (Aß) is the main agent responsible for the advent and progression of Alzheimer's disease. This peptide can at least partially antagonize nerve growth factor (NGF) signalling in neurons, which may be responsible for some of the effects produced by Aß. Accordingly, better understanding the NGF signalling pathway may provide clues as to how to protect neurons from the toxic effects of Aß. RESULTS: We show here that Aß activates the RhoA GTPase by binding to p75NTR, thereby preventing the NGF-induced activation of protein tyrosine phosphatase 1B (PTP1B) that is required for neuron survival. We also show that the inactivation of RhoA GTPase and the activation of PTP1B protect cultured hippocampal neurons against the noxious effects of Aß. Indeed, either pharmacological inhibition of RhoA with C3 ADP ribosyl transferase or the transfection of cultured neurons with a dominant negative form of RhoA protects cultured hippocampal neurons from the effects of Aß. In addition, over-expression of PTP1B also prevents the deleterious effects of Aß on cultured hippocampal neurons. CONCLUSION: Our findings indicate that potentiating the activity of NGF at the level of RhoA inactivation and PTP1B activation may represent a new means to combat the noxious effects of Aß in Alzheimer's disease.

9.
PLoS One ; 6(7): e21825, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21818269

RESUMEN

Neurogenin3, a proneural transcription factor controlled by Notch receptor, has been recently shown to regulate dendritogenesis and synaptogenesis in mouse hippocampal neurons. However, little is known about the molecular mechanisms involved in these actions of Ngn3. We have used a microarray analysis to identify Ngn3 regulated genes related with cytoskeleton dynamics. One of such genes is Fmn1, whose protein, Formin1, is associated with actin and microtubule cytoskeleton. Overexpression of the Fmn1 isoform-Ib in cultured mouse hippocampal neurons induced an increase in the number of primary dendrites and in the number of glutamatergic synaptic inputs at 4 days in vitro. The same changes were provoked by overexpression of Ngn3. In addition downregulation of Fmn1 by the use of Fmn1-siRNAs impaired such morphological and synaptic changes induced by Ngn3 overexpression in neurons. These results reveal a previously unknown involvement of Formin1 in dendritogenesis and synaptogenesis and indicate that this protein is a key component of the Ngn3 signaling pathway that controls neuronal differentiation.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Dendritas/metabolismo , Proteínas Fetales/metabolismo , Hipocampo/citología , Proteínas de Microfilamentos/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neurogénesis , Proteínas Nucleares/metabolismo , Sinapsis/metabolismo , Animales , Forma de la Célula , Células Cultivadas , Dendritas/genética , Proteínas Fetales/genética , Forminas , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Glutamatos/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Ratones , Proteínas de Microfilamentos/genética , Neurogénesis/genética , Proteínas Nucleares/genética , Análisis de Secuencia por Matrices de Oligonucleótidos , Terminales Presinápticos/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Interferente Pequeño/metabolismo , Reproducibilidad de los Resultados , Transducción de Señal/genética , Sinapsis/genética
10.
J Neurochem ; 97(5): 1269-78, 2006 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-16539652

RESUMEN

We have previously shown that dendrite morphology of cultured hippocampal neurones is controlled by Notch receptor activation or binding of nerve growth factor (NGF) to its low affinity receptor p75NTR, i.e. processes that up-regulate the expression of the Homologue of enhancer of split 1 and 5. Thus, the increased expression of these genes decreases the number of dendrites, whereas abrogation of Homologue of enhancer of split 1/5 activity stimulates the outgrowth of new dendrites. Here, we show that Neurogenin 3 is a proneural gene that is negatively regulated by Homologue of enhancer of split 1/5. It also influences dendrite morphology. Hence, a deficit of Notch or NGF/p75NTR activation can lead to the production of high levels of Neurogenin 3, which stimulates the outgrowth of new dendrites. Conversely, activation of either Notch or p75NTR depressed Neurogenin 3 expression, which not only decreased the number of dendrites but also favoured inhibitory (GABAergic) synaptogenesis, thereby diminishing the ratios of excitatory/inhibitory inputs. NGF also augmented the levels of mRNA encoding the vesicular inhibitory amino acid transporter, but it did not affect the fraction of GAD65/67-positive neurones. Conversely, overexpression of Neurogenin 3 largely reduced the number of inhibitory synaptic contacts and, consequently, produced a strong increase in the ratios of excitatory/inhibitory synaptic terminals. Our results reveal a hitherto unknown contribution of NGF/p75NTR to dendritic and synaptic plasticity through Neurogenin 3 signalling.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Diferenciación Celular/fisiología , Dendritas/metabolismo , Hipocampo/embriología , Proteínas del Tejido Nervioso/metabolismo , Receptor de Factor de Crecimiento Nervioso/metabolismo , Receptor Notch1/metabolismo , Sinapsis/metabolismo , Animales , Células Cultivadas , Dendritas/ultraestructura , Potenciales Postsinápticos Excitadores/fisiología , Proteínas Transportadoras de GABA en la Membrana Plasmática/genética , Regulación del Desarrollo de la Expresión Génica/fisiología , Hipocampo/citología , Hipocampo/metabolismo , Proteínas de Homeodominio/metabolismo , Ratones , Factor de Crecimiento Nervioso/metabolismo , Inhibición Neural/fisiología , Vías Nerviosas/citología , Vías Nerviosas/embriología , Vías Nerviosas/metabolismo , Plasticidad Neuronal/fisiología , Sinapsis/ultraestructura , Transmisión Sináptica/fisiología , Factor de Transcripción HES-1 , Regulación hacia Arriba/fisiología , Ácido gamma-Aminobutírico/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA